用户名: 密码: 验证码:
MBR膜污染解析及MFC-MBR耦合系统膜污染控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(MBR)以膜分离装置取代传统的二沉池,具有高效的固液分离效果,受到国内外学者的普遍关注。但膜污染问题仍然制约着MBR的广泛应用,膜污染机理及膜污染控制方法仍是膜技术领域的研究热点。本文针对目前关于膜污染研究存在的关键问题,探讨了胞外聚合物(EPS)的静态吸附机理,解析了溶解性微生物产物(SMP)及生物大分子(BMM)在膜过滤过程中发生的堵塞机理,考察了膜对SMP和BMM的截留情况,提出了污泥稳定性和聚集性两个识别污泥絮体污染倾向的综合指标,构建了微生物燃料电池与膜生物反应器耦合系统(MFC-MBR),并解析其膜污染减缓机理。
     利用静态吸附的方法分析了膜污染初期的吸附污染,通过热力学途径确定了膜对EPS的吸附机理。结果表明,Sips等温线最适合描述膜对EPS多糖和蛋白质的吸附;通过热力学计算得到膜吸附过程的rG值在-10至-17kJ mol(-1)之间, rH值在10至30kJ mol~(-1)之间。说明膜对EPS多糖和蛋白质的吸附是热力学可行且自然吸热的过程,EPS多糖和蛋白质与膜之间的相互作用主要是物理吸附,温度的升高可以提供更多的能量来强化吸附。
     利用多级Hermia模型研究了膜污染初期的过滤污染,分析了SMP及BMM不同时间段内主导的膜堵塞机理,确定了不同堵塞机理主导时段通量衰减的情况。结果表明,SMP过滤阻力的平均增长速率随时间增加,而BMM过滤阻力的平均增长速率随时间减少。对于SMP,主要顺次发生中间堵塞、标准堵塞及完全堵塞;而对于BMM,顺次发生了中间堵塞及滤饼过滤。不同堵塞机理所对应的时间及通量衰减百分比表明,膜孔堵塞是造成通量下降的主要原因。
     考察了不同SRT下MBR的膜污染情况及污泥性质,分析了基于修正的粘附-侵蚀模型的污泥絮体剪切稳定性,提出采用污泥絮体稳定性作为评价污泥性质和污染潜力的综合指标。结果表明,具有较差的沉降性、较高的疏水性、较高EPS含量、较多的丝状菌及更多初级粒子的低SRT(15d)污泥絮体容易形成致密无孔的污染层,导致严重的膜污染;低SRT(15d)污泥絮体具有较高的剪切敏感值,即更差的污泥稳定性。
     分析了MBR混合液及滤饼层污泥性质,解析了基于扩展DLVO理论的混合液及滤饼层污泥聚集性,提出采用污泥聚集性作为一个综合指标反应污泥的膜污染趋势。结果表明,滤饼层污泥具有较高的SMP、胶体及LB-EPS含量、较多小于100μm的絮体、较高DSI、更疏水的表面以及更负的zeta电势。同时,污泥细胞间相互作用能曲线表明,滤饼层污泥具有较高的初级能量最大值和较浅的二级能量最小值,意味着滤饼层污泥具有较差的聚集性。
     本研究基于污泥改性构建了低污染、低能耗的新型MFC-MBR耦合系统。结果表明,新型MFC-MBR耦合系统系统同时具有废水处理、污泥减量、电能回收及污染抑制的效果。耦合系统MBR的操作周期大约是传统MBR操作周期的两倍。对膜污染减缓机理分析可知,耦合系统MBR中污泥性质得到改善,表现出更好的过滤性和脱水性。与传统MBR相比,耦合系统MBR中LB-EPS的浓度从16.14mg·gSS~(-1)降低到12.56mg·gSS~(-1),且LB-EPS中简单芳香蛋白和色氨酸蛋白类物质分别减少了10%和8%。
Membrane bioreactors (MBRs) are efficient wastewater treatment technology,which uses membrane to replace the conventional gravitational settling for thesolid–liquid separation. However, membrane fouling remains a major obstacle forwider application of MBRs. The mechanism and mitigation of membrane foulingare still the challenge of membrane technology. This paper investigated themechanism of static adsorption extracellular polymeric substances (EPS) during ofMBR process and analyzed the filtration mechanisms of soluble microbial products(SMP) and biomacromolecules (BMM). The stability and aggregation of activatedsludge, which could represent the characteristics of the flocs as a whole and identifythe fouling potential, were developed in the paper. A novel combined system ofmicrobial fuel cell (MFC)-MBR based on the modification of sludge characteristicswas also proposed in this study to obtain effective membrane fouling mitigation.
     The static adsorption experiments were carried out to study the adsorptiveinteraction between EPS and different membranes. The adsorption isotherms wereidentified to understand the adsorption mechanism of EPS onto membranes. Theresults demonstrated that the Sips isotherm model provided the best fit to theexperimental data. Furthermore, some important thermodynamic parameters wereevaluated to understand the nature of adsorption process for different membranes.For all adsorption process of different membranes, the values of rG between-10and-17kJ mol-1, confirming that the adsorption of EPS onto membranes wasthermodynamically feasibility and spontaneous. And the interaction between theEPS and membranes can be considered as a physical adsorption event. The positivevalue of rH further indicated that the adsorption of EPS on membranes was anendothermic in nature and higher temperatures provide more energy to enhance theadsorption.
     Dead-end filtration tests were used to study the fouling potential of SMP andBMM. Filtration behaviors were analyses and filtration mechanisms weredetermined using multistage Hermia’s model. The contributions of different foulingmechanism to flux reduction were also analyzed. The results showed that theincrease of filtration resistance for SMP was increased with prolonged time whilethe increase of filtration resistance for BMM was decreased with increased time.The multistage Hermia’s model could identify the fouling mechanism dominating ata certain experimental time. For SMP, intermediate blocking occurred first,followed by standard blocking and then complete blocking. In contrast, for filtrationwith BMM, intermediate blocking, and then cake filtration were found to occur successively. Further results indicated that pore blocking was the main reason forflux reduction.
     By the analysis of membrane fouling, sludge characteristics and stability of thesludge flocs at different SRTs, stability of activated sludge flocs based on amodified adhesion-erosion model (AE-model) was developed to be an integrativereflection of sludge characteristics and fouling potential. The sludge with higherEPS, RH, more filamentous bacteria and more primary particles at lower SRT mightlead to more loose structure and poorer floc stability. It is argued that the highershear sensitivity means more primary particles, a less porous fouling layer and arelative higher specific resistance.
     By the analysis and compare of sludge characteristics and sludge aggregationof bulk sludge and cake sludge, sludge aggregation based on the extendedDerjaguin-Landau-Verwey-Overbeek (extended DLVO) theory was developed to bean integrative reflection of sludge characteristics and fouling potential. Cake sludgewith had more SMP, colloids and loosely bound EPS (LB-EPS), more small sizeflocs (<100μm), higher distribution spread index (DSI), higher hydrophobicity andmore negative charge. Interaction energy analysis based on the extended DLVOshowed that the cake sludge had a higher primary energy barrier and a lowersecondary energy minimum, implying worse aggregation.
     A novel combined system of MFC-MBR was proposed in this study. Theeffective wastewater treatment, sludge reduction, energy recovery and membranefouling mitigation could be obtained in the combined system. The operation cycle inthe combined system was found nearly twice as long as that in the conventionalMBR. The characteristics of SMP, EPS and sludge were analyses to detect thereason of fouling mitigation. And the combined system was able to mitigatemembrane fouling by the sludge modification. Further investigation indicated thatthe MFC could effectively reduce the LB-EPS content from16.14mg·gSS-1to12.56mg·gSS-1. Additionally, the intensities of the simple aromatic proteins andtryptophan protein-like substances in LB-EPS decreased by10%and8%respectively, compared with the conventional MBR.
引文
[1] Smith C.V., DiGregorio D., Talcott R.M. The use of ultrafiltrationmembranes for activated sludge separation [J].1969.
    [2] Benedek A., C té P. Long term experience with hollow fibre membranebioreactors [J]. BAH03-180, International Desalination Association,2003.
    [3] Judd S., Judd C. The MBR book: principles and applications of membranebioreactors for water and wastewater treatment [M].2010: Butterworth-Heinemann.
    [4] Singhania R.R., Christophe G., Perchet G., et al. Immersed membranebioreactors: An overview with special emphasis on anaerobic bioprocesses[J]. Bioresource Technology,2012,122:171-180.
    [5] Kraume M., Drews A. Membrane Bioreactors in Waste Water Treatment–Status and Trends [J]. Chemical Engineering&Technology,2010,33(8):1251-1259.
    [6] Huisjes E., Colombel K., Lesjean B. Final MBR-Network Workshop (Eds: B.Lesjean,T. Leiknes)[M]. Vol. Druckmuck, Berlin.2009.81.
    [7] Lesjean B., Huisjes E. Survey of the European MBR market: trends andperspectives [J]. Desalination,2008,231(1):71-81.
    [8] Le-Clech P., Chen V., Fane T.A.G. Fouling in membrane bioreactors used inwastewater treatment [J]. Journal of Membrane Science,2006,284(1-2):17-53.
    [9] Guo W., Ngo H.-H., Li J. A mini-review on membrane fouling [J].Bioresource Technology,2012,122:27-34.
    [10] Brockmann M., Seyfried C.F. Sludge activity under the conditions ofcrossflow microfiltration [J]. Water Science and Technology,1997,35(10):173-181.
    [11] Cui Z., Chang S., Fane A. The use of gas bubbling to enhance membraneprocesses [J]. Journal of Membrane Science,2003,221(1):1-35.
    [12] Zhu J., Lin C.F., Kao J.C.M., et al. Evaluation of potential integration ofentrapped mixed microbial cell and membrane bioreactor processes forbiological wastewater treatment/reuse [J]. Clean Technologies andEnvironmental Policy,2011,13(1):153-160.
    [13]黄霞,曹斌,文湘华等.膜-生物反应器在我国的研究与应用新进展[J].环境科学学报,2008,28(3):416-432.
    [14] Wang Z.W., Wu Z.C., Tang S.J. Extracellular polymeric substances (EPS)properties and their effects on membrane fouling in a submerged membranebioreactor [J]. Water Research,2009,43(9):2504-2512.
    [15] Drews A. Membrane fouling in membrane bioreactors--Characterisation,contradictions, cause and cures [J]. Journal of Membrane Science,2010,363(1-2):1-28.
    [16] Choi H., Zhang K., Dionysiou D.D., et al. Effect of activated sludgeproperties and membrane operation conditions on fouling characteristics inmembrane bioreactors [J]. Chemosphere,2006,63(10):1699-1708.
    [17] Zhang J., Chua H.C., Zhou J., et al. Factors affecting the membraneperformance in submerged membrane bioreactors [J]. Journal of MembraneScience,2006,284(1):54-66.
    [18] He Y., Xu P., Li C., et al. High-concentration food wastewater treatment byan anaerobic membrane bioreactor [J]. Water Research,2005,39(17):4110-4118.
    [19] Choi H., Zhang K., Dionysiou D.D., et al. Effect of permeate flux andtangential flow on membrane fouling for wastewater treatment [J].Separation and Purification Technology,2005,45(1):68-78.
    [20] Chang I.S., Gander M., Jefferson B., et al. Low-cost membranes for use in asubmerged MBR [J]. Process Safety and Environmental Protection,2001,79(B3):183-188.
    [21] Gander M., Jefferson B., Judd S. Membrane bioreactors for use in smallwastewater treatment plants: membrane materials and effluent quality [J].Water Science and Technology,2000:205-211.
    [22] Le-Clech P., Jefferson B., Judd S.J. Impact of aeration, solids concentrationand membrane characteristics on the hydraulic performance of a membranebioreactor [J]. Journal of Membrane Science,2003,218(1-2):117-129.
    [23] Fang H.H., Shi X. Pore fouling of microfiltration membranes by activatedsludge [J]. Journal of Membrane Science,2005,264(1):161-166.
    [24] Zhu X., Elimelech M. Colloidal fouling of reverse osmosis membranes:measurements and fouling mechanisms [J]. Environmental Science&Technology,1997,31(12):3654-3662.
    [25] Elimelech M., Zhu X., Childress A.E., et al. Role of membrane surfacemorphology in colloidal fouling of cellulose acetate and composite aromaticpolyamide reverse osmosis membranes [J]. Journal of Membrane Science,1997,127(1):101-109.
    [26] Scott J., Neilson D., Liu W., et al. A dual function membrane bioreactorsystem for enhanced aerobic remediation of high-strength industrial waste[J]. Water Science and Technology,1998,38(4):413-420.
    [27] Luonsi A., Laitinen N., Beyer K., et al. Separation of CTMP mill-activatedsludge with ceramic membranes [J]. Desalination,2002,146(1):399-404.
    [28] Fan X.J., Urbain V., Qian Y., et al. Nitrification and mass balance with amembrane bioreactor for municipal wastewater treatment [J]. Water Scienceand Technology,1996,34(1):129-136.
    [29] Zhang S., Qu Y., Liu Y., et al. Experimental study of domestic sewagetreatment with a metal membrane bioreactor [J]. Desalination,2005,177(1):83-93.
    [30] Zhang M., Zhang A.Q., Zhu B.K., et al. Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process[J]. Journal of Membrane Science,2008,319(1):169-175.
    [31] Bottino A., Capannelli G., Comite A. Novel porous membranes fromchemically modified poly (vinylidene fluoride)[J]. Journal of MembraneScience,2006,273(1):20-24.
    [32] Chang Y., Shih Y.J., Ruaan R.C., et al. Preparation of poly (vinylidenefluoride) microfiltration membrane with uniform surface-copolymerizedpoly (ethylene glycol) methacrylate and improvement of blood compatibility[J]. Journal of Membrane Science,2008,309(1):165-174.
    [33] Mulder M. Basic principles of membrane technology [M].1996: Springer.
    [34] Jiang T., Kennedy M., Guinzbourg B., et al. Optimising the operation of aMBR pilot plant by quantitative analysis of the membrane foulingmechanism [J]. Water Science&Technology,2005,51(6):19-25.
    [35] Judd S., Le-Clech P., Taha T., et al. Theoretical and experimentalrepresentation of a submerged membrane bio-reactor system [J]. MembraneTechnology,2001,2001(135):4-9.
    [36] Ducom G., Puech F., Cabassud C. Air sparging with flat sheet nanofiltration:a link between wall shear stresses and flux enhancement [J]. Desalination,2002,145(1):97-102.
    [37] Ndinisa N., Fane A., Wiley D. Fouling Control in a Submerged Flat SheetMembrane System: Part I—Bubbling and Hydrodynamic Effects [J].Separation Science and Technology,2006,41(7):1383-1409.
    [38] Ndinisa N., Fane A., Wiley D., et al. Fouling Control in a Submerged FlatSheet Membrane System: Part II—Two-Phase Flow Characterization andCFD Simulations [J]. Separation Science and Technology,2006,41(7):1411-1445.
    [39] Choo K.H., Lee C.H. Hydrodynamic behavior of anaerobic biosolids duringcrossflow filtration in the membrane anaerobic bioreactor [J]. WaterResearch,1998,32(11):3387-3397.
    [40] Wicaksana F., Fane A.G., Chen V. Fibre movement induced by bubblingusing submerged hollow fibre membranes [J]. Journal of Membrane Science,2006,271(1):186-195.
    [41] Park J.S., Yeon K.M., Lee C.H. Hydrodynamics and microbial physiologyaffecting performance of a new MBR, membrane-coupled high-performancecompact reactor [J]. Desalination,2005,172(2):181-188.
    [42] Meng F., Yang F., Shi B., et al. A comprehensive study on membrane foulingin submerged membrane bioreactors operated under different aerationintensities [J]. Separation and Purification Technology,2008,59(1):91-100.
    [43] Menniti A., Morgenroth E. The influence of aeration intensity on predationand EPS production in membrane bioreactors [J]. Water Research,2010,44(8):2541-2553.
    [44] Han S.S., Bae T.H., Jang G.G., et al. Influence of sludge retention time onmembrane fouling and bioactivities in membrane bioreactor system [J].Process Biochemistry,2005,40(7):2393-2400.
    [45] Trussell R.S., Merlo R.P., Hermanowicz S.W., et al. The effect of organicloading on process performance and membrane fouling in a submergedmembrane bioreactor treating municipal wastewater [J]. Water Research,2006,40(14):2675-2683.
    [46] Zhang J.S., Chuan C.H., Zhou J.T., et al. Effect of sludge retention time onmembrane bio-fouling intensity in a submerged membrane bioreactor [J].Separation Science and Technology,2006,41(7):1313-1329.
    [47] Van den Broeck R., Van Dierdonck J., Nijskens P., et al. The influence ofsolids retention time on activated sludge bioflocculation and membranefouling in a membrane bioreactor (MBR)[J]. Journal of Membrane Science,2012,401:48-55.
    [48] Chang I.S., Kim S.N. Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance [J]. ProcessBiochemistry,2005,40(3):1307-1314.
    [49] Rosenberger S., Evenblij H., Te Poele S., et al. The importance of liquidphase analyses to understand fouling in membrane assisted activated sludgeprocesses-six case studies of different European research groups [J].Journal of Membrane Science,2005,263(1):113-126.
    [50] C. Bin, W. Xiaochang, Enrang W. MLSS concentration and intermittentmembrane permeation on a hybrid submerged MBR fouling, in: Proceedingsof the Water Environment-Membrane Techno [J].2004, Seoul, Korea.
    [51] Ueda T., Hata K., Kikuoka Y. Treatment of domestic sewage from ruralsettlements by a membrane bioreactor [J]. Water Science and Technology,1996,34(9):189-196.
    [52] Nagaoka H. Nitrogen removal by submerged membrane separation activatedsludge process [J]. Water Science and Technology,1999,39(8):107-114.
    [53] Germain E., Nelles F., Drews A., et al. Biomass effects on oxygen transfer inmembrane bioreactors [J]. Water Research,2007,41(5):1038-1044.
    [54] Meng F.G., Shi B.Q., Yang F.L., et al. New insights into membrane foulingin submerged membrane bioreactor based on rheology and hydrodynamicsconcepts [J]. Journal of Membrane Science,2007,302(1-2):87-94.
    [55]刘阳,张捍民,杨凤林.活性污泥中微生物胞外聚合物(EPS)影响膜污染机理研究[J].高校化学工程学报,2008,22(2):332-338.
    [56] Nagaoka H., Ueda S., Miya A. Influence of bacterial extracellular polymerson the membrane separation activated sludge process [J]. Water Science andTechnology,1996,34(9):165-172.
    [57] Chang I.-S., Lee C.-H. Membrane filtration characteristics in membrane-coupled activated sludge system-the effect of physiological states ofactivated sludge on membrane fouling [J]. Desalination,1998,120(3):221-233.
    [58] Ahmed Z., Cho J., Lim B.-R., et al. Effects of sludge retention time onmembrane fouling and microbial community structure in a membranebioreactor [J]. Journal of Membrane Science,2007,287(2):211-218.
    [59] Ramesh A., Lee D., Wang M., et al. Biofouling in membrane bioreactor [J].Separation Science and Technology,2006,41(7):1345-1370.
    [60] Ramesh A., Lee D., Lai J. Membrane biofouling by extracellular polymericsubstances or soluble microbial products from membrane bioreactor sludge[J]. Applied Microbiology and Biotechnology,2007,74(3):699-707.
    [61] Cho J., Song K.-G., Hyup Lee S., et al. Sequencing anoxic/anaerobicmembrane bioreactor (SAM) pilot plant for advanced wastewater treatment[J]. Desalination,2005,178(1):219-225.
    [62] Yamato N., Kimura K., Miyoshi T., et al. Difference in membrane fouling inmembrane bioreactors (MBRs) caused by membrane polymer materials [J].Journal of Membrane Science,2006,280(1):911-919.
    [63] Sheng G.P., Yu H.Q., Li X.Y. Extracellular polymeric substances (EPS) ofmicrobial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances,2010,28(6):882-894.
    [64] Lesjean B., Rosenberger S., Laabs C., et al. Correlation between membranefouling and soluble/colloidal organic substances in membrane bioreactorsfor municipal wastewater treatment [J]. Water science and technology: ajournal of the International Association on Water Pollution Research,2005,51(6-7):1.
    [65] Huang X., Liu R., Qian Y. Behaviour of soluble microbial products in amembrane bioreactor [J]. Process Biochemistry,2000,36(5):401-406.
    [66] Wisniewski C., Grasmick A. Floc size distribution in a membrane bioreactorand consequences for membrane fouling [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,138(2):403-411.
    [67] Bouhabila E.H., Ben A m R., Buisson H. Fouling characterisation inmembrane bioreactors [J]. Separation and Purification Technology,2001,22:123-132.
    [68] Geng Z., Hall E.R. A comparative study of fouling-related properties ofsludge from conventional and membrane enhanced biological phosphorusremoval processes [J]. Water Research,2007,41(19):4329-4338.
    [69] Evenblij H., van der Graaf J. Occurrence of EPS in activated sludge from amembrane bioreactor treating municipal wastewater [J]. Water Science andTechnology,2004,50(12):293-300.
    [70] Drews A., Vocks M., Iversen V., et al. Influence of unsteady membranebioreactor operation on EPS formation and filtration resistance [J].Desalination,2006,192(1-3):1-9.
    [71] Yigit N., Harman I., Civelekoglu G., et al. Membrane fouling in a pilot-scalesubmerged membrane bioreactor operated under various conditions [J].Desalination,2008,231(1):124-132.
    [72] Lesjean B., Rosenberger S., Laabs C., et al. Correlation between membranefouling and soluble/colloidal organic substances in membrane bioreactorsfor municipal wastewater treatment [J]. Water Science and Technology,2005,51(6-7):1-8.
    [73] Liang S., Liu C., Song L.F. Soluble microbial products in membranebioreactor operation: Behaviors, characteristics, and fouling potential [J].Water Research,2007,41(1):95-101.
    [74] Shen Y.X., Zhao W.T., Xiao K., et al. A systematic insight into foulingpropensity of soluble microbial products in membrane bioreactors based onhydrophobic interaction and size exclusion [J]. Journal of MembraneScience,2010,346(1):187-193.
    [75] Kimura K., Naruse T., Watanabe Y. Changes in characteristics of solublemicrobial products in membrane bioreactors associated with different solidretention times: Relation to membrane fouling [J]. Water Research,2009,43(4):1033-1039.
    [76] Drews A., Vocks M., Iversen V., et al. Influence of unsteady membranebioreactor operation on EPS formation and filtration resistance [J].Desalination,2006,192(1):1-9.
    [77] Drews A., Vocks M., Bracklow U., et al. Does fouling in MBRs depend onSMP?[J]. Desalination,2008,231(1-3):141-149.
    [78] Geilvoet S.P., van Nieuwenhuijzen A.F., van der Graaf J.H.J.M., et al. MBRactivated sludge filterability and quality alteration [J].6th InternationalMembrane Science and Technology Conference (IMSTEC07),2007,Sydney(November):5-9
    [79] Bae T.H., Tak T.M. Interpretation of fouling characteristics of ultrafiltrationmembranes during the filtration of membrane bioreactor mixed liquor [J].Journal of Membrane Science,2005,264(1):151-160.
    [80] C. Cabassud, A. Mass′e, M. Espinosa-Bouchot, et al. Submerged membranebioreactors: interactions between membrane filtration and biological activity[J]. in: Proceedings of the Water Environment-Membrane TechnologyConference,2004, Seoul, Korea.
    [81] Fred Fu L., Dempsey B.A. Modeling the effect of particle size and charge onthe structure of the filter cake in ultrafiltration [J]. Journal of MembraneScience,1998,149(2):221-240.
    [82] Bai R., Leow H. Microfiltration of activated sludge wastewater-the effectof system operation parameters [J]. Separation and Purification Technology,2002,29(2):189-198.
    [83] Meng F.G., Zhang H.M., Yang F.L., et al. Characterization of cake layer insubmerged membrane bioreactor [J]. Environmental Science&Technology,2007,41(11):4065-4070.
    [84] Lin H.J., Liao B.Q., Chen J.R., et al. New insights into membrane fouling ina submerged anaerobic membrane bioreactor based on characterization ofcake sludge and bulk sludge [J]. Bioresource Technology,2011,102(3):2373-2379.
    [85] Yu H.Y., Xie Y.J., Hu M.X., et al. Surface modification of polypropylenemicroporous membrane to improve its antifouling property in MBR: CO2plasma treatment [J]. Journal of Membrane Science,2005,254(1):219-227.
    [86] B.M. Wil′en B.J., P. Lant. The influence of key chemical constituents inactivated sludge on surface and flocculating properties [J]. Water Research,2003,37:2127–2139.
    [87] Van Loosdrecht M., Lyklema J., Norde W., et al. Electrophoretic mobilityand hydrophobicity as a measured to predict the initial steps of bacterialadhesion [J]. Applied and Environmental Microbiology,1987,53(8):1898-1901.
    [88] Dewanti R., Wong A.C. Influence of culture conditions on biofilm formationby Escherichia coli O157:H7[J]. International Journal of Food Microbiology,1995,26(2):147-164.
    [89] Emanuelsson E.A.C., Arcangeli J.P., Livingston A.G. The anoxic extractivemembrane bioreactor [J]. Water Research,2003,37(6):1231-1238.
    [90] Meng F., Zhang H., Yang F., et al. Identification of activated sludgeproperties affecting membrane fouling in submerged membrane bioreactors[J]. Separation and Purification Technology,2006,51(1):95-103.
    [91] Liew M., Fane A., Rogers P. Hydraulic resistance and fouling of microfiltersby Candida utilis in fermentation broth [J]. Biotechnology andBioengineering,1995,48(2):108-117.
    [92] Jorand F., Boue-Bigne F., Block J., et al. Hydrophobic/hydrophilicproperties of activated sludge exopolymeric substances [J]. Water Scienceand Technology,1998,37(4):307-315.
    [93] Lee J., Ahn W.Y., Lee C.H. Comparison of the filtration characteristicsbetween attached and suspended growth microorganisms in submergedmembrane bioreactor [J]. Water Research,2001,35(10):2435-2445.
    [94] Meng F., Zhang H., Yang F., et al. Effect of filamentous bacteria onmembrane fouling in submerged membrane bioreactor [J]. Journal ofMembrane Science,2006,272(1):161-168.
    [95] Thompson G., Forster C. Bulking in activated sludge plants treating papermill wastewaters [J]. Water Research,2003,37(11):2636-2644.
    [96] Contreras E.M., Giannuzzi L., Zaritzky N.E. Use of image analysis in thestudy of competition between filamentous and non-filamentous bacteria [J].Water Research,2004,38(11):2621-2630.
    [97] Sezgin M., Jenkins D., Parker D.S. A unified theory of filamentous activatedsludge bulking [J]. Journal (Water Pollution Control Federation),1978:362-381.
    [98] Jin B., Wilén B.-M., Lant P. Impacts of morphological, physical andchemical properties of sludge flocs on dewaterability of activated sludge [J].Chemical Engineering Journal,2004,98(1):115-126.
    [99] Wilén B.-M., Jin B., Lant P. Impacts of structural characteristics on activatedsludge floc stability [J]. Water Research,2003,37(15):3632-3645.
    [100] Zhang H., Gao J., Jiang T., et al. A novel approach to evaluate thepermeability of cake layer during cross-flow filtration in the flocculantsadded membrane bioreactors [J]. Bioresource Technology,2011,102(24):11121-11131.
    [101]张劲松, MBR的膜污染机制与可持续操作原理[D].2006,大连理工大学.p.59-80.
    [102] Ognier S., Wisniewski C., Grasmick A. Membrane fouling during constantflux filtration in membrane bioreactors [J]. Membrane Technology,2002,2002(7):6-10.
    [103] Zhang G.J., Ji S.L., Gao X., et al. Adsorptive fouling of extracellularpolymeric substances with polymeric ultrafiltration membrances [J]. Journalof Membrane Science,2008,309(1-2):28-35.
    [104] Brookes A., Jefferson B., Guglielmi G., et al. Sustainable flux fouling in amembrane bioreactor: impact of flux and MLSS [J]. Separation Science andTechnology,2006,41(7):1279-1291.
    [105] Kennedy M., Zhizhong L., Febrina E., et al. Effects of coagulation onfiltration mechanisms in dead-end ultrafiltration [J]. Water science andtechnology: water supply,2003:109-116.
    [106] Giglia S., Straeffer G. Combined mechanism fouling model and method foroptimization of series microfiltration performance [J]. Journal of MembraneScience,2012,417:144-153.
    [107]沈悦啸,王利政,莫颖慧等.膜污染和膜材料的最新研究进展[J].中国给水排水,2010,26(14):16-22.
    [108] Liu F., Hashim N.A., Liu Y.T., et al. Progress in the production andmodification of PVDF membranes [J]. Journal of Membrane Science,2011,375(1-2):1-27.
    [109] Mansourpanah Y., Habili E.M. Preparation and modification of thin film PAmembranes with improved antifouling property using acrylic acid and UVirradiation [J]. Journal of Membrane Science,2013,430:158-166.
    [110] Nady N., Schroen K., Franssen M.C.R., et al. Laccase-catalyzedmodification of PES membranes with4-hydroxybenzoic acid and gallic acid[J]. Journal of Membrane Science,2012,394:69-79.
    [111] Nady N., Schroen K., Franssen M.C.R., et al. Mild and Highly FlexibleEnzyme-Catalyzed Modification of Poly(ethersulfone) Membranes [J]. AcsApplied Materials&Interfaces,2011,3(3):801-810.
    [112] Nady N., Schroen K., Franssen M.C.R., et al. Enzyme-catalyzedmodification of PES surfaces: Reduction in adsorption of BSA, dextrin andtannin [J]. Journal of Colloid and Interface Science,2012.
    [113] Yan L., Li Y.S., Xiang C.B., et al. Effect of nano-sized Al2O3-particleaddition on PVDF ultratiltration membrane performance [J]. Journal ofMembrane Science,2006,276(1-2):162-167.
    [114] Bottino A., Capannelli G., Comite A. Preparation and characterization ofnovel porous PVDF-ZrO2composite membranes [J]. Desalination,2002,146(1):35-40.
    [115] Yu L.-Y., Xu Z.-L., Shen H.-M., et al. Preparation and characterization ofPVDF-SiO2composite hollow fiber UF membrane by sol-gel method [J].Journal of Membrane Science,2009,337(1):257-265.
    [116] Cao X., Ma J., Shi X., et al. Effect of TiO2nanoparticle size on theperformance of PVDF membrane [J]. Applied Surface Science,2006,253(4):2003-2010.
    [117] Bae T.-H., Tak T.-M. Effect of TiO2nanoparticles on fouling mitigation ofultrafiltration membranes for activated sludge filtration [J]. Journal ofMembrane Science,2005,249(1):1-8.
    [118] Razmjou A., Mansouri J., Chen V. The effects of mechanical and chemicalmodification of TiO2nanoparticles on the surface chemistry, structure andfouling performance of PES ultrafiltration membranes [J]. Journal ofMembrane Science,2011,378(1-2):73-84.
    [119] C té P., Inverted air box aerator and aeration method for immersedmembrane.2005, Google Patents.
    [120] Miyashita S., Honjyo K., Kato O., et al., Gas diffuser for aeration vessel ofmembrane assembly.2001, Google Patents.
    [121] Rabie H.R., Cote P.L., Singh M., et al., Cyclic aeration system forsubmerged membrane modules.2007, Google Patents.
    [122] Mayer M., Braun R., Fuchs W. Comparison of various aeration devices forair sparging in crossflow membrane filtration [J]. Journal of MembraneScience,2006,277(1):258-269.
    [123] Sofia A., Ng W., Ong S. Engineering design approaches for minimumfouling in submerged MBR [J]. Desalination,2004,160(1):67-74.
    [124] Tao G., Kekre K., Wei Z., et al. Membrane bioreactors for water reclamation[J]. Water science and technology: a journal of the International Associationon Water Pollution Research,2005,51(6-7):431.
    [125] Park H.-D., Lee Y.H., Kim H.-B., et al. Reduction of membrane fouling bysimultaneous upward and downward air sparging in a pilot-scale submergedmembrane bioreactor treating municipal wastewater [J]. Desalination,251(1):75-82.
    [126]曹效鑫,魏春海,黄霞.投加粉末活性炭对一体式膜-生物反应器膜污染的影响研究[J].环境科学学报,2005,25(11):1443-1447.
    [127]董秉直,夏丽华,陈艳等.混凝处理防止膜污染的作用与机理[J].环境科学学报,2005,25(4):530-534.
    [128]董秉直,陈艳,高乃云等.混凝对膜污染的防止作用[J].环境科学,2005,26(1):90-93.
    [129]郝爱玲,陈永玲,顾平.微污染水处理中投加粉末炭减缓膜污染的机理研究[J].膜科学与技术,2007,27(1):35-40.
    [130] Lee J., Kim J., Kang I., et al. Potential and limitations of alum or zeoliteaddition to improve the performance of a submerged membrane bioreactor[J]. Water science and technology: a journal of the International Associationon Water Pollution Research,2001,43(11):59.
    [131] Holbrook R.D., Higgins M.J., Murthy S.N., et al. Effect of alum addition onthe performance of submerged membranes for wastewater treatment [J].Water Environment Research,2004,76(7):2699-2702.
    [132] Song K.G., Kim Y., Ahn K.H. Effect of coagulant addition on membranefouling and nutrient removal in a submerged membrane bioreactor [J].Desalination,2008,221(1):467-474.
    [133] Sagbo O., Sun Y., Hao A., et al. Effect of PAC addition on MBR process fordrinking water treatment [J]. Separation and Purification Technology,2008,58(3):320-327.
    [134] Munz G., Gori R., Mori G., et al. Powdered activated carbon and membranebioreactors (MBRPAC) for tannery wastewater treatment: long term effecton biological and filtration process performances [J]. Desalination,2007,207(1):349-360.
    [135] Guo W., Vigneswaran S., Ngo H., et al. Influence of bioreaction on a long-term operation of a submerged membrane adsorption hybrid system [J].Desalination,2006,191(1):92-99.
    [136] Li Y.Z., He Y.L., Liu Y.H., et al. Comparison of the filtration characteristicsbetween biological powdered activated carbon sludge and activated sludgein submerged membrane bioreactors [J]. Desalination,2005,174(3):305-314.
    [137] Ng C.A., Sun D., Zhang J., et al. Strategies to improve the sustainableoperation of membrane bioreactors [C]. in Proceedings of the InternationalDesalination Association Conference.2005.
    [138] Fang H.H., Shi X., Zhang T. Effect of activated carbon on fouling ofactivated sludge filtration [J]. Desalination,2006,189(1):193-199.
    [139] Lee W.N., Chang I.S., Hwang B.K., et al. Changes in biofilm architecturewith addition of membrane fouling reducer in a membrane bioreactor [J].Process Biochemistry,2007,42(4):655-661.
    [140] Yoon S., Collins J., Musale D., et al. Effects of flux enhancing polymer onthe characteristics of sludge in membrane bioreactor process [J]. Waterscience and technology: a journal of the International Association on WaterPollution Research,2005,51(6-7):151.
    [141] Chae S.-R., Wang S., Hendren Z.D., et al. Effects of fullerene nanoparticleson Escherichia coli K12respiratory activity in aqueous suspension andpotential use for membrane biofouling control [J]. Journal of MembraneScience,2009,329(1):68-74.
    [142] Yeon K.M., Cheong W.S., Oh H.S., et al. Quorum Sensing: A NewBiofouling Control Paradigm in a Membrane Bioreactor for AdvancedWastewater Treatment [J]. Environmental Science&Technology,2009,43(2):380-385.
    [143] Yeon K.M., Lee C.H., Kim J. Magnetic Enzyme Carrier for EffectiveBiofouling Control in the Membrane Bioreactor Based on EnzymaticQuorum Quenching [J]. Environmental Science&Technology,2009,43(19):7403-7409.
    [144] Hwang B.K., Kim J.H., Ahn C.H., et al. Effect of disintegrated sludgerecycling on membrane permeability in a membrane bioreactor combinedwith a turbulent jet flow ozone contactor [J]. Water Research,2009,44(6):1833-1840.
    [145] Hwang B.K., Son H.S., Kim J.H., et al. Decomposition of excess sludge in amemlbrane bioreactor using a turbulent jet flow ozone contactor [J]. Journalof Industrial and Engineering Chemistry,2010,16(4):602-608.
    [146] Huang X., Wu J.L. Improvement of membrane filterability of the mixedliquor in a membrane bioreactor by ozonation [J]. Journal of MembraneScience,2008,318(1-2):210-216.
    [147] Wu J.L., Huang X. Use of ozonation to mitigate fouling in a long-termmembrane bioreactor [J]. Bioresource Technology,2010,101(15):6019-6027.
    [148] Yoon S.H., Kim H.S., Lee S. Incorporation of ultrasonic cell disintegrationinto a membrane bioreactor for zero sludge production [J]. ProcessBiochemistry,2004,39(12):1923-1929.
    [149] Wang Y., Li M., Gong C.P., et al., Effect of on-line Ultrasound on theProperties of Activated Sludge Mixed Liquor in a Membrane Bioreactor, inAdvances in Biomedical Engineering, J. Hu, Editor.2011, InformationEngineering Research Inst, USA: Newark. p.369-372.
    [150]朱洪涛,文湘华,黄霞.臭氧对膜法水处理中膜污染的影响[J].环境科学,2009,30(1):302-312.
    [151] Chu L.B., Li S. Filtration capability and operational characteristics ofdynamic membrane bioreactor for municipal wastewater treatment [J].Separation and Purification Technology,2006,51(2):173-179.
    [152] Meng F.G., Yang F.L. Fouling mechanisms of deflocculated sludge, normalsludge, and bulking sludge in membrane bioreactor [J]. Journal ofMembrane Science,2007,305(1):48-56.
    [153] Wang X.M., Li X.Y., Huang X. Membrane fouling in a submergedmembrane bioreactor (SMBR): Characterisation of the sludge cake and itshigh filtration resistance [J]. Separation and Purification Technology,2007,52(3):439-445.
    [154] Ji J., Qiu J., Wai N., et al. Influence of organic and inorganic flocculants onphysical-chemical properties of biomass and membrane-fouling rate [J].Water Research,2010,44(5):1627-1635.
    [155] Sheng G.P., Yu H.Q., Li X.Y. Stability of sludge flocs under shear conditions[J]. Biochemical Engineering Journal,2008,38(3):302-308.
    [156] Li D., Ganczarczyk J. Size distribution of activated sludge flocs [J].Research journal of the water pollution control federation,1991:806-814.
    [157] Jorand F., Zartarian F., Thomas F., et al. Chemical and structural (2D)linkage between bacteria within activated sludge flocs [J]. Water Research,1995,29(7):1639-1647.
    [158] Nielsen P.H., Keiding K. Disintegration of activated sludge flocs in presenceof sulfide [J]. Water Research,1998,32(2):313-320.
    [159] Mikkelsen L.H., Keiding K. The shear sensitivity of activated sludge: Anevaluation of the possibility for a standardised floc strength test [J]. WaterResearch,2002,36:2931-2940
    [160] Sorensen P.B., Christensen J.R., Bruus J.H. Effect of small scale solidsmigration in filter cakes during filtration of wastewater solids suspensions[J]. Water Environment Research,1995,67(1):25-32.
    [161] Rasmussen H., Bruus J.H., Keiding K., et al. Observations on dewaterabilityand physical, chemical and microbiological changes in anaerobically storedactivated sludge from a nutrient removal plant [J]. Water Research,1994,28(2):417-425.
    [162] Hannah S., Cohen J., Robeck G. Measurement of floc strength by particlecounting [J]. Journal (American Water Works Association),1967:843-858.
    [163] Parker D.S., Kaufman W.J., Jenkins D. Physical conditioning of activatedsludge floc [J]. Journal (Water Pollution Control Federation),1971:1817-1833.
    [164] Wahlberg E.J., Keinath T.M., Parker D.S. Influence of activated sludgeflocculation time on secondary clarification [J]. Water EnvironmentResearch,1994,66(6):779-786.
    [165] Sheng G.P., Yu H.Q., Cui H. Model-evaluation of the erosion behavior ofactivated sludge under shear conditions using a chemical-equilibrium-basedmodel [J]. Chemical Engineering Journal,2008,140(1):241-246.
    [166] Haugaard Mikkelsen L., Keiding K. Equilibrium aspects of the effects ofshear and solids content on aggregate deflocculation [J]. Advances inColloid and Interface Science,1999,80(2):151-182.
    [167] Mikkelsen L.H. The shear sensitivity of activated sludge: Relations tofilterability, rheology and surface chemistry [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,182(1-3):1-14.
    [168] Maximova N., Dahl O. Environmental implications of aggregationphenomena: Current understanding [J]. Current opinion in colloid&interface science,2006,11(4):246-266.
    [169] Mikkelsen L.H., Keiding K. Equilibrium aspects of the effects of shear andsolids content on aggregate deflocculation [J]. Advances in Colloid andInterface Science,1999,80:151-182.
    [170] Hu Y., Dai J. Hydrophobic aggregation of alumina in surfactant solution [J].Minerals engineering,2003,16(11):1167-1172.
    [171] Grasso D., Subramaniam K., Butkus M., et al. A review of non-DLVOinteractions in environmental colloidal systems [J]. Reviews inEnvironmental Science and Biotechnology,2002,1(1):17-38.
    [172] Patricia T.S., Chin C.J., Yiacoumi S., et al. Modeling aggregation ofcolloidal particles [J]. Current opinion in colloid&interface science,2005,10(3):123-132.
    [173] Subramani A., Huang X.F., Hoek E.M.V. Direct observation of bacterialdeposition onto clean and organic-fouled polyamide membranes [J]. Journalof Colloid and Interface Science,2009,336(1):13-20.
    [174] Liu X.M., Sheng G.P., Yu H.Q. DLVO Approach to the Flocculability of aPhotosynthetic H2-Producing Bacterium, Rhodopseudomonas acidophila [J].Environmental Science&Technology,2007,41(13):4620-4625.
    [175] Liu X.M., Sheng G.P., Wang J., et al. Quantifying the surface characteristicsand flocculability of Ralstonia eutropha [J]. Applied Microbiology andBiotechnology,2008,79(2):187-194.
    [176] Subhi N., Verliefde A.R.D., Chen V., et al. Assessment of physicochemicalinteractions in hollow fibre ultrafiltration membrane by contact angleanalysis [J]. Journal of Membrane Science,2012,403-404(0):32-40.
    [177] Khayat C., Vatelot A., Decloux M., et al. Evaluation of physico-chemicalinteractions in cross-flow filtration in the particular case of mineralmembranes and sugar remelts [J]. Journal of Membrane Science,1997,137(1):219-230.
    [178] Liu X.M., Sheng G.P., Luo H.W., et al. Contribution of ExtracellularPolymeric Substances (EPS) to the Sludge Aggregation [J]. EnvironmentalScience&Technology,2010,44(11):4355-4360.
    [179] Meng F.G., Zhou Z.B., Ni B.J., et al. Characterization of the size-fractionated biomacromolecules: Tracking their role and fate in a membranebioreactor [J]. Water Research,2011,45(15):4661-4671.
    [180] J.W. Morgan C.F.F., L. Evison. A comparative study of the nature ofbiopolymers extracted from anaerobic and activated sludges [J]. WaterResearch,1990,24.
    [181] Li X.Y., Yang S.F. Influence of loosely bound extracellular polymericsubstances (EPS) on the flocculation, sedimentation and dewaterability ofactivated sludge [J]. Water Research,2007,41(5):1022-1030.
    [182] APHA. Standard Methods for the Examination of Water and Wastewater [J].American Public Health Association,1995, Washington, DC.
    [183] Dubois M., Gilles K.A., Hamilton J.K., et al. Colorimetric method fordetermination of sugars and related substances [J]. Anal. Chem.,1956,28(3):350-356.
    [184] Lowry O.H., Rosebourgh N.J., Farr A.L., et al. Protein measurement withthe folin phenol reagent [J]. J. Biol. Chem.,1951,193:265-275.
    [185] Mohamed B. Filtration characteristics of a mineral mud with regard toturbulent shearing [J]. Journal of Membrane Science,2008,320(1-2):533-540.
    [186] Velasquez-Orta S.B., Curtis T.P., Logan B.E. Energy from algae usingmicrobial fuel cells [J]. Biotechnology and Bioengineering,2009,103(6):1068-1076.
    [187]刘晓猛,微生物聚集体的相互作用及形成机制[D].2008,中国科学技术大学. p.36.
    [188] Zhang J., Chua H.C., Zhou J., et al. Factors affecting the membraneperformance in submerged membrane bioreactors [J]. Journal of MembraneScience,2006,284(1-2):54-66.
    [189] Rosenberger S., Laabs C., Lesjean B., et al. Impact of colloidal and solubleorganic material on membrane performance in membrane bioreactors formunicipal wastewater treatment [J]. Water Research,2006,40(4):710-720.
    [190] Jinsong Z., Chuan C.H., Jiti Z., et al. Effect of sludge retention time onmembrane bio-fouling intensity in a submerged membrane bioreactor [J].Separation Science and Technology,2006,41(7):1313-1329.
    [191] Shin H.S., Kang S.T. Characteristics and fates of soluble microbial productsin ceramic membrane bioreactor at various sludge retention times [J]. WaterResearch,2003,37(1):121-127.
    [192] Min M., Shen L., Hong G., et al. Micro-nano structure poly (ethersulfones)/poly (ethyleneimine) nanofibrous affinity membranes foradsorption of anionic dyes and heavy metal ions in aqueous solution [J].Chemical Engineering Journal,2012.
    [193] Ebadi A., Soltan Mohammadzadeh J., Khudiev A. What is the correct formof BET isotherm for modeling liquid phase adsorption?[J]. Adsorption,2009,15(1):65-73.
    [194] Ho Y.S., Porter J.F., Mckay G. Equilibrium isotherm studies for the sorptionof divalent metal ions on to peat: copper, nickel and lead single componentsystems [J]. Water, Air, and Soil Pollution,2002,141:1-33.
    [195] Benmaamar Z., Bengueddach A. Correlation with different models foradsorption isotherms of M-xylene and toluene on zeolites [J]. J. Appl. Sci.Environ. Sanit.,2007,243-56.
    [196] Liu C.C., Kuang-Wang M., Li Y.S. Removal of nickel from aqueous solutionusing wine processing waste sludge [J]. Industrial&Engineering ChemistryResearch,2005,44(5):1438-1445.
    [197] Xu K., Harper W.F., Zhao D.17a-Ethinylestradiol sorption to activatedsludge biomass: thermodynamic properties and reaction mechanisms [J].Water Research,2008,42(12):3146-3152.
    [198] Zhu L.-P., Zhang X.-X., Xu L., et al. Improved protein-adsorption resistanceof polyethersulfone membranes via surface segregation of ultrahighmolecular weight poly(styrene-alt-maleic anhydride)[J]. Colloids andSurfaces B: Biointerfaces,2007,57(2):189-197.
    [199] Mondal S., Rai C., De S. Identification of Fouling Mechanism DuringUltrafiltration of Stevia Extract [J]. Food and Bioprocess Technology,2013,6(4):931-940.
    [200] Wang C., Li Q., Tang H., et al. Membrane fouling mechanism inultrafiltration of succinic acid fermentation broth [J]. BioresourceTechnology,2012,116(0):366-371.
    [201] Wang F., Tarabara V.V. Pore blocking mechanisms during early stages ofmembrane fouling by colloids [J]. Journal of Colloid and Interface Science,2008,328(2):464-469.
    [202] Chen W., Westerhoff P., Leenheer J.A., et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolvedorganic matter [J]. Environmental Science&Technology,2003,37(24):5701-5710.
    [203] Wang X.M., Waite T.D. Impact of gel layer formation on colloid retention inmembrane filtration processes [J]. Journal of Membrane Science,2008,325(1):486-494.
    [204] Khan S.J., Visvanathan C., Jegatheesan V. Prediction of membrane foulingin MBR systems using empirically estimated specific cake resistance [J].Bioresource Technology,2009,100(23):6133-6136.
    [205] Zhang H.M., Gao J.F., Jiang T., et al. A novel approach to evaluate thepermeability of cake layer during cross-flow filtration in the flocculantsadded membrane bioreactors [J]. Bioresource Technology,2011,102(24):11121-11131.
    [206] Jost Wingender, Thomas R. Neu, Flemming H.-C. Microbial ExtracellularPolymeric Substances: Characterization, Structures and Function [M].1999,Berlin, Heidelberg: Springer-Verlag.
    [207] Sheng G.P., Yu H.Q., Li X.Y. Stability of sludge flocs under shear conditions:Roles of extracellular polymeric substances (EPS)[J]. Biotechnology andBioengineering2006,93:1095-1102
    [208] Buyukkamaci N. Biological sludge conditioning by Fenton's reagent [J].Process Biochemistry,2004,39(11):1503-1506.
    [209] Ou S.H., You S.J., Chang W.Y., et al. Effect of sludge retention time onsludge properties and membrane fouling of different hydrophobic PTFEmembranes [J]. Desalination and Water Treatment,2011,30(1-3):105-113.
    [210] Meng F.G., Yang F.L., Xiao J.N., et al. A new insight into membrane foulingmechanism during membrane filtration of bulking and normal sludgesuspension [J]. Journal of Membrane Science,2006,285(1-2):159-165.
    [211] Wu B., Yi S., Fane A.G. Microbial behaviors involved in cake fouling inmembrane bioreactors under different solids retention times [J]. BioresourceTechnology,2011,102(3):2511-2516.
    [212] M. Sezgin D.J., D.S. Parker. A unified theory of filamentous activated sludgebulking [J]. J. WPCF,1978,50:362-381.
    [213] Wahlberg E.J., Keinath T.M., Parker D.S. Influence of activated sludgeflocculation time on secondary clarification [J]. Water EnvironmentResearch1994,66:779-786.
    [214] Yu G.H., He P.J., Shao L.M., et al. Stratification structure of sludge flocswith implications to dewaterability [J]. Environmental Science&Technology,2008,42(21):7944-7949.
    [215] Meng F.G., Chae S.R., Drews A., et al. Recent advances in membranebioreactors (MBRs): Membrane fouling and membrane material [J]. WaterResearch,2009,43(6):1489-1512.
    [216] Meng F.G., Yang F.L., Shi B.Q., et al. A comprehensive study on membranefouling in submerged membrane bioreactors operated under differentaeration intensities [J]. Separation and Purification Technology,2008,59(1):91-100.
    [217] Zhang H.M., Xia J., Yang Y., et al. Mechanism of calcium mitigatingmembrane fouling in submerged membrane bioreactors [J]. Journal ofEnvironmental Sciences-China,2009,21(8):1066-1073.
    [218] Jin B., Wilén B.-M., Lant P. Impacts of morphological, physical andchemical properties of sludge flocs on dewaterability of activated sludge [J].Chemical Engineering Journal,2004,98(1-2):115-126.
    [219] Oss V., Jan C. Long-range and short-range mechanisms of hydrophobicattraction and hydrophilic repulsion in specific and aspecific interactions [J].Journal of Molecular Recognition,2003,16(4):177-190.
    [220] Oss V., Jan C. Hydrophobicity of biosurfaces-Origin, quantitativedetermination and interaction energies [J]. Colloids and Surfaces B:Biointerfaces,1995,5(3-4):91-110.
    [221] Redman J.A., Walker S.L., Elimelech M. Bacterial adhesion and transport inporous media: Role of the secondary energy minimum [J]. EnvironmentalScience&Technology,2004,38(6):1777-1785.
    [222] Akamatsu K., Lu W., Sugawara T., et al. Development of a novel foulingsuppression system in membrane bioreactors using an intermittent electricfield [J]. Water Research,2010,44(3):825-830.
    [223] Bani-Melhem K., Elektorowicz M. Development of a Novel SubmergedMembrane Electro-Bioreactor (SMEBR): Performance for FoulingReduction [J]. Environmental Science&Technology,2010,44(9):3298-3304.
    [224] Wu J.L., Huang X. Use of ozonation to mitigate fouling in a long-termmembrane bioreactor [J]. Bioresource Technology,101(15):6019-6027.
    [225] Sun F.Y., Wang X.M., Li X.Y. Effect of biopolymer clusters on the foulingproperty of sludge from a membrane bioreactor (MBR) and its control byozonation [J]. Process Biochemistry,46(1):162-167.
    [226] Min B., Kim J., Oh S., et al. Electricity generation from swine wastewaterusing microbial fuel cells [J]. Water Research,2005,39(20):4961-4968.
    [227] Pan J.R., Su Y.-C., Huang C., et al. Effect of sludge characteristics onmembrane fouling in membrane bioreactors [J]. Journal of MembraneScience,2010,349(1-2):287-294.
    [228] Visvanathan C., Ben Aim R., Parameshwaran K. Membrane separationbioreactors for wastewater treatment [J]. Critical Reviews in EnvironmentalScience and Technology,2000,30(1):1-48.
    [229] Xiao B.Y., Yang F., Liu J.X. Enhancing simultaneous electricity productionand reduction of sewage sludge in two-chamber MFC by aerobic sludgedigestion and sludge pretreatments [J]. Journal of Hazardous Materials,2011,189(1-2):444-449.
    [230] Jiang J., Zhao Q., Wei L., et al. Extracellular biological organic matters inmicrobial fuel cell using sewage sludge as fuel [J]. Water Research,2010,44(7):2163-2170.
    [231] Metcalf L., Eddy H.P., Tchobanoglous G. Wastewater engineering: treatment,disposal, reuse [M].1991: McGraw-Hill New York.
    [232] Wen X.H., Ding H.J., Huang X., et al. Treatment of hospital wastewaterusing a submerged membrane bioreactor [J]. Process Biochemistry,2004,39(11):1427-1431.
    [233] Logan B.E., Hamelers B., Rozendal R., et al. Microbial fuel cells:methodology and technology [J]. Environmental Science&Technology,2006,40(17):5181-5192.
    [234] More T.T., Ghangrekar M.M. Improving performance of microbial fuel cellwith ultrasonication pre-treatment of mixed anaerobic inoculum sludge [J].Bioresource Technology,2010,101(2):562-567.
    [235] Ji J., Qiu J.P., Wong F.S., et al. Enhancement of filterability in MBRachieved by improvement of supernatant and floc characteristics via filteraids addition [J]. Water Research,2008,42(14):3611-3622.
    [236] Barker D., Stuckey D. A review of soluble microbial products (SMP) inwastewater treatment systems [J]. Water Research,1999,33(14):3063-3082.
    [237] Baker A. Fluorescence excitation-emission matrix characterization of somesewage-impacted rivers [J]. Environmental Science&Technology,2001,35(5):948-953.
    [238] He X.-S., Xi B.-D., Wei Z.-M., et al. Fluorescence excitation-emissionmatrix spectroscopy with regional integration analysis for characterizingcomposition and transformation of dissolved organic matter in landfillleachates [J]. Journal of Hazardous Materials,2011,190(1-3):293-299.
    [239] wietlik J., Dabrowska A., Raczyk-Stanislawiak U., et al. Reactivity ofnatural organic matter fractions with chlorine dioxide and ozone [J]. WaterResearch,2004,38(3):547-558.
    [240] Wang Z.W., Wu Z.C., Tang S.J. Characterization of dissolved organic matterin a submerged membrane bioreactor by using three-dimensional excitationand emission matrix fluorescence spectroscopy [J]. Water Research,2009,43(6):1533-1540.
    [241] Liu T., Chen Z., Yu W., et al. Characterization of organic membrane foulantsin a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-mission matrix fluorescence spectroscopy [J]. WaterResearch,2011,45(5):2111-2121.
    [242]孟凡刚,张捍民,李艳松等.分形理论在膜污染研究中的应用[J].哈尔滨工业大学学报,2005,37(10):1352-1414.
    [243] Grijspeerdt K., Verstraete W. Image analysis to estimate the settleability and
    concentration of activated sludge [J]. Water Research,1997,31(5):1126-
    1134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700