用户名: 密码: 验证码:
风力机叶片疲劳裂纹特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力机叶片的故障已经成为现有风场中的隐患,本文旨在研究风力机叶片承受随机载荷和交变载荷共同作用时的裂纹萌生、生长和扩展信号特征,分析不同的初始裂纹的辨识方法,了解裂纹动态生存状态与叶片疲劳损伤程度之间的因果关系,识别风力机叶片的损伤程度和类型,由此研制具有自主知识产权的大型风力机叶片疲劳损伤辨识系统,从而解决难以实时监测大型风力机叶片的问题,在故障尚轻微时尽早地准确识别其位置和程度,提前对叶片故障预警,保障风力机高效安全地运行,大大降低风力机后期维修成本。
     本文建立了初始裂纹及裂纹生长扩展的诊断模型,通过试验设计,搭建试验平台采集不同裂纹类型、不同裂纹阶段对应的故障信号,为有效地监测叶片状态优化声发射传感器安装位置,同时确定叶片裂纹故障信号的采样频率、采样长度、滤波频率等信号采集和检测的技术参数。分析风力机叶片承受循环载荷作用下的裂纹变化特征,明确瞬时声发射导波传递对裂纹生存状态关联机制,研究局部集中应力导致裂纹生长的叶片疲劳损伤特征,确定裂纹的形变特点、增长率以及叶片疲劳损坏程度之间的因果关系,由此及时准确地评估风力机叶片疲劳状态。
     本文结合试验模拟的方法进一步分析风力机叶片裂纹萌生和扩展机理,了解动态应力对叶片疲劳破坏的影响,根据裂纹类型和状态判定风力机叶片的疲劳损伤程度,构建一个以声发射信号为监测参量、基于自适应小波分析提取微细裂纹故障特征的机制。首先结合Shannon熵方法实现小波基函数的自适应选取,实现消除背景噪声、分离有用信息,提取裂纹故障信号中的微细特征,在此算法基础上将采集到的风力机叶片裂纹声发射信号进行特征提取,再使用到小波尺度谱及重分配尺度谱中,通过对比得到不同类型裂纹的特征信号,完成对初始裂纹的萌生扩展状态的特征提取。风力机的玻璃钢叶片材料不存在明确的疲劳极限,当叶片出现裂纹导致叶片固有频率下降时,不同部位裂纹对固有频率的影响不同,裂纹深度扩展后振型将发生变化,而且产生裂纹的原因多样,由此引发的裂纹生存状态不同,因此提取叶片疲劳裂纹特征的分析机制是非常复杂的。从多分辨率角度入手来提取裂纹特征,分析采集数据中的敏感参数,挖掘叶片微细裂纹故障的特征参数,建立初始裂纹的诊断形式,展现叶片疲劳裂纹在不同频率段的特征,成为解决此问题的关键。本文使用多分辨率的奇异值分解并重构信号从而得到噪声干扰更少的信号;再进行重分配尺度谱的多分辨率计算使得在每一分辨率上的信号更加准确且更具有实际操作性,同时结合能量表达方法,得到可以指导实践的特征向量。
     针对风力机叶片疲劳短裂纹从萌生,生长及扩展,到多裂纹以及长裂纹的出现直到叶片断裂的这一裂纹群体性行为。使用实时的声发射信号采集裂纹的特征就会出现时间跨度长,外界因素不好控制且损伤状态不好界定的问题。故采用分形理论来分析经过疲劳加速试验得到的叶片缩尺模型的不同裂纹阶段的裂纹几何特征。极大的排除了外界因素的限制和干扰,从而展现了从裂纹萌生到叶片断裂的全过程,并用分形维数这一参量表达了损伤变化程度。
Now, wind turbine blade failure has become the accident hidden trouble in wind field.In this paper, we explore the fatigue crack evolution of wind turbine blade under thecombination of random load and alternating load.The method of identification differentinitial cracks has been analyzed. We want to understand dynamic condition and causalrelationship of damage degree, and to identify the damage degree and type of fatigue crack.That is independent intellectual property rights of large-scale wind turbine blade fatiguedamage identification system, so as to solve the problem of real-time monitoring of largewind turbine blade. When fault is minor, the location and extent of damages is identified asearly as possible, and fault warning is demonstrated in advance, to ensure efficient windturbine running safely and reduce maintenance cost greatly.
     This paper presented the diagnosis model which contains experiment of initial crackand the crack growth. Through the test-bed, different types of crack and fault signal ofcrack phase are collected. The installation location of acoustic emission sensor can beoptimized to effectively monitor state of blade, at the same time the sampling, filtering andfrequency are determined. Crack characteristics of wind turbine blades under cycle loadingis analyzed, The associated mechanism of transient AE guided wave transmission and thefatigue feature of the local stress concentration can be clear, characteristics of the crackdeformation, and the causal relationship between growth rate and fatigue damage havebeen determined to assess of wind turbine blade fatigue state timely.
     This paper demonstrated the crack initiation and propagation mechanism through theexperimental simulation, and the influence of the dynamic stress. According to the cracktype and status to determine the degree of fatigue, it is the mechanism of adaptive waveletanalysis with AE signal that is built. Firstly, adaptive selection of wavelet basis functioncombined with Shannon entropy method, which eliminates background noise from usefulinformation, and then the wavelet scalogram and reassignment scalogram are applied.Finally the characteristic of different types of cracks is clear by comparing.The fatigue limit of FRP blade is not clear. When the blade cracks and the natural frequency decreases,the influence of the different parts of the crack on natural frequencies is different, and themode will change. Therefore the mechanism of blade fatigue characteristics is verycomplex. To extract crack characteristics with multiresolution is the key to solve thisproblem. This paper applied multi-resolution SVD and reconstruction to get less noisesignal, and multi-resolution reassignment scalogram to get the feature vector, combiningenergy expression method.
     For the mass behavior from short crack initiation, growth and expansion, long cracks,to breakage, using real-time AE signal will appear a long time span, and control damagestate badly. The fractal theory is adopted to analyze the geometric characteristics of crack,through the fatigue acceleration experiment. That method can eliminate external factors. Itshows that the process of crack initiation to breakage, and the fractal dimension is the newfeature vector of state.
引文
[1] M. Jureczko, M. Pawlak, A. Mezyk. Optimisation of wind turbine blades[J] Journal of MaterialsProcessing Technology,2005,167,:463–471.
    [2]陈雪峰,李继猛,程航等.风力机发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报,2011,47(9):45-52.
    [3] Z. Hameed, Y.S. Hong, Y.M. Cho, etc. Condition monitoring and fault detection of wind turbinesand related algorithms: A review [J]. Renewable&Sustainable energy reviews,2009,13,:1-39.
    [4] Bossanyi E.A. Blade G. H. Version3.67user manual[M]. Garrad Hassan&Partners Limited,2005.
    [5] Changduk Kong a, Taekhyun Kim a, Dongju Han b. Investigation of fatigue life for a medium scalecomposite wind turbine blade[J]. International Journal of Fatigue,2006,8:1382–1388.
    [6] Pane N., Rossi G. L. Larger-bandwidth reflection fiber-optic sensors for turbomachinery rotor bladediagnosis[J]. Sensors and Acuators,1992,32:539-542.
    [7] Nava P., Paone N. Design and experimental characterization of a non-intrusive measurementsystem of rotating blade vibration[J]. Journal of Engineering for Gas Turbines andPower,1994,116:1635-1647.
    [8] P. A. Joosse, M. J. Blanch, A. G. Dutton, etc.. Acoustic emission monitoring of small wind turbineblades[J]. AIAA,2002:1-11.
    [9]马存旺,张呈林,刘勇等.复合材料桨叶蒙皮层间裂纹的应力强度因子求解方法研究[J].机械强度,2009,31(2):282-286.
    [10]高鑫,康兴无,王汉功.复合材料裂纹尖端塑性区的一种解法.机械强度,2009,31(2):329-333.
    [11]赵丽军,黄宝宗,袁惠群.层间段纤维增韧复合材料层板横向裂纹扩展的试验研究[J].机械强度,2010,32(4):646-650.
    [12]李冬霞,王华,王熙.Ⅰ-Ⅱ复合型裂纹开裂角准则的评价[J].机械强度,2010,32(5):865-868.
    [13]李成,铁瑛,郑艳萍.复合型裂纹系统能量变化的仿真分析及同Ⅰ型裂纹系统能量的比较[J].机械工程学报,2010,46(10):54-58.
    [14]耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002,24(l):23-28.
    [15]李光海,刘正义.基于声发射技术的金属高频疲劳监测[J].中国机械工程,2004,15(13):1205-1209.
    [16] Droulliard,T.F.,A History of Acoustic Emission,Journal of Acoustic Emission,1996,14(l):1-34.
    [17] Q.Pan.et al.Two denoising method by wavelet transform[J].IEEE Transactions on SignalProcessing,1999,47(12):567-589.
    [18]赵奎,邓飞,金解放.岩石声发射Kaiser点信号的小波分析及其应用初步研究[J].岩石力学与工程学报,2006,25(增2):3854-3858.
    [19]李建平,杨万年(译),Ingrid Daubechies(著).小波十讲(Ten Lectures on wavelets)[M].国防工业出版社,2004.
    [20] S.Mallat.A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEETrans.on PAMI,1989,11(7):674-693.
    [21]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986.
    [22]陈顺云,杨润海等.小波分析在声发射资料处理中的初步应用.地震研究,2002,25(4):328-334.
    [23]邹剑,陈进,牛军川等.基于幅值与相角小波映射的裂纹转子故障诊断[J].机械工程学报,2003,39(2):33-36.
    [24]焦敬品,何存富,吴斌等.基于模态分析和小波变换的声发射源定位新算法研究[J].仪器仪表学报,2005,26(5):482-485.
    [25]王更峰.基于小波包分析的岩石声发射测量地应力[J].岩土工程技术,2006,20(4):166-169.
    [26]段晨东,何正嘉.基于提升模式的特征小波构造及其应用[J].振动工程学报,2007,20(1):85-89.
    [27]符玲,何正友,麦瑞坤等.小波熵证据的信息融合在电力系统故障诊断中的应用[J].中国电机工程学报,2008,28(13):64-69.
    [28]李冬生,胡倩.碳纤维桥梁拉索疲劳损伤声发射信号小波分析[J].防灾减灾工程学报,2010,30(增):318-322.
    [29]唐守峰,童敏明,潘玉祥等.煤岩破裂微震信号的小波特征能谱系数分析法[J].仪器仪表学报,2011,32(7):1521-1527.
    [30]赵学智,叶邦彦,陈统坚.基于小波-奇异值分解差分谱的弱故障特征提取方法[J].机械工程学报,2012,48(7):37-48.
    [31]张俊哲.无损检测技术及其应用[M].北京:科学出版社,1993.
    [32] Baby S,Kowmudi BN,Omprakash CM,et al. Creep damage assessment in titanium alloy using anonlinear ultrasonic technique. Scripta.Mater.2008,59:818-821.
    [33] Deng MX. Characterization of surface properties of a solid plate using nonlinear Lamb waveapproach. Ultrasonics.2006,44Suppl.1:e1157-1162.
    [34] Nagy P.Fatigue damage assessment by nonlinear ultrasonic materialscharacterization.Ultrasonics.1998,36:375-381.
    [35] Kim CS,Kwun SI,Park IK.Characterization of creep-fatigue in ferritic9Cr-1Mo-V-Nb steel usingultrasonic velocity.J.Nucl.Mater.2008,377:496-500.
    [36] Lee TH,Jhang KY.Experimental investigation of nonlinear acoustic effect atcrack.NDT&EInt.2009,42:757-764.
    [37] Ohtani T. Aeoustic damping charaeterization and microstructure evolution during high-temperaturecreep of an austenitic stainless steel.Metall.Mater.Trans.A.2005,36A:296-2977.
    [38] Cantrell JH.Ultrasonic harmonic generation from fatigue-induced dislocation substructures inplanar slip metals and assessment of remaining fatigue life.J.Appl.Phys.2009,106:093516.
    [39] Kim CS,Lissenden CJ.Precipitate contribution to the acoustic nonlinearity in nickel-basedsuperalloy.Chin.Phys.Lett.2009,26(8):086107.
    [40]冯占英,周正干,高翌飞.大型薄板中超声导波的产生于鉴别[J].无损探伤,2007,31(5):1-3,7.
    [41] Hikata A,Chick BB,Elbaum C.Dislocation contribution to the second harmonic generation ofultrasonic waves.J.Appl.Phys.1965,36(1):229-236.
    [42] Hikata A,Elbaum C.Generation of ultrasonic second and third harmonics due to dislocations.Ⅰ.Phys.Rev.1966,144(2):469-477.
    [43] Hikata A,Sewell FA,Elbaum C.Generation of ultransonic second and third harmonics due todislocations. Ⅱ.Phys.Rev.1966,151(2):442-449.
    [44]行鸿彦,刘照泉,万明习.基于小波变换的超声多模式兰姆波参量时延估计[J].声学学报,2001,26(3):239-246.
    [45]焦敬品,吴斌,何存富等.基于模态声发射和小波变换的薄板中导波传播特性的试验研究[J].中国机械工程,2004,15(13):1179-1182.
    [46]焦敬品,何存富,吴斌等.基于导波理论的管道泄漏声发射定位新技术研究[J].机械工程学报,2004,40(10):77-81.
    [47]周正干,冯占英,高翌飞等.超声导波在大型薄铝板缺陷检测中的应用[J],航空学报,2008,29(4):1044-1048.
    [48]王悦民,沈丽华,申传俊等.管道导波无损检测频率选择与管材特征关系[J].机械工程学报,2009,45(8):243-248.
    [49]王珅,黄松岭,赵伟.管道周向水平切变导波特性分析[J].中国机械工程,2009,20(2):146-149.
    [50]蔡建,袁慎芳,邱雷,等.基于波包能量的裂纹扩展监测试验研究[J].东南大学学报,2009,39(3):477-483.
    [51]刘镇清,刘骁.超声无损检测的若干新进展[J].无损检测,2000,22(9):403-403,428.
    [52]吴斌,孟涛,何存富等.土壤声学特性的超声导波测量[J].机械工程学报,2006,42(10):19-22.
    [53]崔寒茵,师芳芳,籍顺心等.沿均匀无限介质中固体杆传播的导波特性研究[J].声学学报,2010,35(4):446-454.
    [54]卢超,魏运飞,徐薇.钢轨踏面斜裂纹超声表面波B扫成像检测研究[J].仪器仪表学报,2010,31(10):2272-2278.
    [55]宋小军,他得安,王威琪.基于时频分布的盲信号分离方法研究长骨中的多模式导波信号[J].声学学报,2011,36(3):318-324.
    [56]宋晓军,他得安,王威琪.利用Golay码测量长骨中传播的超声导波[J].仪器仪表学报,2012,33(3):629-536.
    [57]冯占英,殷晓华,叶鹏.小波变换在超声导波信号分析中的应用[J].军事交通学院学报,2011,13(9):86-90.
    [58]刘彬,王霄,谢平.多重分形在复杂机械系统故障诊断中的应用[J].复杂系统与复杂性科学,2005(1):66-70.
    [59]杨皓.分形理论用于齿轮箱滚动轴承故障诊断的研究[D].长沙:长沙理工大学,2007.
    [60]梁继辉.分形理论在汽车发动机振动信号分析中的应用[J].科技创新导报,2008(6):65-65.
    [61]王璐,王正,宋希庚等.基于分形理论的复杂应力状态下高温低周疲劳表面短裂纹行为研究[J].机械工程学报,2011,47(14):49-53.
    [62] Kirikera.G.R.,Schulz.M.J., Sundaresan.M.J. Multiple damage identification on a wind turbine bladeusing a structural neural system[J]. Proceedings of the SPIE-The International Society for OpticalEngineering,2007,6530:65300T-1-12.
    [63] J.C. Marín, A. Barroso, F. París, J. Ca as. Study of fatigue damage in wind turbine blades[J].Engineering Failure Analysis,2009,16(2):656-668.
    [64] A. A. Anastassopoulos, D.A.Kouroussis, V. N. Nikolaidis. Structural Integrity Evaluation of windturbine blades using pattern recognition analysis on acoustic emission data[M].2002.
    [65] H.L.Dunegan. Detection of fatigue crack growth by acoustic emission techniques[J].MaterialsEvaluation.1970,28(10):221-223.
    [66] Ziola S. Digital signal processing of modal emission signals[J]. Journal of Acoustic Emission,1996,14(3/4):12-18
    [67] Lekou D, Vionis P, Joosse P A, et al. Full-scale blade testing enhanced by acoustic emissionmonitoring[C]. Proc European Wind Energy Conference, Madrid, Spain,2003.
    [68] Paquette J, Van Dam J, Hughes S. Structural testing of9m carbon fiber wind turbine researchblades[C]. AIAA2007Wind Energy Symposium, Reno, USA,2007.
    [69] Tavner P J. Review of condition monitoring of rotating electrical machines[J]. IET Electric PowerApplica-tions,2008,2(4):215-247.
    [70] Goutham R Kirikera, Vishal Shinde, Mard J Schulz,et al. A structural neural system for real-timehealth monitoring of composite materials [J]. Structural Health Monitoring,2008,7(1):65-83
    [71] Goutham R. Kirikera, Vishal Shinde, Mark J.Schulz,et al. Monitoring Multi-Site Damage GrowthDuring Quasi-Static Testing of a Wind Turbine Blade using a Structural Neural System[J].Structur-al Health Monitoring,2008,7(2):157-173.
    [72]李光海,刘时风.基于小波分析的声发射源定位技术[J].机械工程学报,2004,40(7):136-140.
    [73]王成江,贾智斌,顾玉凯等.非合成绝缘子内部放电声发射试验及分析[J].中国电机工程学报,2006,26(10):146-151.
    [74]成建国,毛汉领,黄振峰等.金属材料声发射信号特征提取方法[J].声学技术,2008,27(3):309-314.
    [75]王旭,张慧萍,晏熊.PE-UHMW/PE-LD层合板拉伸破坏声发射信号参数相关性分析[J].中国塑料,2008,22(7):92-95.
    [76]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述[J].振动与冲击,2008,27(3):75-79,181.
    [77]李红玲,文习山,舒乃秋等.小波变换去噪在绝缘子污秽放电声发射监测中的应用[J].电力系统保护欲控制,2020,38(16):56-59.
    [78]付元杰.小波包变换和能量分析在声发射信号降噪中的应用[J].无损检测,2011,33(1):16-18,22.
    [79]李卿,邵华,陈群涛等.基于独立分量分析的切屑声发射源信号分离[J].工具技术,2011,45(6):35-39.
    [80]楼佳明,孙婧元,黄正梁等.液体雾化状态的声发射检测[J].机械工程学报,2012,48(6):1-7.
    [81]李冬生,曹海.聚乙烯醇纤维混凝土损伤演化声发射监测及其评价[J].振动与冲击,2012,31(9):29-32,43.
    [82] Suresh S.Fatigue of materials[M].2nd ed.London:Cambridge University Press,1998.
    [83]张广平.循环加载下金属薄膜的裂纹萌生行为及其微观机制的研究[J].机械强度,2004,26(S):5-7.
    [84]朱忠奎,陈再良,王传洋.基于小波尺度图重分配的轴承瞬态特征检测与提取[J].数据采集与处理,2005,20(3):356-360.
    [85] Quan Pan etc.Two denoising method by wavelet transform[J].IEEE transactions onSignalProcessing,1999,47(12):567-589.
    [86]熊四昌,陈茂军,胡金华.一种基于小波变换图像去噪的方法[J].计算机与数字工程,2005(4):24~27.
    [87]汤宝平,蒋永华,董绍江.重分配小波尺度谱的时频分布优化方法研究[J].仪器仪表学报,2010,31(6):1330-1334.
    [88] Stephane Mallat. A wavelet tour of signal processing: The SparseWay, Third Edition[M].Burington:Elsevier Inc,2010.
    [89]何正嘉,訾艳阳,孟庆风等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [90] HE Ping, LI Pan, SUN Huiqi.Feature extraction of acoustic signals based on complex Morletwavelet[J]. Procedia Engineering,2011,15:464-468.
    [91] Pan Dongdong,He Yongyong,Chen Darong.Experimental studies of lamb wave characteristicsbased on acoustic ultrasonic technique[J].Journal of Mechanical Strength,2008,30(5):723-728.
    [92]彭志科,何永勇,卢青等.用小波时频分析方法研究发电机碰摩故障特征[J].中国电机工程学报,2003,23(5):75-79.
    [93] P.A.Joosse, M.J.Blanch, A.G.Dutton, et al. Acoustic Emission Monitoring of Small WindTurbine Blades[J]. AIAA,2002,0063.
    [94]廖传军,李学军,刘德顺.小波再分配尺度谱在声发射信号特征提取中的应用[J].机械工程学报,2009,45(2):273-279.
    [95] Paul S.Addison,Marcela Morvidone,James N.Watson.et al.Wavelet transform reassignment and theuse of low-oscillation complex wavelets[J].Mechanical Systems and Signal Processing,2006,20:1429-1443.
    [96]蒋永华,汤宝平,刘文艺等.基于参数优化Morlet小波变换的故障特征提取方法[J].仪器仪表学报,2010,31(1):56-60.
    [97] Z.Peng,F.Chu,Y.He.Vibration Signal analysis and feature extraction based on reassigned waveletscalogram[J].Journal of Sound and Vibration,2002,253(5),1087-1100.
    [98] F.Auger, P.Flandrin. Improving the readability of time}frequency and time-scale representations bythe reassignment method [J]. IEEE Transactions on Signal Processing,1995,43,1068-1089.
    [99] L.Gelman,V.Adamenko.Usage of the Wigner-Ville distribution for vibro-acoustcal diagnostics ofcracks[C].Proceedings of the Meeting of the Acoustical Society of America.Journal of theAcoustical Society of America,2000,108:(5,Part2).
    [100]MALLAT S.A Wavelet T our of Signal Processing[M].2nd ed.San Dieg o:Academic Press,1998.
    [101]王俊,李友荣.高斯小波—最大熵谱分析及其应用[J].振动工程学报,1999,12(4):565-569.
    [102]Hassanpour H.A Time-frequency Approa for Noise Reduction[J].Digital SignalProcessing,2008,18:728-738.
    [103]赵学智,叶邦彦.SVD和小波变换的信号处理效果相似性及其机理分析[J].电子学报,2008,36(8):1582-1589.
    [104]SELVAN S,RAMAKRISHNAN S. SVD-based modeling for image texture classification usingwavelet transformation[J]. IEEE Transactions on Image Processing,2007,16(11):2688-2696.
    [105]BRENNER M J. Non-stationary dynamics data analysis with wavelet-SVD filtering[J].Mechanical System and Signal Processing,2003,17(4):765-786.
    [106]唐炬,李伟,欧阳有鹏.采用小波变换奇异值分解方法的局部放电模式识别[J].高电压技术,2010,36(7):1686-1691.
    [107]VIVEKANANDA B K,INDRANIL S,ABHIJIT D. An adaptive audio watermarking based on thesingular value decomposition in the wavelet domain[J]. Digital SignalProcessing,2010,20(6):1547-1558.
    [108]HASAN D,CAGRI O,GHOLAMREZA A. Satellite image contrast enhancement using discretewavelet transform and singular value decomposition[J]. IEEE Geoscience and Remote SensingLetters,2010,7(2):333-337.
    [109]LEHTOLA L,KARSIKAS M,KOSKINEN M,et al. Effects of noise and filtering on SVD-basedmorphological parameters of the T wave in the ECG[J].Journal of Medical Engineering&Technology,2008,32(5):400-407.
    [110]MARK B, DU Jiang. Noise reduction in multiple-echo data sets using singular valuedecomposition[J]. Magnetic Resonance Imaging,2006,24(2):849-856.
    [111]张峰,梁军,张利等.奇异值分解理论和小波变换结合的行波信号奇异点检测[J].电力系统自动化,2008,32(20):57-60.
    [112]AHMED S M,ALZOUBI Q,ABOZAHHAD M. A hybrid ECG compression algorithm based onsingular value decomposition and discrete wavelet transform[J]. Journal of Medical Engineeringand Technology,2007,31(1):54-61.
    [113]赵学智,叶邦彦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010,46(1):100-108.
    [114]艾延廷,费成巍.转子振动故障的小波能谱熵SVM诊断方法[J].航空动力学报,2011,26(8):1830-1835.
    [115]王小玲,陈进,从飞云.基于时频的频带熵方法在滚动轴承故障识别中的应用[J].振动与冲击,31(18):29-33.
    [116]张景川,曾周末,赖平等.基于小波能谱和小波信息熵的管道异常振动事件识别方法[J].振动与冲击,2010,29(5):1-4.
    [117]戴光,徐海丰,龙飞飞等.2.25Cr-1Mo材料在拉伸过程中的声发射信号聚类分析[J].无损检测,2012,34(7):6-10.
    [118]朱忠奎,陈再良,王传洋.基于小波尺度图重分配的轴承瞬态特征检测与提取[J].数据采集与处理,2005,20(3);356-360.
    [119]MANDELBROT B B. Fractal: Form, chance and dimension[M]. San Francisco:Freeman,1977.
    [120]MANDELBROT B B, PASSOJA D E, PAULLEY A J.Fractal character of fracture surfaces ofmetals[J]. Nature,1984,308:721-722.
    [121]MECHOLSKY J J, MACKIN T J, PASSOJA D E.Self-similar crack propagation in brittlematerials[J].Fractography of Glasses and Ceramics Westerville,1988,22:127-134.
    [122]BORODICH F M. Some fractal models of fracture [J].Journal of the Mechanics and Physics ofSolids,1997,45:239-259.123]MOSOLOV A B. Mechanics of fractal cracks in brittle solids[J]. Europhysics Letters,1993,24:673-678.
    [124]JI Cuicui, JIANG Wei, LU Binbin. Running-in test and fractal methodology for worn surfacetopography characterization[J]. Chinese Journal of Mechanical Engineering,2010,23(5):600-605.
    [125]WILLIFORD R E. Fractal fatigue[J]. Scripta Metallurgicaet Materialia,1991,25(2):455-460.
    [126]XIE H. Effects of fractal crack[J]. Theoretical and Applied Fracture Mechanics,1995,23(3):235-244.
    [127]CARPINTERI A, SPAGNOLI A. Fractal analysis of size effect on fatigue crack growth[J].International Journal of Fatigue,2004,26:125-133.
    [128]马骏,孙毅.金属材料疲劳损伤的宏细观理论[J].力学进展,2002,32(3):391-401.
    [129]郭隽,郭成璧.疲劳短裂纹评定方法新进展[J].机械强度,2001,23(1):38-42.
    [130]王正.疲劳与断裂及其在压力容器上的应用[M].北京:科学出版社,2006.
    [131]Lankford J,Kusenberger F N.Initiation of fatigue creack growth in4340steel[J].MetallurgicalTransactions,1973,4(2):553-559.
    [132]Newman J C,Wu X R,Swain M H,et al.Small crack growth and fatigue life predictions for highstrength aluminium alloys part Ⅱ: crack closure and fatigue analyses[J].Fatigue FratureEngineering Materials,2000,23(1):59-72.
    [133]Nalla R K, Campbell J P,Rithie R O.Mixed-mode,high-cycle fatigue-crack growth thresholds inT8-6Al-4V:role of small cracks[J].International Journal of Fatigue,2002,24(10):1047-1062.
    [134]De Lange R G. Plastic-replica methods applied to a study of fatigue crack propagation in steel35CD4and26St aluminium alloy [J]. Trans. Metall. Soc. AIME,1964,230:644-648.
    [135]Kitagawa H, Takashi S. Proceedings of the Second International Conference on MechanicalBehaviour of Materials, Boston,1976[C].Metals Park, Ohio: American Society for Metals,1976.
    [136]Tanaka K, Nakai Y,Yamashita M. Fatigue growth threshold of small cracks [J]. Int.J.Fract.,1981,17(5):519-533.
    [137]Miller K J, De Los Rios E R. The Behaviour of Short Fatigue Cracks [M]. London:MechanicalEngineering Publications,1986.
    [138]MANDELBROT B B. The fractal geometry of nature[M].San Francisco:Freeman,1982.
    [139]ZHAO Yucheng, SUN Kun, ZHANG Yahong, et al.Fractal dimension of time series applied toidentification of critical speed of jeffcott rotor system[J]. Chinese Journal of MechanicalEngineering,2005,18(3):446-448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700