用户名: 密码: 验证码:
酒精糟液污泥处理与有机复混缓释肥料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究针对金沂蒙集团污水处理厂厌氧-耗氧污泥,即浓缩池混合污泥为研究对象,寻找一种符合清洁化生产要求、高效节能的污泥处置方法,使其减量化、无害化和资源化。主要研究结果如下:
     (1)无机混凝剂的作用在于使有机胶体破胶、脱稳,通过有机高分子絮凝剂的吸附架桥作用絮凝沉淀。联合处理与单独投加有机高分子絮凝剂处理相比,微减压过滤后滤饼含水率两者之间没有明显差别。
     (2)污泥脱水的困难之一,是部分水有以临界面水附着在粒子表面的倾向。污泥脱水处理试验表明,这种水只有通过可附着水的表面层的变化才可能除去,普通药剂对临界面水没有影响。聚合物只能影响到间隙水,对临界面水和水合水没有影响。污泥经过调质处理后进行机械脱水,只能分离自由水和间隙水。
     (3)研究基于污泥滤饼脱水和木质素、纤维素降解,采用槽式发酵技术,使污泥滤饼中的木质素、纤维素快速分解腐熟。利用太阳能、生物能以及机械能,实现污泥滤饼高温好氧发酵二次脱水,一般需8~10天达到腐熟,污泥滤饼含水量由70%~80%%降至25%~30%。试验围绕污泥滤饼二次脱水、控制发酵进程污泥滤饼的含水率,所采取的工艺方法和技术措施是可行的;用含水率评价污泥滤饼堆肥腐熟度也是可行的。
     (4)有机复混缓释肥料生产试验研究表明,浓缩池混合污泥经过调质、机械脱水和高温好氧发酵二次脱水处理是较为理想的基质材料;有机基质的加入减少了粘壁现象,但增加了成粒的难度;添加缓释剂,可提高成粒率25%~40%。
     (5)有机复混缓释肥料缓释性能试验研究表明,有机物料作为一种载体(或基质)具有缓释性,这种有机基质可延长肥料中氮素的释放时间。有机基质与化肥复配其产品具有缓释性,可提高肥料的利用率。有机基质通过有机高分子材料改性,可进一步提高肥料的缓释性,推迟养分释放高峰期。
     (6)有机复混缓释肥料田间肥效试验研究表明,有机复混缓释肥料可提高作物产量、提高对N素的利用率,减少土壤剖面硝态氮含量,有机复混缓释肥料为环境友好型肥料。
     (7)有机复混缓释肥料生态环境安全评价从两个方面进行,一是复合材料的生态环境安全评价,二是使用这些材料制作的缓释肥料的生态环境安全评价。
     水溶性复合材料的生物降解性的研究结果表明:CF2在第4周开始降解,第11周全部降解;N-PS在第8周开始降解,第20周全部降解;N-BX在第7周开始降解,第16周全部降解;Sty-MM在第9周开始降解,第20周基本上全部降解。
     水溶性复合材料对土壤生物的影响研究结果表明:各缓释材料处理对细菌、放线菌、氨化细菌、硝化细菌、纤维分解菌种群数量均有所增加,其中Sty-MM处理增加量最大;对真菌、固氮菌种群数量影响不大;对反硝化细菌种群数量有减少的趋势;各缓释材料处理对土壤动物的线虫动物门、寡毛钢、蜱螨目、鞘翅目的数量均有增加,其中Sty-MM处理增加数量最多,其次是N-PS处理;在Sty-MM、N-BX、N-PS混聚物处理中检测出腹足目、蜘蛛纲、等足目、倍足目、弹尾目、膜翅目土壤动物,同样是Sty-MM处理中最多,在CK1、CF2处理中未检出。
     水溶性复合材料对作物出苗和苗期生长的影响研究结果表明:4种新研制的复合材料对小麦的发芽没有抑制作用,在不同的浓度下,小麦种子的发芽率都在99%以上,与清水对照相似。说明CF2,N-PS,N-BX,Sty-MM对小麦的发芽是安全的。
     有机复混缓释肥对小麦出苗和苗期生长影响的研究结果表明:各个处理小麦的出苗率均在95%以上,与等NPK化肥和不施照对照相似;冬前调查显示,小麦地上部干重、叶面积、叶绿素含量与等NPK养分化肥和不施肥对照各项指标不但没有减少反而有所增加;4种水溶性复合材料制成的胶结型和胶结包膜型缓释肥对小麦出苗以及苗期的生长没有不良影响。
     有机复混缓释肥对土壤剖面硝态氮含量影响的研究结果表明:胶结包膜型缓释肥料可显著降低硝态氮向地下水流失的风险,其含量符合地下水硝酸盐含量标准;胶结包膜型缓释肥料土壤硝态氮累积量介于CK1与CK2之间,能够有效减少硝态氮的累积淋失量;胶结包膜型缓释肥料比NPK复混肥料能大幅度地减少硝态氮地淋溶损失。
The object of this thesis is to look for a sludge disposal method fitting cleaner production and efficient energy-saving to quantitative reduction, innocuousness and resource. The object of study is the Jinyimeng company anaerobic-oxygen consumption sludge that is concentrated pool of sludge mixed. Key findings are as follows:
     (1)Inorganic coagulant role is to make organic colloid out of steady and flocculation precipitation through the role of absorption of organic polymer flocculants bridging. United disposal compared to separate vote organic polymer flocculants, it is no significant difference between the moisture content of filter cake after micro-vacuum filtered.
     (2)One of sludge dehydration difficulties is the tendency to some water attaching to the surface of the particles especially provisional interface water. Experiment of sludge dehydration showed that this kind of water maybe eliminate only by the interface change of attached water and common reagent useless. Polymer can only affect the pore water, and not affect the provisional interface water and hydration water. If sludge had a mechanical dehydration after modified treatment, it can only be separated free water and water space.
     (3)After the sludge mixed of concentrated pool were modified quality(flocculated) and mechanical pressure filter dehydration, the moisture content of filter cake was 70%~80%, rich in lignified fiber and cannot be used as raw material of organic-mixed fertilizer and must be disposed. Using solar energy, bio-energy and mechanical energy, the processing time reduced, energy consumption decreased,and the second dehydration of sludge filter cake high-temperature aerobic fermentation could be done. The moisture content of filter cake decreased by 30%~35%, less in lignified fiber and the powdery material generated as a vector was a more satisfactory slow-release material. Fermentation period was 8~12d, and maturity was 28%~32%(standard compost is about 30%, and groove type fermentation is 15%~20%).
     (4)The production test of organic-mixed slow-release fertilizer showed that the sludge mixed of concentrated pool were more satisfactory medium materials after modified quality, mechanical dehydration and the second dehydration of high-temperature aerobic fermentation. The addition of organic matrix is conducive to form granulation, and reduce the viscosity of the wall.
     (5)The performance test of organic-mixed slow-release fertilizer showed that Organic materials(matrix) may be extend the release time of fertilizer nitrogen as a vector (or matrix) with slow-release performance. Organic matrix compound with fertilizers had slow-release performance and increased nitrogen recovery. Through organic polymer materials modified, organic matrix could increase nitrogen recovery further, delay the release peak period of nutrient and control with different particle variable speed technology.
     (6)The field experiment of organic-mixed slow-release fertilizer showed that organic-mixed slow-release fertilizer could increase crop yield, nitrogen recovery, and reduce nitrate content in soil profile. Organic-mixed slow-release fertilizers are environment-friendly.
     (7)Evaluation in Eco-protection of organic-mixed slow-released fertilizer runs in two aspects. One aspect is Evaluation in Eco-protection of the. The other side is Evaluation in Eco-protection of the slow-release fertilizer made from the composite.
     The results of the studies on water-solubility composite were as follows: the degradation of CF2 began in the fourth week, and accomplished in the tenth week; the degradation of N-PS began in the eighth week, and accomplished in the twentieth week; the degradation of N-BX began in the seventh week, and accomplished in the sixteenth week; and the degradation of Sty-MM began in the ninth week, and basically accomplished in the twentieth week.
     The results of the studies at the effects of the water-solubility composite on soil organism showed that the amounts of the bacteria, actinomyces, ammoniate bacteria, nitrobacteria and cellulose decomposing bacteria all increased after the treatment by the slow-release materials, in which the biggest increment was come from the treatment by Sty-MM. But the influences of the amounts of epiphyte and azotobacter from the treatment were slight. And the amount of anti-nitrobacteria decreased after the treatment. The amounts of Nematoda phylum, Annelida, Soil mites, and Coleoptera all increased, in which the biggest increment was come from the treatment by Sty-MM and then the N-PS. Gastropod, Araneae, Isopoda, Diplopoda, Collembola and Hymenoptera was detected after the treatment by the polymer of Sty-MM, N-BX and N-PS, which was not happened in the treatment from CK1 or CF2. The biggest increment was likewise come from the treatment by Sty-MM.
     The results of the studies at the effects of the water-solubility composite on crop emergence and seedling growth showed that the four new composites would not inhibit the seed germination of wheat. In different concentrations, the seed germination rate was over 99 percents, which was similar with clean water. The results proved that CF2,N-PS,N-BX,Sty-MM was safe for seed germination of wheat.
     The results of the studies at the effects of organic mixture slow-released fertilizer on crop emergence and seedling growth showed that the seed germination rates of wheat which received different treatments were all over 95 percents, which was similar with wheat fertilized by fertilizer contain equitable NPK, and with wheat never fertilized. The investigation before the winter showed that the weight of the wheat fields top, the leaf area, and the chlorophyll content increased compared with wheat fertilized by fertilizer contain equitable NPK and with wheat never fertilized. There were no bad influences on crop emergence and seedling growth from the coated slow-released fertilizer made from the four new composites.
     The results of the studies at the effects of organic mixture slow-released fertilizer on the nitrate content in the soil profile showed that the coated slow-released fertilizer could decrease the risk of the nitrate loss to the groundwater. And the nitrate content accorded the groundwater nitrate content standard. When the nitrate cumulation in the soil by the coated slow-released fertilizer was between CK1 and CK2, the loss of the nitrate would be effectively reduced. The coated slow-released fertilizer could obviously reduce the loss of the nitrate compared with the NPK compound fertilizer.
引文
1. 白韵如.科技为饲料工业插上翅膀.田野的希望一中国农村科技二十年发展巡礼[M].北京科学技术文献出版社.1999:224-233.
    2. 鲍士旦.土壤农化分析.第三版.北京:中国农业出版社,2002.
    3. 北京市环境保护科学研究所.水污染防治手册.上海.上海环境科学技术出版社.1989:902-926
    4. 北京水环境技术与设备研究中心等,三废处理工程技术手册-废水卷.北京:化学工业出版社,2000.
    5. 比嘉照夫.EM 环境革命[M].日本:1996.
    6. 编委会.21 世纪议程—环境保护与综合治理.北京:科学技术文献出版社,2000.
    7. 陈文纳.周国华.吴雪文等.用无机絮凝剂处理酒精生产废水.环境保护.1994,198(4):8-9
    8. 陈银广,杨海真,吴桂标,顾国伟.表面活性剂改进活性污泥的脱水性能及其作用机理.环境科学,2000.21(5):97-100.
    9. 杜昌文,周健民.控释肥料的研制及其进展[J].土壤,2002,(3):127-133.
    10. 杜建军,廖宗文,等.包膜控释肥养分释放特性评价方法的研究进展[J].植物营养与肥料学,2002,8(1):16-21.
    11. 杜建军,廖宗文,毛小云,刘可星,冯新.包膜控缓释肥养分释放特性评价方法的研究[J].磷肥与复肥,2003,18(2):11-13.
    12. 段平.缓效多营养包硫尿素氮溶出速率的实验研究[J].磷肥与复肥,2000,15(2):21-22.
    13. 樊小林,廖宗文.控释肥料与平衡施肥和提高肥料利用率[J].植物营养与肥料学报,1998,4(3):219-223.
    14. 范瑾初等,混凝技术.北京:中国环境科学出版社,1992.
    15. 符建荣.控释氮肥对水稻的增产效应及提高肥料利用率的研究[J].植物营养与肥料学报,2001,7(2):145-152.
    16. 高泛启,等.酒槽酿醋工业研究报告 IJ].中国调味品,1992,4:13-15.
    17. 高桥俊三.活性污泥生物学,北京:中国建筑工业出版社,1978:63-68. 龚云表主编.合成树脂与塑料手册,上海科学技术出版社,1994:661-662.
    18. 顾国维.水污染治理技术研究,上海:同济大学出版社,1997:276~322
    19. 关键.酒精糟液处理的国内外概况[J].吉林酿酒,1990,3:31~46.
    20. 关卫省.朱浚黄.酒精糟废水生化处理特性的研究.环境科学研究.1992,5(4):46-49.
    21. 何绪生,李素霞,等.控效肥料的研究进展[J].植物营养与肥料学报,1998,7(2):97-106.
    22. 候翠红.控制释放肥料养分释放特性的研究[J].磷肥与复肥,1998b,13(4):6-8.
    23. 蒋莹,黄美英,等.从酒楷中提取复合氨基酸及微量元素[J].食用工业科学,1991,6:14-16.
    24. 金儒霖,刘永龄编著.污泥处置,北京:中国建筑工业出版社,1982:136-152.
    25. 孔平涛.饲料生产及蛋白资源需求[J].安徽农学通报,2001,7(5):15-17.
    26. 李菂萍,王好斌,许秀成.乐喜施控制释放肥料与国外同类产品的比较[J].磷肥与复肥,1998,1:59-60.
    27. 李艳霞,王敏健,王菊思.有机固体废弃物堆肥的腐熟度参数及指标.环境科学,1999,20(2):98-103.
    28. 李卓丹.论我国酒精工业推行清洁生产的潜力和机会.环境科学研究.1999,12(2):1-7.
    29. 廖宗文.开发工业废料,发展有机复肥[J].农业环境保护,1993.12(l)44-45.
    30. 林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997,2:1-5,23.
    31. 刘刚主编.GB18877-2002《有机-无机复混肥料》国家标准实施指南.北京:中国标准出版社,2003:2-6.
    32. 刘光照..利用优质酒丢糟萃取液生产食醋[J].中国调味品,1995,1:18-23.
    33. 刘守初.高温速成堆肥.北京:财经出版社,1955:20~26.
    34. 鲁如坤,土壤农业化学分析方法. 北京:中国农业科技出版社,2000.
    35. 潘东海..从酒糟制取甘油[J].化工物资,1993,5:44-45.
    36. 彭迪水..酒厂废水处理设计和运行[J].工业水处理,1993,13(2):d1-d2.
    37. 齐鑫山.有机废弃物农业利用的途径与技术简介[J].农村生态环境,1996,12(3):50-53.
    38. 钱泽封.沼气发酵微生物学[M].杭州:浙江科技出版社,1986.
    39. 青山正和,吉天光二,平井隆平,等.有机質資材の腐熟と窒素形熊变化能との关系.日本土壤肥料学雑誌,1988,59(4):353-362.
    40. 全国农业推广中心编著.中国有机肥资源..北京:中国农业出版社,1999,15~25
    41. 若秀幸,高桥和彦,山下春吉等.堆肥の腐熟度鉴定における花粉管生长テストと發芽試験の关系.日本土壤肥料学雑誌,1987,58(4):460-464
    42. 邵伟,熊泽,周媛,等.酒糟料栽培金针菇初探[J].食用菌,2000,(4):25.
    43. 石永峰.粮油和食品加副产品在饲料中的应用[J].西部粮油科技,1998,23{3}:51-54.
    44. 石永峰.粮油和食品加工副产品在饲料中的应用[J].西部粮油科技,1998,23{3}:51-54.
    45. 史春余.有机-无机缓释肥研制及其缓释性能的评价.博士后论文,2003,1-3.
    46. 水处理信息导报,1999(1):65-67.
    47. 孙长平,段钢.酒精工业中的新型酶制剂及其应用技术.酿酒,2007,34(1):73-80.
    48. 唐仁裹.酒糟制取甘油的新技术研究[J].化学工程师,1994,1:4-6.
    49. 藤原俊六郎,井ノ子昭夫,松崎敏英,等.家畜ふんの堆積に伴う有機成分組成の变化と月形滤紙クロマトグラフイによる腐熟度判定.日本土壤肥料学雑誌「日」,1981,52(4):311~316.
    50. 《土壤动物研究方法手册》编写组编.土壤动物研究方法手册.北京:中国林业出版社,1998.
    51. 王琳,王宝贞.污泥减量化技术的新进展.污染防治技术,2000,13(1):48~50.
    52. 王蛮.酒精蒸馏废楷中提取蛋白质试验的研究[J].酿酒科技,1994,2:65-69.
    53. 武志杰,周健民.我国缓释、控释肥料发展现状、趋势及对策.中国农业科学导报.2001,3(l):73~76
    54. 谢林.DDGS 生产的关健设备与工艺[J].酿酒科技,1992,4:72-75.
    55. 谢林.薛侠.安徽特级酒精厂及 DDGS 生产技术.酒精工业.1990,5(2):40-43.
    56. 许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告:第三报,包膜(包裹)型控制释放肥料各国研究进展(续)5.以色列、印度、埃及等[J].磷肥与复肥,2002,17(1):10-12.
    57. 许秀成,李药萍,王好斌.包裹型缓释/控制释放肥料专题报告:第三报,包膜(包裹)型控制释放肥料各国研究进展(续)3.欧洲[J].磷肥与复肥,2001a,16(2):10-12.
    58. 许秀成,李药萍,王好斌.包裹型缓释/控制释放肥料专题报告:第三报:包膜(包裹)型控制释放肥料各国研究进展(续)4.中国[J].磷肥与复肥,2001,16(4):4-8.
    59. 许秀成,王好斌,李药萍.包裹型缓释/控制释放肥料专题报告:第三报,包膜(包裹)型控制释放肥料各国研究进展 1.美国、加拿大;2.日本[J].磷肥与复肥,2000,15(6):7-12.
    60. 严昶升主编.土壤肥力研究方法. 北京:农业出版社,1988.
    61. 严瑞瑄主编.水处理剂应用手册,北京:化学工业出版社,2003:581-583.
    62. 尹军、谭学军.污水污泥处理处置与资源化利用,2005:1-27.
    63. 永泽满.高分子水处理剂[M]北京:化学工业出版社,1985:33-81.
    64. 于天仁,王振权主编.土壤分析化学[M].北京科学出版社,1988.
    65. 张夫道,王玉军.“利用农业废弃物生产有机复合肥技术研究与产业化”试验研究报告.2003:18~19.
    66. 张夫道,王玉军.我国缓/控释肥料的现状和发展方向.中国土壤与肥料,2008,
    67. 张夫道,张树清,王玉军,窦富根,刘秀梅,邹绍文.有机物料高温快速连续发酵除臭技术研究.农业环境科学学报,2004,23(4):796-800.
    68. 张夫道.作物秸碳在土壤中分解和转化规律的研究.植物营养与肥料学报,1994,(1):27-38.
    69. 张夫道主著:中国土壤生物演变及安全评价.北京:中国农业出版社,2006:34-35.
    70. 张海军,武志杰,等.聚合物包膜尿素溶出动力学特征及其与包膜层通透性的关系[J].中国农业科学,2003,36 (10):1177-1183.
    71. 张浩,王正银.缓释/控释肥料研究进展.黑龙江农业科学,2002(5):18-20
    72. 张焕祯,韩树波.尿素缓释技术进展.化肥工业.1992(2):12-15
    73. 张玉华,韩捷,国清金,等.酒精糟饲料化处理综合配套技术及工艺研究[J].农业工程学报,1997,(13)9:145-149.
    74. 张远琼.利用酒糟生产食用菌的初步研究[J].四川师范大学学报(自然科学版),1996,2:114-115.
    75. 张自杰.环境工程手册─水污染防治卷.北京高等教育出版社.1996:526-721.
    76. 赵世民,唐辉,王亚明,周立宏.包膜型缓释/控释肥料的研究现状和发展前景.化工科技.2000,11(5):15~19
    77. 郑俊,吴浩汀,程寒飞编著.曝气生物滤池污水处理新技术及工程实例.北京:化学工业出版社,2002.
    78. 郑元景,等.污水厌氧生物处理[[M].北京:中国建工出版社,1989.
    79. 周焕群.啤酒废水处理技术的现状及发展趋势[J].工业水处理,1993.13(3):8-10.
    80. 周晓俭.厌氧发酵系统温度的选择和热量平衡.环境科学研究.1992,5(1):30-35.
    81. 周作伸.酒精糟蛋白饲料关键设备的评价与开发[J].中国机械工程,1996,6:63-66.
    82. 朱兆良.我国氮肥的使用现状、问题和对策[A].中国农业持续发展中问题[c].南昌:江西出版社,1998.
    83. Arizal R. A slow-released urea fertilizer based on a natural rubber matrix [J]. PhD. thesis. Loughborough University of Technology UK.
    84. Bernal MP,Sanchez-Monedero,C Paredes,et al.Carbon mineralization from organic wastes at different composting stages during their incubation with soil.Agriculture,Ecosystem and Environment.,1998,69:175-189.
    85. Blouin M.,D. W Rindt, O. E. Moore. Sulfur coated fertilizers from control release: pilot plant production [J]. ournal of agricultural and food chemistry, 1971,19:801-808.
    86. C.Garcia,J.L.Moreno,T.Hernandez,F.Costs. Effect of composting on sewage sludges contaminated with heavy metals. Bioresource Technology,1995,53:13-19.
    87. Carcia C,T Hemandez F Costa,Pascual J A.Phytoxicity due to the agriculturaluse of urban Wastes,Germination exPeriments.J.Sci.Food Agric.,1992,59:313-319.
    88. E·II·巴宾科夫等,论水的混凝.北京:中国建筑工业出版社,1982.
    89. Fujita T. Invention of fertilizer coating technology using poloyolefin resin and manufacturing of coated urea[J]. Japanese Journal of Soil Science and Plant Nutrition,1996,67: 247-248. (in Japanese).
    90. Gandeza T. A, Shoji S., I.Yamada. Simulation of crop response to polyolefin-coated urea I Field dissolution. Soil Sci. Soc. Am. J.,1991,55:1462-1467.
    91. Hauck R. D.. Slow release and bio-inhibitor-amended nitrogen fertilizers. In: Engelstad OP ed. Fertilizer Technology and Use[M]. 3rd Edition. Madison,Soil Science Society of America. 1985,p507-533.
    92. Hauck R. D.. Synthesis slow-release fertilizer and fertilizer amendments[M]. In: Organic Chenucals in the Soil Environment. Goring C. A. I. and J. W. Hamaker,Eds. 1972,Vo1.2,p33-690.
    93. Hepburn C. and R. Arizal. Slow-release fertilizers based on natural rubber[J]. British Polymer Journal.1987,20:487-491.
    94. Holcomb E J. A technique for determining potassium release from a slow release fertilizer[J]. Communications in Soil Science and Plant Analysis,1981,12:271-277.
    95. Inbar,Y.,Y.Chen,and Y.Harada. Carbon-13 CPMAS NMR and FITR Spectroscopic analysis of organic matter transformations during composting of solid waste from wineries. Soil Science.1991,152:272-282
    96. Isabelle Deportes. Jean-Louis Benoit-Guyod,Denis Zmiro. Hazard to man and the environment posed by the use of urban waste compost:a review. The Science of the Total Environment,1995,172:197-222.
    97. Jarrell W. M. and L. Boersma. Model for the release of urea by granules of sulfur-coated urea applied to soil[J]. Soil Science Society of America journal,1979,43:1044-1050.
    98. Jarrell W. M. and L. Boersma. Release of urea by granules of sulfur-coated urea[J]. Soil Science Society of America journal,1980,40:418-422.
    99. Kiyomoto N.Maehara T, et al. Effects of yields by basal dressing using controlled-release fertilizers on precocity pumpkin[J].Jap J Soil Sci. Plant Nutr.,2002,73(5):531-535.
    100. Langer SJ,Kluoe R,Hahn,HE.Mechanisms of floc formation in sludge conditioning with polymers.Water Sci.and Tech.,1994,30(8):129-136.
    101. Miguel Ayuso,Jose Antonio Pascual. Carlos Garcia. And Teresa Hernandez. Evaluation of Urban Wastes for Agriculture Use. Soil Sci. Plant Nutr.,1996,42(1):105-111
    102. Miikki V.,Senesi N and Hanninen K. Characterization of humic material formed by composting of domestic and industrial biowastes[J]. Chemosp-here,1997,34(8):1639-1651.
    103. Mikkelsen R. L. Using hydrophilic polymers to control nutrient release [J]. Fertilizer Research 1994,38:53-59.
    104. Patel A J and Sharma G C. Nitrogen release characteristics of controlled-release fertilizers during a four months soil incubation[J].Journal of the American Society for Horticultural Science,1977,102(3):364-367.
    105. Raban S, Zaidel E, Shaviv A.1997.Release mechanisms of controlled release fertilizers in practical use[A]. In: Mortwetd JJ,ed. On Fertilization and the Environment [C]. Haifa: Technion,287-295.
    106. Shaviv A. Plant response and environmental aspects as affected by rate and pattern of nitrogen release from controlled release N fertilizers[A]. Van Clempt. Progress in Nitrogen Cycling Studies[C]. The Netheerlands:Kluwer Academ Pub,1996:285-291.
    107. Shoji S.,Gandeza A.T.,K.Kimum. Simulation of response to polyolefin-coated Urea: II Nitrogen uptake by com [J]. Soil Science Society of America journal,1991,55:1468-1473.
    108. Svend Tage Jakobsen. Aerobic decomposition of organic wastes 2. Value of compost as afertilizer. Resources,Conservation and Recycling,1995,11:57-71.
    109. Tlustos P. and A. M. Blackmer. Release of nitrogen from ureaform fractions as in fluenced by soil pH[J].Soil Science Society of America Journal,1992,56(6):1807-1810.
    110. Trenkel M E. Controlled-Release and Stabilized Fertilizers in agriculture[M].International Fertilizer Industry Association Paris,1997.11.
    111. William H S,Margolis Z P,Janonis B A.High altitude sludge composting.BioCycle,1992,Auguest:68-71.
    112. Zucconi F,Forte M,Monaco A,et al. Biological evaluation of compost maturity. Biocycle,1981b,22:27-29.
    113. Zucconi F,Pera A.,Forte M,et al. Evaluating toxicity of immature compost.Biocycle,1981a,22:54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700