用户名: 密码: 验证码:
扬水曝气水源水质改善技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对大水深水库水源富营养化、沉积物内源污染严重等突出问题,以及缺乏有效水源水质改善技术的现状,研究开发了解决此类水质问题的扬水曝气水源水质改善技术。系统研究了扬水曝气水源水质改善理论与技术。建立了扬水曝气器的理论模型,研究了藻类运动分布规律、沉积物污染释放规律。模拟了流速场、溶解氧分布场和温度场。确定了扬水曝气技术的应用方法和应用条件。将该技术应用于水源水质改善,混合上下水层,破坏水体分层,抑制藻类生长;给水体充氧,提高下层水体溶解氧,控制沉积物污染释放,取得了显著的水质改善效果。
     研究了藻类在水体中的生长运动规律,测定了藻类的上浮速度,揭示了通过改变流场抑制藻类生长的机理。研究揭示了沉积物中污染物释放规律。在此基础上,提出了扬水曝气水源水质改善技术,针对扬水曝气器优化设计,建立了扬水曝气器结构优化模型、提水速度数学模型、充氧能力数学模型,利用CFD模型对混合流场进行了流速场、水质场、温度场的定量模拟,形成了系统的扬水曝气技术理论基础。
     研究开发出了具有提水和充氧能力的扬水曝气器,通过实验室试制、中试和生产性试验,确定了扬水曝气器的结构组成,实现了提水和充氧两大功能,并将扬水曝气器设计成长度可调结构,自动适应水位变化,提高混合效果。研究开发了扬水曝气与生物接触氧化组合水质改善技术,确定了组合技术的结构组成、组合方式。扬水曝气技术及其组合技术能够用于混合上下水层,抑制藻类生长;增加水体溶解氧,控制沉积物中污染物释放,解决大水深水库水源富营养化和沉积物内源污染问题。
     研究确定了扬水曝气技术抑制藻类生长的应用条件、应用方法和作用范围。扬水曝气技术抑制藻类生长的水力条件是:循环水流的下向流速大于1.65cm/min,抑制藻类生长的水深条件是:水深大于10m。通过CFD模型模拟了扬水曝气器周围的流速场,确定了扬水曝气技术抑制藻类生长的能力和作用范围,从而确定扬水曝气器的布置间距。将扬水曝气技术应用于天津市芥园水厂预沉池,抑制藻类生长,在停留时间为27h的条件下,成功抑制了藻类的生长,使藻类由正增长9.32%转变成衰减4.64%,总量下降了14%,影响范围内藻类下降了26.5%。根据理论分析,在大水深、停留时间长的水源水体中,藻类的生长将基本被控制。
     研究确定了扬水曝气技术控制沉积物中污染物释放的应用条件、应用方法和作用范围。扬水曝气技术抑制沉积物中氮、有机质释放的条件是将沉积物表面溶解氧提升到2mg/L以上,抑制磷、铁、锰释放的条件是将沉积物表面溶解氧提升到1mg/L以上。通过CFD模型模拟了扬水曝气器周围的溶解氧分布场,确定了扬水曝气技术控制沉积物中污染物释放的作用范围。将扬水曝气技术应用于山西省引黄工程汾河水库,控制沉积物中污染物释放,确定了系统组成、工艺布置、施工方法等应用方法,使污染物释放量减少了95%,取得了显著的水质改善效果。
Aiming at the water quality problems of eutrophication and pollutants' releasing from sediments in deep water source reservoir,the Water- lifting Aerator was developed to improve water quality.The theoretic model of the Water- lifting Aerator was built up,the regulation of algae' distribution and motion and the characteristic of pollutants' releasing from sediment have been studied,as well as the field of flow velocity,dissolved oxygen and temperature have been modeled.The application qualification and method of the Water-lifting Aerator were determined.The technology of Water-lifting Aerator has been applied to mix water to destratify lakes and reservoirs,restrain alga's growth and oxygenate water in lower lay to control pollutants' releasing from sediment,and a prominent effect has been obtained.
     The regulation of algae' distribution and motion was studied,and the velocity of algae's floating up has been measured,so as to discover the mechanism of restraining algae's growth by the Water-lifting Aerator.The characteristic of pollutants' releasing from sediment have been discovered.Aiming at the design of the Water-lifting Aerator,models of structure optimization,water flow velocity and oxygenation capacity have been built up.The fields of flow velocity,dissolved oxygen and temperature around Water-lifting Aerator have been modeled by CFD model.
     The Water-lifting Aerator which has functions of lifting water and oxygenation was developed by tests.The subassemblies of the Water-lifting Aerator were determined.The two functions of lifting water and oxygenate were achieved by the Water-lifting Aerator.The ascending cylinder is designed as telescopic structure,so that it can adjust its length automatically with the variation of water level to enhance the effect of mixing water.A combined water quality improvement technology of Water-lifting Aerator and bio-contact oxidation process has been developed also.The component and the combining mode of the combined technology were determined.The Water-lifting Aeration technology and its combined technology can mix upper layer water and lower layer water to restrain algae's growth,and increase dissolved oxygen to control pollutants' releasing from sediment,so as to resolve the problems of eutrophication and inner pollutent source in water soruce.
     The application qualification,method and affect area for the Water-lifting Aerator to restrain alga's growth were studied.The hydraulic requirement for the Water-lifting Aerator to restrain alga's growth is that the down flow velocity is more than 1.65cm/min,and the required water depth for Water-lifting Aerator to restrain alga's growth is more than 10m.The area where algae growth is controlled by Water-lifting Aerator was determined by CFD modeling.The Water-lifting Aeration technology was applied to restrain alga's growth in the raw water preliminary sedimentation tank of Jie-Yuan water plant of Tian-Jin city.The Water-lifting Aerators made alga decreased for 14%in the preliminary sedimentation tank, and for 26.5%in the area impacted by Water-lifting Aerators.A greater effect would be obtained by theoretical analysis in deeper and longer staying time water.
     The application qualification,method and affect area for the Water-lifting Aerator to control pollutants' releasing from sediment were studied.The application qualification for the Water- lifting Aerator to control nitrogen and organic materials releasing from sediment is that the dissolved oxygen on the interface of sediment and water must be more than 2mg/L, and more than 1mg/L for controlling phosphorus,iron and manganese releasing.The area where the pollutants releasing from sediment will be controlled is determined by modeling distribution field of dissolved oxygen around the Water-lifting Aerator.The Water-lifting Aeration technology had been applied to control pollutants releasing from sediments in Fen-He reservoir which is a part of water transmission project from Huang-He reviver in Shan-Xi province.Compare with that in the same time of last year,the pollutants released from sediment were decreased by the Water-lifting Aerator technology for 95%,the effect of water quality improvement is great.
引文
1.Asaeda,T.and Imberger,J.Structure of bubble plumes in linearly stratified environment[J].J.Fluid Mech.1993,249:35-57.
    2.Asaeda T.,Ikeda H.,Imberger J.and Ca V.T.Destratification of reservoir with bubble plume.Preprints,Fourth International Symposium on Stratified Flow,Grenoble,France.1994,2([Paper 159]).
    3.Bostrom B,Jansson M,et al.Phosphorus release from lake sediment.Arch Hyarobiol,1982,18:55-59.
    4.Brunberg A K,Blomqvist P.Recruitment of microcystis(Cyanophyceae)from lake sediment:The importance of littoral inocula[J].J Phycol,2003,39:58-63.
    5.Burris V.L.,Daniel F.McGinnis,John C.Little.Predicting oxygen transfer and water flow rate in airlift aerators.Water research 2002;36:4605-4615
    6.Burris V.L.,John C.Little.Bubble dynamics and oxygen transfer in a hypolimnetic aerator.Water science technology 1998;37:293-300.
    7.Clasen J.Raw water quality management at Wahnbach reservoir[J].Water supply,2000,18(1):581-585.
    8.Daniel F.McGinnis and John C.little.Bubble dynamics and oxygen Transper in a Speece Cone[J].Wat.Sci.Tech,1998,37(2):285-292.
    9.D Angelo EM,Reddy KR.Diagenesis of organic matter in a wetland receiving hypereutrophic lake water Ⅱ:Role of inorganic electron acceptors in nutrient release[J].J.Environment.Qual.,1994,23:937-943.
    10.Dong-Seo,Dong Soon Jang,Oh Hun Kwon.The Evaluation of Effects of Artificial Circulation on Daechung lake,Korea[C].Proceedings Vol.1 of 6~(th)International Conference on the Conservation and Management of Lakes,1995:336-339.
    11.Elizabeth J.Arar."In Vitro Determination of Chlorophylls a,b,c+c and Pheopigments in Marine And Freshwater Algae by Visible Spectrophotometry".U.S.Environmental Protection Agency[M].1997,09:446-2-446-26.
    12.Elizabeth J.Arar,Gary B.Collins."In Vitro Determination of Chlorophyll a and Pheophytin in Marine and Freshwater Algae by Fluorescence".U.S.Environmental Protection Agency[M].1997,09:445-1-445-22.
    13.Elizabeth J.Arar."Determination of Chlorophylls a and b and Identification of Other Pigments of Interest in Marine and Freshwater Algae Using High Performance Liquid Chromatography with Visible Wavelength Detection".U.S.Environmental Protection Agency[M].1997,09:447-1-447-20.
    14.Friedrich Recknagel,Masaaki Hosomi,Takehiko Fukushima,et al.Short-and Long-term Control of External and Internal Phosphorus Loads in Lakes——a scenario analysis[J].Wat.Res.,1995,29(7):1767-1779.
    15.Gary J.Jones and Wojciech Poplawski.Uandstanding and Management of Cyanobacterial blooms in sub-tropical reservoire of Queensland Australia[J]. Wat.Sci.Tech, 1998,37(2): 161-168.
    16. Gerke J & Heamann R.. Adsorption of orthoposphateto humic-Fe~- complexes and toamorphous Fe-oxide Z Pflanzenernahr Bodenk. 1992,155:233- 236.
    17. Goloka Behari Sahoo, David Luketina. Modeling of bublle design and oxygen transfer for reservoir restoration[J]. Wat. Res., 2003,37: 393-401.
    18. Gonsiorczyk T,Casper P, et al. Variations of phosphorus release from sediments in stratified lakes[J]. Water.Air, & Soil Pollution, 1997,99(1-4):427-434.
    19. Gustavo C.B., Fabian A.B.,Marcelo H.G. Numerical modeling of large-scale bubble plumes accounting for mass transfer effects. Multiphase Flow,2002,28:1763-1785.
    20. Henning SJ, Frede OA. Importance of temperature, nitrate, and pH for phosphorus release from aerobic sediments of four shallow, eutrophic[J]. Limnology Oceanography,1992,37(2):557-589.
    21. Holdren C, W Jones, J Taggart. Managing Lakes and Reservoirs[M]. 3~(rd) edition Prep. By N. Am. Lake Manage. Soc. And Terrene Inst., in coop. with U. S. EPA. ,2001.
    22. Hupfer H,Gnchter R,Giovanoli R.Transformation of phosphorus species in settling seston and during early sediment diagenesis[J].Aquatic Sciences,1995,57:305-324.
    23. Istvanovics V. Seasonal variation of phosphorus release from the sediments of shallow lake balaton(hungary) [J]. Wat.Res., 1988,22(12):1473-1481.
    24. Jeremy Simmons.Algal control and destratification at Hanningfield reservoir[J]. Water science technology, 1998,37(2):309-316.
    25. Kamiya H, Ishitobi Y, et al. Effluxes of dissolved organic phosphorus(DOP) and phosphate from the sediment to the overlying water at high temperature and low dissolved oxygen concentration condition in an eutrophic brackish lake[J]. Japanese Journal of Limnologe, 2001,62(1):11-21.
    26. Kastelan Macan, M & Petrovic, M.. The role of fulvic acids in phosphorus sorption and release from mineral particales[J]. Wat. Sci. Tech,1996,34(7):259-265.
    27. Klapper H. translated by Bernard Hemmings. Control of eutrophication in inland waters [J]. Ellis Horwood,1991.
    28. Lenore S.Clesceri,AmoldE.Greeberg and Aadrew D.Eaton. "Standard Methods for the Examination of Water and Wastewater 20th"[M]. American Public Health Association, American Water Works Association, Water Environment Federation.2001,01.
    29. Lindenschmidt K.-E,Hamblin P.F.Hypolimnetic aeration in lake, Tegel,Berlin[J].Wat. Res,1997,31(7): 1619-1628.
    30. Little J. C. Hypolimnetic Aerators:Predicting Oxygen Transfer and Hydrodynamics[J]. Wat. Res, 1995, 29(11): 2475-2482.
    31. McDougall, T.J. Bubble plume in stratified environments[J]. J. Fluid Mech 1978 ,85: 655-672.
    32. Milan Straskraba. Ecotechnological Methods for Managing Non-point Source Pollution in Watersheds, Lakes and Reservoirs[J]. Wat. Sci.Tech, 1996,33(4-5):73-80.
    33. Monzur Alam Imteaz, Takashi Asaeda. Artificial mixing of lake water by bublle plume and effeats of bublling operation on algal bloom[J].Wat.Res.,2000,34(6):1919-1929.
    34.Murphy T.P.,Lawson A.,Kumagai M.,Babin J.Review of emerging issue in sediment treatment[J].Aquatic Ecosystem Health and Management,1999,(2):419-434.
    35.Myint Zaw,Barry Chiswell.Iron and manganese dynamics in lake water[J].Wat.Res,1999,33(8):1900-1910.
    36.Liang Nai-Kuang,Hai-Kuen Peng.Astudy of air-lift artificial upwelling[J].Ocean engineering,2005,32:731-745.
    37.Petra M.Visser,Henk A.M Ketelaars.Reduced growth of the cyanobacterium microcystis in an artificially mixed lake and reservioir[J].Wat.Sci.Tech,1995,32(4):53-54.
    38.P.Pardo,G.Rauret,J.F.Lopez-Sanchez.Shortented screening method for phosphorus fractionation in sediments-A complementary approach to the standards,measurements and testing harmonized protocol[J].Analytical Chemical Acta,2004,508:201-206.
    39.Schladow,S.G..Bubble plume dynamics in a stratified medium and the implications for water quality amelioration in lakes[J].Water Res.,1992,28:313-321
    40.Smith.B.L.On the modeling of bubble plume in a liquid pool[J].Applied Mathematical Modelling,1998,22:773-797.
    41.Stumm W,Morgan J.Aquatic Chemistry[M].New York:J.Wiley and Sons,1981,102-123.
    42.U.S.Army Engineering Research and Development techniques for reservoirs and tailwaters.Waterways Experiment Station,Vicksburg,MS.,2001 Available online at http://chl.wes.army.mil/library/publications.
    43.V.Ruban,J.F.Lopez-Sanchez,P.Pardo,etc,Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment[J].J..Environ.Monit.,1999,1:51-56.
    44.V.Ruban,J.F.Lopez-Sanchez,P.Pardo,erc.Development of a harmonized phosphorus extraction procedure and certification of a sediment reference material[J].J.Environ.Monit.,2001,3:121-125.
    45.V.Ruban,J.F.Lopez-Sanchez,P.Pardo,etc.Harmonized protocol and certified reference material for determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works[J].Fresenius J Anal Chemt.,2004,370:224-228.
    46.Welch E B,Cooke G D.Effectiveness and longevity of phosphorus inactivation with alum[J].Lake and Reservoir Management,1999,(1):5-27.
    47.Zboray R.,F.de Cachard.Simulating large-scale bubble plume using various closure and two-phase turbulence models.Nuclear Engineering and Design,2005,235:867-884
    48.丁吉震.CBS水体修复技术[J].洁净煤技术,2000,6(4):36-38.
    49.于天仁.土壤分析化学[M].北京:科学出版社,1988:81-140.
    50.于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定[J].给水排水,2002,28(5):1-4.
    51.王圣瑞,金相灿,赵海超等.长江中下游浅水湖泊沉积物对磷的吸附特征[J].环境科学,2005,26(3):38-43.
    52.刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学,2003,22(3):193-196.
    53.刘凡,介晓磊,贺纪正等.不同pH条件下针铁矿表面磷的配位形式及转化特点[J].土壤学报,1997,34(4):367-374.
    54.刘凡,贺纪正,李学垣等.磷溶液浓度与针铁矿表面吸附磷的化学状态[J].科学通报,1994,39(21):1996-1999.
    55.刘敏,候立军,许世远等.长江河口潮滩表层沉积物对磷酸盐的吸附特征[J].地理学报,2002,57(4):397-406.
    56.刘培芳,陈振楼,刘杰等.环境因子对长江口潮滩沉积物中NH4+的释放影响[J].环境科学研究,2002,15(5):28-32.
    57.刘鸿亮,金相灿,荆一凤.湖泊底泥环境疏浚工程技术[J].中国工程科学,1999,1(1):81-84.
    58.汪家权,孙亚敏,钱家忠等.巢湖底泥磷的释放模拟实验研究[J].环境科学学报,2002,22(6):738-742.
    59.马言,沈学优,林道辉.南太湖沉积物磷的释放研究[J].上海环境科学,2000,19(8):391-393.
    60.马经安,李红青.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575-578.
    61.石晓勇,史致丽,于恒等.黄河口磷酸盐缓冲机制的探讨I[J].海洋与湖沼,1999,30(2):192-197.
    62.朱广伟,秦伯强,高光.浅水湖泊沉积物磷释放的重要因子——铁和水动力[J].农业环境科学学报,2003,22(6):762-764.
    63.朱智,吴江明,周俊杰.滇池污染治理工作若干问题的思考[J].中国给水排水,1999,15(12):27-30.
    64.何振立,袁可能.有机阴离子对磷酸盐吸附的影响[J].土壤学报,1990,27(4):377-384.
    65.孙傅,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估.环境污染治理技术与设备,2003,4(8):61-64
    66.孙晓杭,张昱,张斌亮等.微生物作用对太湖沉积物磷释放影响研究[J].环境化学,2006,25(1):25-27
    67.许建华.“受污染水弹性填料微孔曝气生物接触氧化预处理生产性研究”通过鉴定[J].净水技术,1997,4:12.
    68.李文朝,尹澄清,陈开宁等.关于湖泊沉积物磷释放及其测定方法的雏议[J].湖泊科学,1999,11(4):296-303.
    69.李曰嵩,杨红.长江口沉积物对磷酸盐的吸附与释放的研究[J].海洋环境科学,2004,23(3):39-42.
    70.李勇,王超.城市浅水型湖泊底泥磷释放的环境因子影响实验研究[J].江苏环境科技,2002,15(4):4-6.
    71.李酉开.土壤农业化学常规分析方法[M].北京:科学出版社,1983:104-107.
    72.李敏,倪晋仁,王光谦等.环境因素对长江口水域沉积物吸附磷酸盐的影响研究[J].应用基础与工程科学学报,2005,13(1):19-25.
    73.李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究.农业环境科学学报,2003,22(2):170-173.
    74.李雪梅,杨中艺等.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报,2000,29(1):81-85.
    75.陈伟,叶舜涛,张明旭.苏州河河道曝气复氧探讨[J].给水排水,2001,27(4):7-9.
    76.陈玉成.污染环境生物修复技术[M].北京:化学工业出版社,2003.4-228.
    77.陈淑珠,钱红,张经.沉积物对磷酸盐的吸附与释放[J].青岛海洋大学学报,1997,27(3):413-418.
    78.陈永川,汤利.沉积物—水体界面氮磷的迁移转化规律研究进展[J].云南农业大学学报,2005,20(4):527-533.
    79.陈汉辉,孙国胜.东深源水生物预处理工程挂膜启动过程水质净化效果变化的分析[J].环境污染治理技术与设备,2000,3(2):59-61.
    80.陈伟,范瑾初.微污染原水的生物接触氧化预处理技术综述[J].净水技术,1997,60(2):43-46.
    81.张华.上海惠南水厂生物预处理工艺的运行效果[J].中国给水排水,2000,16(8):12-14.
    82.张远君,王慧玉,张振鹏.两相流体动力学[M].北京:北京航空学院出版社,1987.87-115.
    83.金相灿,荆一凤,刘文生.湖泊污染底泥疏浚技术[J].环境科学研究,1999,12(5):9-12.
    84.金相灿,刘树坤,张宗涉.中国湖泊环境[M].北京:海洋出版社,1995:349-350.
    85.高丽,杨浩,周建民.湖泊沉积物中磷释放的研究进展[J].土壤,2004,36(1):12-15.
    86.高丽,杨浩,周建民等.滇池沉积物磷的释放以及不同形态磷的贡献[J].农业环境科学学报,2004,23(4):731-734.
    87.严健汉,詹重慈.环境土壤学[M].武汉:华中师范大学出版社,1985:23-95.
    88.周爱民,王东升,汤鸿霄.磷(P)在天然沉积物界面上的吸附[J].环境科学学报,2005,25(1).64-69.
    89.周孝德,韩世平,陈惠君.环境因素对滇池底泥磷吸附的影响[J].水利学报,1998,增刊:12-17.
    90.周礼凯.土壤酶学[M].北京:科学出版社,1987.
    91.林荣根,吴景阳.黄河口沉积物对磷酸盐的吸附与释放[J].海洋学报,1994,16(4):82-90.
    92.袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响[J].湖泊科学,2004,16(1):28-34.
    93.吴丰昌,万国江,黄荣贵.湖泊沉积物—水界面营养元素的生物地球化学作用和环境效应Ⅰ[J].矿物学报,1996,16(4):403-409.
    94.胡雪峰.上海市郊河流底泥氮磷释放规律的初步研究[J].上海环境科学,2001,20(2):66-70.
    95.杨龙元,蔡启铭,秦伯强等.太湖梅梁湾沉积物—水界面迁移特征初步研究[J].湖泊科学,1998,10(4):41-47.
    96.国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社.2002.
    97.罗阳,刘敬.控制湖泊内源磷负荷的有效性研究[J].水资源保护,1996,2:52-55.
    98.陆子川.湖泊底泥挖掘可能导致水体氮磷平衡破坏的研究[J].中国环境监测,2001,17(2):40-42
    99.柳惠青.湖泊污染内源治理中的环保疏浚[J].水运工程,2000,11:21-27.
    100.徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展.重庆环境科学.2003,25(11):147-149
    101.韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101.
    102.韩伟明.底泥释磷及其对杭州西湖富营养化的影响[J].湖泊科学,1993,5(1):71-77.
    103.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-66.
    104.顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法[J].土壤,1990,22(2):101-103.
    105.鲁如坤.土壤磷素化学研究进展[J].土壤学进展,1990,6:1-5.
    106.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:176-179.
    107.戚盛豪,严煦世等.水资源及给水处理[M].北京,中国建筑工业出版社,2001.74-88.
    108.隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(1):102-105.
    109.候立军,刘敏,许世远.环境因素对苏州河市区段底泥内源磷释放的影响[J].上海环境科学,2003,22(4):258-260.
    110.秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学,2002,22(2):150-153.
    111.秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48(17):1822-1831.
    112.黄清辉,王子健,王东红等.太湖表层沉积物磷的吸附容量及其释放风险评估[J].湖泊科学,2004,16(2):98-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700