用户名: 密码: 验证码:
壳聚糖复合剂在水处理中的净化效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前的环境治理尤其在废水处理中,天然无毒的高分子有机化合物壳聚糖的使用成为人们研究的热点。本论文制备了几种壳聚糖复合剂,研究其吸附性能和机理,并利用壳聚糖优良的吸附和絮凝的特性,与无机混凝剂复配,考察它在给水处理及污泥脱水上的应用。
     壳聚糖(CTS)是甲壳素脱乙酰基后的产物,制备原料丰富、无毒、易于生物降解。壳聚糖分子中丰富的氨基和羟基,具有较强的吸附、配位作用,壳聚糖复合吸附剂具有吸附染料分子、金属离子和蛋白质分子的能力。壳聚糖分子中存在游离氨基,在稀溶液中被质子化,使分子链上带大量正电荷,成为一种典型的阳离子絮凝剂,它兼有电中和和吸附絮凝的双重作用,即高分子链上的阳离子活性基团与带负电荷的胶体微粒相互吸引,降低中和胶体微粒的表面电荷,同时压缩了扩散层而使胶体微粒脱稳,并借助高分子链的吸附粘结和架桥作用而产生絮凝沉降。
     水溶性染料一般都是极难降解的小分子有机物,常用的生物法处理、氧化处理效果不好,或不易操作。分别以膨润土和珍珠岩粉为载体,负载1%质量分数的壳聚糖或羧甲基壳聚糖,制得的复合吸附剂均对活性染料具有一定的脱色效果,其中膨润土负载壳聚糖吸附剂对活性大红B-3G、活性深兰B-2GLN、活性黑B-GRFN、活性墨绿B-4BLN四种染料饱和吸附量分别为:11.850mg·g~(-1)、7.760mg·g~(-1)、7.276mg·g~(-1)、8.362mg·g~(-1),高于珍珠岩粉吸附剂,并且其等温吸附曲线更符合Langmuir模型,为利用天然硅铝矿原位修复染料污染土壤提供了理论依据。负载羧甲基壳聚糖对染料的吸附容量最大,但价格较高。另外,实验表明纤维素复合壳聚糖吸附剂对酸性大红具有很好的吸附性能,吸附速度比较快,对该吸附动力学曲线利用一级吸附动力学Lagergren方程进行拟合,求得一级速率常数为0.884 h~(-1)。
     通过用自制的珠状凝胶壳聚糖树脂对牛血清白蛋白的吸附实验可知,pH值、反应时间、投加量及离子强度对蛋白吸附量有影响。对水中Cd~(2+)、Al~(3+)的吸附试验表明,对水中Cd~(2+)、Al~(3+)的吸附容量分别是254.5mg·g~(-1)、49.0mg·g~(-1)。吸附的本质是配位反应,通过红外光谱、光电子光谱法表征,CTS-Cd(Ⅱ)配合物的结构是1个Cd~(2+)与壳聚糖分子中的两个氨基上的N原子、两个羟基上的O原子形成4个配位键结构的配合物,对Al~(3+)的吸附是壳聚糖通过氨基上的N原子和Al~(3+)配位。
     分别以高岭土模拟水样和黄河预沉后的原水为目标水样,考察壳聚糖助凝效果。通过对模拟水样的正交实验,确定影响混凝效果的主次因素顺序和水力条件;通过对黄河预沉后的原水的絮凝实验,分析了PAC投加量、CTS投加量、pH值、CTS分子量等因素对水中浊度、COD_(Mn)去除率的影响,并与活性硅酸的助凝作用进行了对比,结果表明聚合铝PAC和壳聚糖CTS具有协同作用,PAC投加量35mg·L~(-1),CTS投加量0.15mg·L~(-1),壳聚糖助凝效果显著,浊度和有机物的去除均明显提高。通过测定絮凝过程中的Zeta电位变化曲线,说明壳聚糖溶液在pH=3-8的范围内均能保持正电性,在一定浓度的范围里,Zeta电位几乎不变,表明壳聚糖的絮凝以吸附架桥为主,电性中和为次。利用扫描电镜观察了絮体的结构形貌,通过显微摄像系统及图像分析系统观察了CTS助凝前后絮体的形态,通过双对数法计算了单加PAC、PAC/CTS复合絮凝处理水样后絮体的分形维数分别为1.294和1.385。
     试验过程中设计一套测定污泥比阻的装置,通过试验发现,聚合铝PAC、壳聚糖CTS对活性污泥都有调理作用,均能改善污泥的脱水性能。考虑到壳聚糖的价格较高,将二者复合使用,能够更好的发挥无机和有机絮凝剂的优点又避免了两者的不足,污泥比阻最先达到低点,滤速较快而且有助于减少金属污泥的生成。对水厂排泥水污泥进行脱水干化处理时,选择粉煤灰作调理剂为好。
Nowadays, Chitosan as a non-toxic natural amino polymer functional material, have been applied gradually gained popularity in waste water treatment. This paper has researched the remove efficiency of pollutant using some new composite chitosan adsorbents and introduces the research and application of Chitosan on environmental pollution regulation in drinking water treatment and sludge dewatering.
     Chitosan(CTS) is obtained by deacetylation of Chitin which is extracted from crustacean or from fungal biomass. Chitosan is a biodegradable, non-toxic, linear cationic polymer of high molecular weight and is a potent coagulant .Because a amount of dissociate amino groups exist chitosan macromolecule chain and it can be proton change in acidic solution. The high proportion of amine functions in this natural polymer results in novel binding properties for some kinds of dyestuffs, metal ions and protein. Chitosan was regarded as an amino polysaccharide and a soluble cationic coagulant. These cationic groups and negative ion colloid particulate attract each other and neutralize colloid surface charge. Because of the more coiled structure, chitosan polymer is able to compress pervation layer to take steady.In virtue of charge neutralization and adsorption and bridge connection effect so as to produce larger and denser flocs and affluent–NH_2 and–OH was used as absorbent for heavy metals.
     Technologies for dye removal have been investigated, such as the electrolysis coagulation, chemical oxygenation, those processed condition is strict, the stability is bad. The article intends to introduce the authors’experimental study on four kinds of adsorbents which are made by chitosan-coated bentonite , chitosan-coated pearl, carboxymethyl chitosan-coated bentonite and carboxymethyl chitosan-coated pearl .The ability of chitosan-coated bentonite for the removal of reactive dye ,namely reactive red B-3G, blue B-2GLN, black B-GRFN, green B-4BLN,from aqueous solution has been studied. The experimental equilibrium data have been analyzed using the linearized forms of Langmuir, Freundlich isotherms .The Langmuir isotherm was found to provide the best theoretical correlation of the experimental data for the adsorption of all four reactive dyes. The monolayer adsorption capacities were determined to be11.850、7.760、7.276、8.362mg of dye per gram of chitosan-coated bentoniteadsorbent,respectively to four dyes. The results would provide a theoretical basisfor utilizing natural material to extract heavy metals from the contaminated soils.The adsorption of dyes onto Carboxymethyl chitosan adsorbent was expensiveprocess with high capacities. The paper also studied the application of adsorptionof Acid Brilliant Scarlet GR onto Chitosan-coated cellulose adsorbent has beenstudied. It was a fast process and K_1=0.884 h~(-1). in Lagergren equation.
     The adsorption of BSA onto sphere Chitosan polymer has been experimented.Effect of amount of agents, pH value, adsorption time and ionic strength werestudied. The research results for coagulation of dairy producted wastewatersshow that the recovery efficiency of protein by chitosan was efficient. Theexperience of adsorption of Cd~(2+) and Al(Ⅲ)showed that the adsorption was a fastprocess with 254.5mg·g~(-1),49.0mg·g~(-1).capacity. Chitosan-Cd(Ⅱ), Chitosan- Al(Ⅲ)PPwas synthesized and FTIR, XPS analysis indicates that the adsorption was thecoordination of -NHB2 Band -OH groups of Chitosan to Cd~(2+).
     The study assessed the feasibility of the application of chitosan for thecoagulation of kaolinite colloidal particles. The pH effect on the coagulationefficiency of chitosan is insignificant. The evidence infers that chargeneutralization is not a major mechanism controlling the formtion of floc forchitosan coagulation and the water conservancy condition is the key factorcongealed. Chitosan was used to enhance the flocculation treatment of thesurface water,which is the raw water of Yellow River in Zheng Zhou bypolymeric aluminum chloride (PAC).The improvement of removal efficiency ofturbidity and COD indicated that chitosan could enhance the flocculationtreatmen by PAC significantly. When PAC dosage is 35 mg·l~(-1), CTS dosage is0.15 mg·l~(-1), the effect of flocculation is better. Zeta potential instrument andScanning electron microscope were used to test Zeta potential and observe thestructure of flocs and infer flocculation mechanism was interpartical bridgingrather than the electrical neutralization by prositive charge. The floc wasobserved with microscope and image analysis system and the result show thatvariation in fractal dimension can make good response to flocculation level andPAC,PAC/CTS was 1.294,1.385 respectively.
     The effect of the dosage of flocculants on activated sludge dewatering is analyzed through the determination of sludge specific resistance to filtration . Sludge dewatering behaviors conditioned on PAC, CTS and composite flocculants have been compared. The results show all the conditioning agent have help to sludge dewatering .Compared with Polymeric aluminum , Chitosan and PAC/CTS composite coagulant, the optimum coagulant with its optimum dosage is obtained . PAC/CTS can greatly reduce the sludge specific resistance and improves the sludge dewatering performance largely while the clarity of the filtrate was high. While designing the dewatering and drying process of sludge water from water works, we can ignore the coagulation process, and utilize fly ash of power plant as the conditioner of sludge from water works directly.
引文
1 李圭白,蒋展鹏,范瑾初,等.城市水工程概论.中国建筑工业出版社.2002:143~144
    2 Driscoll C T, Letterman R D. Factors Regulating Residual Alnminium Concentrations in Treated Waters.Environmetrics. 1995,(6):287~309
    3 Mclachan D.R.C.Aluminum and the Risk for Alzheimers Disease ,Environmetrics.1995,(6):233~275
    4 Lerda D E,Prosperi C H. Water Mutagenicity and Toxicplogy in Rio Tercero(Cordobam Argentina).Water Research.1996,30(4):819~824
    5 Philip C.,Singer. Correlation between trihalomethanes and total organics halides formed during water treatment. J.Am.Water Work Assoc. ,1989,(8):61~65
    6 蒋挺大.壳聚糖.化学工业出版社. 2001:12~15
    7 Mathur N K,Narang C K. Chitin and Chitosan,versatile polysaccharides from marine animals. J.Chem.Educ.,1990,67(11):938~942
    8 Allan G G, Fox J R,Kong N.MIT sea grand program,Proceedings of the 1Pst PInternational Conference on Chitin/Chitosan.1977,Ed., Cambridge
    9 Heredia J B , Joaquin R. Dominguez, etal.Treatment of Cork Process wastewater by a Successive Chemical-Physical Method J. Agric. Food Chem., 2004,52 (14):4501~4507
    10 Majeti N V, Ravi Kumar. A Review of Chitin and Chitosan Applications, Reactive and Functional Polymers. 2000,(46) : 1~27
    11 J.F.Villanueva-Espinosa.Adsorptive Properties of Fish Scales of Oreochromis Niloticus(Mojarra Tilapia) for Metallic Ion Removal from Waste Water.Ind. Eng. Chem. Res. 2001, (40):3563~3569
    12 Juang R S,Tseng R L,Wu F C ,etal.Adsorption Behavior of Reactive Dyes from Aqueous Solutions on Chitosan. J.Chem.Tech.Biotechnol.1997, (70):391~399
    13 Y. C. Wong, Y. S. Szeto, W. H. Cheung. Equilibrium Studies for Acid Dye Adsorption onto Chitosan.Langmuir.2003, (19): 7888~7894
    14 Jumaa M, Furkert F H, Muller B W. A New Lipid Emulsion Formulation with high Antimicrobial Efficacy Using Chitosan. Pharm. BioPharm., 2002, 53(1):115~123.
    15 Benesch J, Tengvall P. Blood protein adsorption onto chitosan.Biomaterials. 2002,(23) : 2561~2568
    16 Y. Okamotoa, R. Yanoa, K. Miyatake.Effects of chitin and chitosan on blood coagulation.Carbohydrate Polymers. 2003,(53) : 337~342
    17 Sabina P, Strand, Marianne S.Vandvik,Screening of Chitosans and Conditions for Bacterial Flocculation , Biomacromolecules.2001, (2): 126~133
    18 Ibrahim El-Gibaly.Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres.International Journal of Pharmaceutics.2002,(249) : 7~21
    19 Tamuraa H, Tsuruta Y. Preparation of chitosan filament applying new coagulation system.Carbohydrate Polymers.2004,(56) :205~211
    20 Ashmore M, Hearn J.Flocculation of Latex Particles of Varying Surface Charge Densities by Chitosans.Langmuir .2001, (17):1069~1073
    21 Minamisawa M, Minamisawa H. Adsorption Behavior of Heavy Metals on Biomaterials. J. Agric. Food Chem. 2004, (52):5606~5611
    22 Vivek D. ,Savant, J. Antonio Torres. Chitosan-Based Coagulating Agents for Treatment of Cheddar Cheese Whey.Biotechnol. Prog. 2000, (16): 1091~1097
    23 Knorr D. Use of chitinous polymers in food.Food Technology.1984,(1):85~97
    24 Kondo K ,Nakagawa S. Matsumoto M .etal. Selective adsorption of metal ions on novel chitosan-supported sulfonic acid resin.J.Chem. Eng.Jpn. 1997, 30(5): 846~851
    25 Kondo K, Sumi H.,Matsumoto M. Adsorption characteristics of metal ions on chitosan chemically modified by D galactose .Sep.Sci.Technol. 1996,31(12): 1771~1775
    26 Inoue K, Ohto K ,Yoshizuka K,et al.Adsorption of lead ion on complexane types of chemically modified chitosan .Bull.Chem.Soc.Jpn. 1997,(70): 2443~2447
    27 Tzu-Yang Hsien , Gregory L. Rorrer .Heterogeneous cross-Linking of chitosan gel beads: Kinetics,modeling,and influence on cadminm ion adsorption capacity.Ind.Eng.Chem.Res. 1997,(36):3631~3638
    28 Ruey-Shin Juang,Ching-Yun Ju, Equilibrium Sorption of Copper(II)-Ethylene diaminete traaceticAcid Chelates onto Cross-Linked Polyaminated Chitosan Beads.Ind.Eng.Chem.Res.1997,(36):5403~5409
    29 Alam M S. Ishibashi H. Adsorption separation of rhodium using Fe-templated oxine type of chemically modified chitosan.Sep.Sci.Technol. 1998, 33(5):655~666
    30 Kaminski W,Modrzejewska Z.Application of chitosan membranes in separation of heavy metal ions.Sep.Sci.Technol.,1997,32(16):2659~2668
    31 Kubota N. Pemeability properties of chitosan-transition metal complex membranes.J.Appl.Polym.Sci. 1997,(64):819~822
    32 张萍,黄焕利.废弃甲壳资源化利用制备天然高分子甲壳素/壳聚糖研究,四川环境.1997,16(4):8~11
    33 崔小明.壳聚糖及其衍生物在水处理中的应用.净水技术.1997,59(1):43~45
    34 Hong Kyoon No, Na Young Park .Antibacterial activity of chitosans and chitosan oligomers with different molecular weights.International Journal of Food Microbiology. 2002,(74):65~72
    35 Ying-Chien Chung,Huey-Lan Wang,Yen-Meng Chen,et al.Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource Technology.2003,(88) :179~184
    36 林友文,林青.羟丙基三甲基氯化铵壳聚糖的制备及吸湿、保湿和抑菌性能.应用化学.2002, 19(4):351~354
    37 郑连英,朱江峰,孙昆山. 壳聚糖的抗菌性能研究. 材料科学与工程,2000,18(2):22~24
    38 池伟林,覃彩芹,曾林涛,等,壳聚糖季铵盐与表面活性剂复配性能及杀菌活性研究,日用化学工业,2006,36(5):299~302
    39 刘振儒 田重威.壳聚糖复合粘土矿凝聚铜绿微囊藻的研究.环境工程.2004,22(3):80~82
    40 陈江燕,邬国铭.纤维素酶对壳聚糖降解作用的研究.广东医学院学报.2003,21(2):105~108
    41 H罗康碧H,H赵榆林H,H王槐三H,等.天然改性高分子絮凝剂在污水处理中的应用.昆明理工大学学报.2000,25(3):26~27
    42 S. B. Lalvani,K. Mondal.P PInvestigation of amorphous magnetic alloys byX-ray absorption spectroscopy.HJournal of Materials Science LettersH.2002,21(10):793~794
    43 H胡拥军H,H龙立平H,H吴四贵H.利用草浆黑液制备两性木质素絮凝剂.H H H工业水处理H.2006,26(2):30~32
    44 H杨林H,H刘明华H.改性木质素除油絮凝剂处理含油废水的研究.H H H石油化工高等学校学报H.2007,20(2):9~11
    45 曾德芳、沈钢、余钢,等.壳聚糖复合絮凝剂在城市生活污水处理中的应用.环境化学.2002,21(5):505~507
    46 冯玉杰 金永新.壳聚糖季铵盐处理玉米酒精清糟液的研究.环境污染与防治.2002,24(3):129~131
    47 曾德芳,余刚.天然有机高分子絮凝剂壳聚糖制备工艺的改进.环境科学.2001,23(3):123~125
    48 I. Kurane, U. Kontny, J. Janus.Dengue-2 virus infection of humanmononuclear cell lines and establishment of persistent infections.HArchives ofVirologyH.1990,110(1-2):91~101
    49 H黄民生H H沈荣辉H.微生物絮凝剂研制的废水净化研究.H H H上海大学学报(自然科学版H).2001,7(3):244~248
    50 H魏娟明H,H吴志良H.聚合氯化铝与水解聚丙烯酰胺复合絮凝剂JX-3 的制备及室内评价试验. 油气田环境保护.2002,12(1):20~21
    51 H王春梅H,H胡啸林H.高分子絮凝剂在印染废水处理中的应用.南通工学院学报.2001,17(2):22~25
    52 岳欣艳,赵华章,高宝玉.二甲基二烯丙基氯化铵聚合物的除浊性能研究.工业水处理. 2002,22(3):26~31
    53 H江霜英H,H高廷耀H. 上海污水二期工程污水化学强化处理的试验研究.上海环境科学.2002,21(1):40~42
    54 H汤心虎H,H黄秀微H.无机/有机复合絮凝剂对印染废水脱色的研究.工业水处理.2001,27(5):267~270
    55 汤忠红,蒋展鹏.混凝形态学一条研究混凝过程的新路子.中国给水排水.1987,3(5):4~8
    56 蒋展鹏, 尤作亮.混凝形态学的研究进展.给水排水.1998,24(10):70-75
    57 H刘红H,H王东升H,H吕春华H,等.AlB13B去除水中腐殖酸的混凝作用机理.环境化学.2001,27(5):267~270
    58 Jiang Z.P,Fu T.,Yang Zh.H. A kinetics study on flocculation morphology.Engineering Technologies for Environment Protection--preparing for the 21st Century.International Academic Publishers,1993:253~263
    59 Mandelbrot B.B.Fractral:Form,Chance and Dimensions. San Francisco :FreeMan,1977
    60 Tambo N.,Watanabe Y. Physical characteristics of flocs I .the floc densityfunction and aluminium floc. Water Research,1979,(13):409~419
    61 Li D. H. Ganczarczyk J . Fractal geometry of particle aggregates generated inwater and wastewater treatment. Envion.Sci. Technol. 1989 ,23(11) :1385~1389
    62 王东升、汤鸿霄. 分形理论在混凝研究中的应用与展望. 工业水处理,2001,21(7):16~19
    63 H严子春H,H王晓丽H.沸石强化过滤的效果及其对水质的影响.H重庆大学学报(自然科学版H),2002,25(2):130~134
    64 H朱利中H,H苏玉红H.阴—阳离子有机膨润土协同吸附作用及其机理研究.中国环境科学,2001,21(5):408~411
    65 H李增新H,H王国明H,H张道来H.等.天然沸石负载壳聚糖吸附溶液中镉(Ⅱ)的研究.H安全与环境学报H,2007,7(2):43~45
    66 Kawamura Y ,Breakthrough curve for Adsorptionb of Mercury( Ⅱ )onpolyaminated Highly porous chitosan Beads.Wat.Sci.Tech. , 1997,35(7):97~105
    67 Kawamura Y,Mitsuhashi M,Adsorption of metal ions on polyaminated highlyporous chitosan chelating resin.Ind.Eng.Chem.Res.1993,(32):386~391
    68 Dobetti Luca,Delben Franco,Binding of metal cations by N-carbohydrmehychitosan in water Carbohydr.Polym.,1992,18(4):273~282
    69 曲荣君,刘庆俭.天然高分子吸附剂研究-羧甲基交联壳聚糖树脂的合成及吸附特性.环境科学学报.1997,17(1):121~125
    70 Eric Guibal,Ce′line Milot, John Michael Tobin,Metal-Anion Sorption byChitosan Beads: Equilibrium and Kinetic Studies.Ind. Eng. Chem. Res. 1998,37: 1454~1463
    71 Laurent Dambies, Thierry Vincent, Eric Guibal ,Treatment of arseniccontainingsolutions using chitosan derivatives: uptake mechanism andsorption performances.Water Research ,2002,(36):3699~3710
    72 T. N. de Castro Dantas,A. A. Dantas Neto, M. C. P. de A. Moura, ChromiumAdsorption by Chitosan Impregnated with Microemulsion. Langmuir, 2001,(17):4256~4260
    73 Veera M.,Krishnaiah Abburi,Jonathan L., et al.Removal of HexavalentChromium from Wastewater Using a New Composite Chitosan BiosorbentEnviron. Sci. Technol.2003, (37):4449~4456
    74 Nieto J M, Peniche-Covas C, Del Bosque J. Preparation and characterizationof a chitosan-Fe(III) complex. Carbohydr. Polym. 1992,18(3): 221~223
    75 Peniche-Covas C, Salome-Jimenez M. Reaction of chitosan with silver. Rev.Cubana Quim. 1988,4(3): 23~26
    76 Huai-min G, Yue-jin T. Study on the coordination effect of Ni(II) withchitosan and catalytic property of coordination polymer. Chinese J. Chem.Phys. 1997,10(2): 174~177
    77 Gibbs G,John M .Influence of Chitosan Preprotonation on Reactive Black 5Sorption Isotherms and Kinetics.Ind. Eng. Chem. Res. 2004, (43): 1~11
    78 Chiou M S .Equilibrium and Kinetic modeling of adsorption of reactive dyeon cross-linked chitosan beads.Journal of Hazardous Material,2002, 93(2):233~248
    79 Jung R S ,Use of chemically modified chitosan beads for sorption andenzyme immobilization.Advances in Environmental Research. 2002,6(2) :171~177
    80 方华丰,唐爱军,赵国有,等.壳聚糖处理水中三氯甲烷的研究.环境导报,2000, (1):19~22
    81 张庆云,张静.几种吸附树脂对五氯酚钠吸附性能的研究.离子交换与吸附,2001, 17 (5): 357~362
    82 Thierry Vincent, Sylvie Spinelli,Eric Guibal,Chitosan-Supported PalladiumCatalyst. II. Chlorophenol Dehalogenation.Ind. Eng. Chem. Res. 2003,(42):5968~5976
    83 汤鸿霄,钱易.水体颗粒物和难降解有机物的特性与控制技术原理(上卷),水体颗粒物.中国环境科学出版社.2000:137~145
    84 刘之杰,余刚,刘满红.壳聚糖絮凝剂对聚合氯化铝的助凝作用.环境化学,2004,23(3):306~309
    85 Richards ,Blackburn, Natural Polysaccharides and Their Interactions withDye Molecules:Applications in Effluent Treatment. Environ.Sci. Technol.2004,(38):4905~4909
    86 Selmer-Olsen E,A Novel Treatment Process for Dairy wastewater withChitosan Produced from Shrimp-shell Waste.Wat.Sci.Tech.1996,34(11) :33~40
    87 Jonathan Z. Knaul, Katherine A. M. Creber Coagulation Rate Studies ofSpinnable Chitosan Solutions.Journal of Applied Polymer Science,1997,(66):117~127
    88 Laurent. US 005433865A,1995
    89 Ganjidoust H, Effect of Synthetic and Natural coagulant on lignin Removalfrom pulp and paper Wastewater.Wat.Sci.Tech.1997,35(2-3):291~296
    90 Chihpin Huang, Shuchuan Chen , Jill Ruhsing Pan.Optimal Condition ForModification Of Chitosan: A Biopolymer For Coagulation Of ColloidalParticles.Wat.Res.2000,34(3):1057~1062
    91 Chihpin Huang,Yin Chen ,Coagulation of Colloidal Particles in Water byChitosan. J . Chem. Tech. Biotechnol. 1996,(66):221~232
    92 Bolto B, Dixon D,Eldridge R.Ion exchange for the removal of natural organicmatter. Reactive and Functional Polymers,2004,(60):171~182
    93 Chen Liang,Chen dong-hui.Insight into Flocculation Mechanism of chitosan.Journal of Donghua university(Eng.Ed),2003,20(1):90~94
    94 汤鸿宵.无机高分子复合絮凝剂的研制趋势.中国给水排水,1999,15(2):1~3
    95 石宝友,汤鸿宵.聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性.环境科学,2000,21(1):18~21
    96 Jill Ruhsing Pan, Chihpin Huang,Shuchuan Chen,et al.Evaluation of amodified chitosan biopolymer for coagulation of colloidal particles.Colloidsand Surfaces.1999,147:359~364
    97 Mima S, Miya M, Iwamoto R, Yoshikawa S. Highly deacetylated chitosanand its properties .J. Appl. Polym. Sci. 1983,(28): 1909~1917
    98 Schatz C,Versatile and Efficient Formation of Colloids of Biopolymer-BasedPolyelectrolyte Complexes.Biomacromolecules,2004, 5(5): 1882~1892
    99 Ashmore M, Hearn J,Karpowicz F, Flocculation of Latex Particles ofVarying Surface Charge Densities by Chitosans.Langmuir,2001; 17(4):1069~1073
    100 Wang W,Bo S ,Determination of the Mark-Houwink equation for chitosanwith different degrees of deacetylation .Int.J.Biol.Macromol.1991,13:281~285
    101 王志华.环境样品中污染物分析与处理的研究.北京化工大学博士论文.2001:51~54
    102 赵爱杰,H原续波H,H常津H. O-羧甲基壳聚糖的制备及应用研究进展.H高分子通报H,2004,(4),59~63
    103 谢宏斌,刘建湘,邱昌莲.铬天青S 分光光度法测定水中铝的改进.环境与健康杂志.2002,19(3):265~266
    104 何品晶,顾国维,李笃中. 城市污泥处理与利用. 科学出版社,2003:252~259
    105 陈泽堂.水污染控制工程实验. 化学工业出版社,2003: 25~29
    106 许淑芳,朱 江.考马斯亮兰G-250 法测定苹果浓缩汁生产中的蛋白含量.饮料工业,2005,8(1):45~48
    107 李家珍.染料、染色工业废水处理.化学工业出版社,1997:192~195
    108 H黄中华H, H孙秀云H, H李燕H, 等.壳聚糖的吸附行为及其FTIR光谱研究, H光谱学与光谱分析H.2005,25(5):698~700
    109 Y.C.Wang,Y.S.Szeto,W.H.Cheung.etal. Equilibrium Studies for Acid DyeAdsorption onto Chitosan. Langmuir,2003,(19):7888~7894
    110 马 勇,王恩德,邵 红.膨润土负载壳聚糖制备吸附剂.应用化学,2004,21(6):593~597
    111 陈亮,高亮,陈东辉.壳聚糖对染料的吸附动力学研究.上海环境科学,2001,20(3):140~145
    112 陆朝阳,沈莉莉,张全兴.吸附法处理染料废水的工艺及机理研究进展.工业水处理,2004,24(3):12~16
    113 彭书传,王诗生,黄川徽,等.无机柱撑蒙脱石对阳离子桃红染料FG 的吸附脱色.非金属矿.2003,26(6):44~45
    114 王贵领,高山,赵经贵,等.珍珠岩制备4A 分子筛初探.黑龙江大学自然科学学报.2003,20(1),115~117
    115 Shameem Hasan, Abburi Krishnaiah, Tushar K. Ghosh,etal, Adsorption ofDivalent Cadmium (Cd(II)) from Aqueous Solutions onto Chitosan-CoatedPerlite Beads .Ind. Eng. Chem. Res., 2006,45 (14):5066~5077
    116 刘万顺,陈西广. 羧甲基壳多糖毒理学研究.中国海洋药物.1997,16(3):17~19
    117 吴刚,沈玉华,谢安建,等. N,O-羧甲基壳聚糖的合成和性质研究.化学物理学报.2003,16(6):499~503
    118 陈亮,陈东辉.壳聚糖絮凝剂在水处理中的应用.工业水处理,2000,20(9):4~7
    119 刘维俊. 羧甲基壳聚糖的制备和絮凝性能探讨.环境污染与防治,2002,24(4):210~213
    120 HWENH HYue-zhongH,HLIUH HWen-qiH, HFANGH HZhao-huaH, etal, Effects of adsorptioninterferents on removal of Reactive Red 195 dye in wastewater bychitosan. Journal of Environmental Sciences.2005(17)5:766~769
    121 尹炳奎,朱石清,朱南文,等.T T生物质吸附剂处理活性艳红X-3B废水T T.化工环保.2006 ,26(5):349~351
    122 邵光杰, 王锐, 董红星, 等. 物理化学. 哈尔滨工业大学出版社,2003:295~300
    123 Uzun I,Guzel F. Kinetics and thermodynamics of the adsorption of somedyestuffs and p-nitrophenol by chitosan and MCM-chitosan from aqueoussolution. J.Colloid Interf.Sci., 2004,274(2):398~412
    124 张静, 张政朴, 宋瑜.染料壳聚糖微球的制备及其对牛血清白蛋白(BSA)吸附性能的研究.高等学校化学学报.2005,26(12):2363~2368
    125 余艺华,薛博,孙彦,等. 壳聚糖亲和磁性毫微球的制备及其对蛋白质的吸附性能研究.高分子学报,2000,26(3):341~344
    126 Kurane R, Mimanesch S,Microbial flocculent part cuiture conditions forproduction of microbial flocculent by rhodococcus erythropolis. Agric.Boil.Chem.1986,50(9):2309~2313
    127 Nan Li, Renbi Bai.A Novel Amine-Shielded Surface Cross-Linking ofChitosan Hydrogel Beads for Enhanced Metal Adsorption Performance,Ind. Eng. Chem. Res. 2005, (44):6692~6700
    128 唐振兴,石陆娥,钱俊青.壳聚糖凝胶吸附蛋白质机理研究.精细化工,2004,21(11):71~73
    129 Andra Dedinaite, Maria Lundin, Lubica Macakova, etal. Mucin-ChitosanComplexes at the Solid-Liquid Interface: Multilayer Formation and Stabilityin Surfactant Solutions.Langmuir. 2005, (21):9502~9509
    130 Benesch J,Tengvall P . Blood protein adsorption onto chitosan.Biomaterials ,2002, (23 ):2561~2568
    131 于广利,王远红,田学琳,等.甲壳胺回收食品加工废水中蛋白质研究.海洋科学,1994,(3):1~3
    132 Xiaohui W,Yumin D,Hui Liu. Preparation, characterization and antimicrobialactivity of chitosan–Zn complex.Carbohydrate Polymers,2004,56:21~26
    133 Stauber J L. Florence T M. Davies C M, et al. Bioavailability of Al in alumtreateddrinking water. J.AWWA,1999,91(11):84~93
    134 Maruca R. Interaction of Heavy Meatals with Chitin and Chitosan. Joural ofApplied Polymer Science,1982,(27):4827~4837
    135 黄晓佳,王爱勤,袁光谱.壳聚糖对Zn~(2+)的吸附性能研究.离子交换与吸附,2000,16(1):60~65
    136 邵颖,叶玉汉.聚合铝-壳聚糖复合絮凝剂的絮凝性能及其在重金属废水中的应用.宁波大学学报(理工版).2002,15(1):83~85
    137 W. S. Wan Ngah , K. H. Liang,Adsorption of Gold(III) Ions onto Chitosanand N-Carboxymethyl Chitosan: Equilibrium Studies.Ind. Eng. Chem. Res.1999, (38):1411~1414
    138 Nan Li ,Renbi Bai ,Highly Enhanced Adsorption of Lead Ions on ChitosanGranules Functionalized with Poly(acrylic acid) .Ind. Eng. Chem. Res. 2006, 45: 7897~7904
    139 Yun Liu, Haojie Lu, Wei Zhong, etal .Multilayer-Assembled Microchip forEnzyme Immobilization as Reactor Toward Low-Level Protein Identification.Anal. Chem. 2006, (78): 801~808
    140 A. B. Kayitmazer, D. Shaw, P. L. Dubin,etal ,Role of PolyelectrolytePersistence Length in the Binding of Oppositely Charged Micelles,Dendrimers, and Protein to Chitosan and Poly(dimethyldiallyammoniumchloride) .Macromolecules ,2005, (38): 5198~5204
    141 Jorge Aburto, Sylvie Le Borgne,Selective Adsorption of DibenzothiopheneSulfone by an Imprinted and Stimuli-Responsive Chitosan Hydrogel ,Macromolecules, 2004, (37): 2938~2943
    142 Xianghong Peng, Lina Zhang,Surface Fabrication of Hollow Microspheresfrom N-Methylated Chitosan Cross-Linked with Gultaraldehyde.Langmuir2005, (21): 1091~1095
    143 Kazunori Yamada, Yuji Akiba, Takashi Shibuya, etal, Water Purificationthrough Bioconversion of Phenol Compounds by Tyrosinase and ChemicalAdsorption by Chitosan Beads.Biotechnol. Prog. 2005, (21) :823~829
    144 Tse-Ying Liu,San-Yuan Chen,Yi-Ling Lin,etal, Synthesis and Characterizationof Amphiphatic Carboxymethyl-hexanoyl Chitosan Hydrogel:Water-RetentionAbility and Drug Encapsulation.Langmuir .2006, (22): 9740~9745
    145 Ray-Neng Chen, Gen-Ming Wang, Chien-Ho Chen ,etal, Development ofN,O-(Carboxymethyl)chitosan/Collagen Matrixes as a Wound Dressing,Biomacromolecules. 2006, (7):1058~1064
    146 Yong-qing Xia, Tian-ying Guo, Mou-dao Song,etal ,Hemoglobin Recognition byImprinting in Semi-Interpenetrating Polymer Network Hydrogel Based onPolyacrylamide and Chitosan.Biomacromolecules .2005, (6): 2601~2606
    147 Margarita Darder, Mar Lopez-Blanco,Pilar Aranda ,etal.MicrofibrousChitosan-Sepiolite Nanocomposites.Chem. Mater. 2006, (18):1602~1610
    148 Aifang Xue Shahua Qian, Ganquan Huang Fei He and Xiaofang HanSeparation and preconcentration of MnB B B B B B B B B B B B B B B B BVIIB/MnBIIB speciation on crosslinkedchitosan and determination by flame atomic absorption spectrometry. Analyst,2001, (126):239~241
    149 Hitoshi Sashiwa, Yutaka Makimura, Chemical modification of chitosan:preparation of chitosan–sialic acid branched polysaccharide hybrids. Chem.Commun., 2000,(2):909~910
    150 冯玉杰,蔡伟民.环境工程中的功能材料.化学工业出版社,2003:35~37
    151 蒋挺大.甲壳素.北京:化学工业出版社,2003,312~320
    152 H肖玲H,H张婧H.交联壳聚糖季铵盐与聚合铝复合的絮凝效果研究.H环境科学与技术H,H2006,29(10H):12~16
    153 石宝友,汤鸿霄.聚合氯化铝与有机高分子复合絮凝剂的絮凝性能及吸附特性.环境科学,2000,21(1):18~23
    154 常青.水处理絮凝学 .化学工业出版社.2003:126~127
    155 Torgeir Saltnes,Eikebrokk B,Hallvard. Coagulation Optimization for NOMRemoval by Direct Filtration in Clay Aggre-gate Filters.Journal of WaterSupply:Research and Technology-AQUA,2002,51(2):125~134
    156 田鹏,王莉,邓红霞,等.复合絮凝剂聚合氯化铝-壳聚糖中铝形态分布的研究.西北农林科技大学学报(自然科学版),2006,34(9):183~186
    157 顾夏声,黄铭荣,王占生,等.水处理工程. 清华大学出版社,1985:43~44
    158 李燕城. 水处理实验技术.中国建筑工业出版社,1989:83~84
    159 Logan B E, Kilps J R. Fractal Dimensions of Aggregates Formed in DifferentFluid Mechanical Environments . Water Research, 1995,(29):443~446
    160 Bushell G, Amal R. Measurement of Fractal Aggregates of Polydisperseparticles Using Small-Angle Light Scattering . J. Colloid Interface Sci.2000,221:186~189
    161 Jiang Q,Logan B E,Fractal dimensions of aggregates determined fromsteady-state size distributions.Envion. Sci. Technol.,1991,25(12): 203l~2038
    162 Li D H, Ganczarczyk J. Fractal geometry of particle aggregates generated inwater and wastewater treatment.Envion. Sci. Technol. , 1989,23(11) :1385~1389
    163 王晓昌,丹保宪仁.絮凝体形态学和密度的探讨—(I)从絮凝体分形构造谈起.环境科学学报,2000,20(3):257~262
    164 常颖,张金松,王宝贞,等. 基于分形理论的混凝控制研究.中国给水排水,2005,25(2):1~5
    165 H邹琳H,H陈卫H,H汪德爟H.水处理絮凝动力学模型研究与应用,H河海大学学报(自然科学版)H.H2006,34(5H):32~35
    166 Dagot C. Use image analysis and rheological studies for the control of settingof filamentous bacteria application in SBR reactor. Wat. Sci. Tech. ,2001 ,43(3) : 27~33
    167 Feitz A. J . Guan J.,Waite T. D. Size and structure effects on centrifugaldewatering of digested sewage sludge.Wat. Sci. Tech. ,2001 ,44 (2-3) :427~435168 Armand Masion . Coagulation and flocculation of natural organic matter withAl salts: Speciation and structure of aggregates. Envion. Sci.Technol. ,2000 ,34 (15) :3242~3246
    169 汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂的凝聚-絮凝行为差异.环境化学,1997,16(6):497~505
    170 Lee C H. Liu J C.Sludge Dewaterability and Floc Structure in DualPolymer Conditioning.Advances in Environmental Research.2001,5(2):11~13
    171 刘辉,许建华. 自来水厂排泥水处理的国内外发展概况. 中国给水排水,2001,17(8):24~26
    172 Novak J T,Mark Landford, The use of polymers for improving chemicalsludge dewatering on sand bed.AWWA,1977,69(2):106~109
    173 芦家娟,王毅力,侯立安,等. ABR 成熟颗粒污泥的分形特征与尺度效应. 环境科学,2005,26(4):119~123.
    174 John T.Novak. Conditioning,Filtering and expressing waste activated sludge.J.Environ.Eng.,1999,125(9):816~824
    175 J Kopp,N Dichtl.Prediction of full-scale dewatering results of sewage sludgeby the physical water distribution.Wat.Sci.Tech.2001,43(11):135~143
    176 徐强,张春敏,赵丽君.污泥处理处置技术及装置.化学工业出版社. 2003:19~26
    177 费霞丽,崔福义. 福建九龙江流域给水厂污泥脱水性能的试验研究.给水排水. 2004,4:1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700