用户名: 密码: 验证码:
珍稀濒危树种格木保护生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
格木(Erythrophleum fordii O.)是我国热带南亚热带地区的珍贵用材树种之一,且具有较高的药用价值和生态价值,由于长期的过度利用和毁林开荒等,其天然林资源已遭受严重破坏,被列为我国二级重点保护植物,并作为渐危种列入IUCN濒危物种红色名录。本研究全面调查了我国格木的天然分布、生境特征以及保护现状;重点揭示了典型格木种群(广西武鸣)的结构与动态以及海拔和人为干扰对格木种群以及天然林土壤化学性质的影响;探明了格木蛀梢害虫为害特点及其与环境因子间的关系;系统地收集了格木种质资源开展了种实和子代苗期表型变异研究,并运用SSR标记研究了其遗传多样性和遗传结构;进一步开展了种质资源迁地保存和利用研究。从种群生态学和种群遗传学两个方面较为系统地探讨了格木濒危现状、濒危机制以及可能的保护利用途径,为制定其保护和利用策略提供了科学依据。主要结果如下:
     1、我国格木天然分布范围主要在广西、广东、福建和台湾等地24°N以南地区,垂直分布多在海拔600m以下,集中生长于山体中下部。其面临的主要威胁来自于人类不合理开发利用、大面积毁林开荒种植农作物或发展其它树种等人为干扰,导致格木天然林及其生境破碎化十分严重。
     2、格木种群天然更新方式包括种子更新和萌芽更新,但种群扩散则依靠种子散布。格木土壤种子库属于聚集分布类型,其种群也呈聚集分布。研究以面积最大的样地Ⅱ(10000m2)为研究对象,通过编制种群静态生命表进行种群年龄结构与动态分析,结果显示,格木幼年个体数量较多,且死亡率高,种群下降快,中龄以后个体数量维持在较低水平,种群下降速率也基本稳定,但中间龄级死亡率低于成年阶段个体死亡率。总体来看随龄级增加生存率(S_(i))下降,累计死亡率(F_(i))上升,死亡密度(f_(ti))和危险率(λ_(ti))下降。因此,可以推断格木种群动态特征属于早期个体数量多,淘汰率高,进入中龄期竞争稳定死亡率趋稳,在进入成熟阶段个体竞争增加,死亡率也高于中龄期,因此,格木存活曲线属于Deevey存活曲线Ⅲ型。
     3、人为干扰对格木种群结构具有明显影响,其与海拔综合作用导致格木天然种群产生明显变化。不同海拔样地种群结构及其动态分析结果显示,随着海拔上升,样地内格木种群和土壤种子库的密度和频度均表现出先升高后略下降的趋势,而且土壤化学性质也表现出类似变化趋势,结果反映出格木在研究区域内垂直分布上限特征,也可以看出干扰对低海拔种群影响较中高海拔大。进一步采用种群数量变化动态指数进行不同海拔种群动态分析发现,上部海拔较高地点三个样地(Ⅰ、Ⅱ、Ⅲ)属于增长种群(V_(pi)>0,V′_(pi)>0),样地Ⅳ、Ⅴ属于衰退种群(V_(pi)<0,V′_(pii)<0)。
     4、格木蛀梢害虫是影响天然更新乃至种群维持以及人工幼林生长的主要限制因子之一。本研究重点调查、分析了格木种质资源保存林和萌芽更新萌条的蛀梢害虫为害状况,首次确定了格木蛀梢害虫为荔枝异形小卷蛾(Cryptophlebia ombrodelta L.),其受害木在林分内呈聚集分布,为害率高达90%以上。研究初步总结了格木虫害的发生规律,但其发生的环境和气候条件尚需进一步研究。
     5、根据格木天然种群种实(8个种群)和子代苗期(6个种群)的表型变异分析结果可以看出,表型指标在种群间和种群内均存在丰富变异,种群间差异显著;荚果表型变异高于种子表型变异,即荚果表型受环境因子影响较大,子代苗期高生长变异大于地径;苗期表型性状与种子大小、千粒重性状间相关显著;与环境因子相关分析显示,格木荚果形态与经度显著负相关,种子表型中仅千粒重与纬度显著正相关,幼苗地径和高径比分别与年均温和海拔呈显著负相关;揭示出温度为格木天然种群水平分布和垂直分布的限制因素之一。
     6、应用5对SSR引物在9个种群中共检测到5个多态位点、34个等位基因,其中7个为特有基因,每个位点具1或2个公共基因。9个种群平均每个位点的A、Ae、Ho、He和I的均值分别为2.50、3.9、0.5313、0.5783和1.0088。整体而言,F_(IS)均值为0.0349,各种群大部分位点符合Hardy-Weinberg平衡。F_(ST)平均为0.1792,即17.92%的遗传变异存在于种群内,种群间的遗传分化较大,种群间基因流仅为1.1452。种群的遗传距离和地理距离之间的相关性进行Mantel检验,发现二者相关关系不显著(P>0.05)。
     7、迁地保护种质资源早期评价结果显示,格木种群内变异大于种群间变异,与分子水平检测结果一致。从保存林早期生长初步判断迁地保护效果较好,FJ01、GX04种群在两个试验地均表现较好,但仍需进行长期观测予以验证。从表型和SSR标记综合分析来看,格木迁地保护应重点扩大种群收集范围和数量,同时尽可能增加每个种群家系数量。
Erythrophleum fordii O. is a valuable broad-leaved timber species with medical and ecological values in tropical and sub-tropical zones in south China. The natural forest of this species has been heavily destroyed due mostly to long-term over-exploitation and utilization, and alteration to croplands and fast-growing plantations. The species has thus been listed as of national second key protected plants, and been included in the IUCN Red List of Endangered Species as the endangered species. Here its natural geographical distribution, environmental properties for its suitable sites,and current status of its conservation were surveyed in south China; Its population structure and dynamics and their variation along altitude were studied in a large area of natural forests in Wuming County, Guangxi; Damage characteristics of a shoot borer in E. fordii plantations were investigated so as to follow the effects of this pest on conservation of this tree species; Germplasm resources were collected and phenotypic variation of fruite and seed, and their offspring seedlings were measured as well as genetic diversity and population genetic structure were estimated using SSR makers; Plantations were established using collected germplasm resources and their growth were investigated for purposes of ex situ conservation and breeding at two sites in Guangdong and Guangxi, respectively. Endangered status and mechanism and potential way for conservation of E. fordii were discussed at two aspects of population ecology and population genetics. The findings will provide evidences and basic data for making conservation and breeding strategy of this species. The main results were as follows:
     1. E. fordii was mainly distributed in Guangdong, Guangxi, Fujian and Taiwan Provinces in China, ranging from 24°N to south with altitude under 600m. The species grows mostly at the lower parts of mountains or hills, and human disturbances such as illegal logging, large-scale alteration into croplands and fast-growing plantations resulted in severe fragmentation of its natural forests and habitats.
     2. Distributing pattern of seed and individual are cluster in E. fordii natural populations,population were regenerated by seeds and sprouts,but extended population were depend on seed spread. population age structure and dynamic were done by static life tab., seedlings and sapling was mass,but which have higher mortality rate,Survival numbers and mortality rates were descended in young and mature stages,following age increased, survival rate, mortality density,hazard rate were decline,but cumulative mortality rate ascend. so E. fordii population survive-shape curve remain with Deevey survive-shapeⅢtype.
     3. As surveyed on a slope of Wuming County, Guangxi, frequency and density of E. fordii in plots increased and then slightly decreased with the increasement of altitude. Similar to this was the way that soil chemical properties varied along with altitude. Population dynamics analysis showed that populations developed differently at all sorts of altitudes, populations at middle and upgrade altitude belonged to growing populations (plotⅠ,Ⅱ,Ⅲ;V_(pi)>0,V′_(pi)>0), while populations at low altitude to declining populations (plotⅣ,Ⅴ; V_(pi)<0,V′_(pii)<0).
     4. Shoot borer attack is one of main factors that poorly influence natural regeneration and even population maintanance, and survival and early growth performances of plantations of this species. It occurs very often in natural forests as well as plantations of E. fordii. In the present studies, the shoot borer was identified as Cryptophlebia ombrodelta L. at the first time. As investigated in germplasm resources conservation pools and coppice plantations of this species, the pest could harm above 90% of buds and tender branchs, even petiole at tree top. The damaged trees were distributed in cluster pattern within plots. The occurrence of insect damage was preliminarily concluded, and relationship between insect attack and site condition need be further studied.
     5. Phenotypic variation of seeds and pods in 8 natural populations,and seed germination and seedling growth of progenies from 6 natural populations were analyzed,the results showed that there were abundant variations of phenotypic traits of seeds, pods and seedlings within and among populations, and significant differences among populations. Variation of pod traits among populations was higher than that of seeds, variation of seedling height among populations was higher than that of stem collar diameter, and seedling performance was remarkably correlated with seed size and seed mass. Pod morphology was in significantly negative correlation to longitude, seed mass positive to latitude, and seedling collar diameter and height negative to mean annual rainfall and altitude, respectively. These indicated that temperature was the main factor that restricted the natural distribution of E. fordii.
     6. Genetic diversity and structure of E. fordii were analyzed using SSR markers in nine populations. Five polymorphic loci were obtained with totally 34 alleles,among which seven were private alleles, and one or two common alleles per locus. The mean number of alleles per locus(A), the mean number of efficient alleles per locus(Ae), the expected and observed heterozygosities,Shannon index(I) were 3.9, 2.50, 0.5313, 0.5783 and 1.0088, respectively. F_(IS) was on average 0.0349, most loci were on Hardy-Weinberg equilibrium in the nine populations. F_(ST) was 0.1792, which was indicated that there existed 17.92% genetic variation among populations. Gene flow between populations (Nm) was 1.1452, and significant differentiation occurred among populations. And correlation between genetical and geographical distance was not significant by Mantel test (P>0.05).
     7. Two plantations were established for ex situ conservation and utilization of germplasm resources of E. fordii in Guangdong and Guangxi, respectively. Earlier evaluation were conducted according to their growth performance of height and collar diameter, and damage rate by shoot borer. There were more variation within than among populations,in accordance to results at DNA level. Through two-year observations, the gerplasm resource pool were preliminarily proved to be well established, and progenies from two populations grew better, which should be further proved. And from the findings of phenotypic and SSR variations it was indicated that more populations and as many families as possible in each population should be collected for ex situ conservation of germplasm resources of this species in the future.
引文
常庆瑞,雷梅,冯立孝,等.秦岭北坡土壤发生特性与系统分类[J].土壤学报, 2002, 39(2): 227-335
    陈泓,黄仕训.广西热带稀有濒危植物迁地保护地域探讨[J].广西植物, 2006, 26(6): 670-674
    陈红跃,刘钱,康敏明,等.东江水源林不同混交组合林地枯落物和土壤持水能力研究[J].生态环境, 2006, 15(4): 796-801
    陈礼芬,黄小凤,蔡楚雄,等.东莞生态公益林改造树种的早期生长季节节律及其与气候条件的关系[J].广东林业科技, 2007, 23(1): 28-33
    陈润政,傅家瑞.格木种子休眠和萌发生理的研究[J].林业科学, 1984, 20(1): 35-41
    陈维嘉,李伟雄,温建新.红锥等5种阔叶树种早期生长比较研究[J].广东林业科技, 2005, 21(3): 48-50
    陈维新,叶志云.格木的核型[J].广西植物, 1987, 7(3): 208-210
    程红梅.大蜀山短毛椴种群生命表与生存分析[J].浙江大学学报(农业与生命科学版), 2010, 36(3): 341-347
    陈远征,马祥庆.濒危植物生殖生态学研究进展[J].中国生态农业学报, 2007, 5: 186-189
    党坤良,张长录,陈海滨,等.秦岭南坡不同海拔土壤肥力的空间分异规律[J].林业科学, 2006, 42(1): 16-21
    窦全丽,何平,肖宜安,等.濒危植物缙云卫矛果实、种子形态分化研究[J].广西植物, 2005, 25: 219-225
    方夏峰,方柏洲.闽南格木木材物理力学性质的研究[J].福建林业科技, 2007, 34: 146-147
    龚洵,张启泰,潘跃芝.濒危植物的区系性质与迁地保护[J].云南植物研究, 2003, 25(3): 354-360
    顾万春,王棋,游应天,等著.森林遗传资源学概论[M].北京:中国科学技术出版社. 1997, 242-244
    贵州植物志编辑委员会.贵州植物志(第七卷)[M].成都:四川民族出版社. 1989, 342-343
    郭华仁.六十年前日人在台湾的一些林木种子基本资料[J].台湾种苗, 1995, (20): 6-10
    郭宽容.格木育苗试验.福建林业科技[J]. 1986, 2: 39-42
    国家林业局、农业部第4号令.国家重点保护野生植物名录(第一批). 1999
    何蓉,汪家社,施政,等.武夷山植被带土壤微生物量沿海拔梯度的变化[J].生态学报, 2009, 29(9): 5138-5144
    何衍彪,詹儒林.荔枝异形小卷蛾的发生及防治[J].广西农业科学, 2006, 27(3): 280-281
    贺善安,李新华,彭峰,等.南方红豆杉迁地保护小种群动态的研究[J].植物资源与环境学报, 2007, 16(1): 35-39
    胡宏祥,洪天求,黄明,等.巢湖马鞍山西北坡土壤侵蚀及其N、P时空变异研究[J].水土保持学报, 2007, 21(5): 30-33
    胡新生.种子与花粉的随机迁移对植物群体遗传结构分化的影响[J].遗传学报, 2000, 27(4): 351-360
    黄景波,黎建力.天鹿湖郊野公园天然格木林的植物群落学研究[J].林业建设, 2006, 1: 15-18
    黄仕训,李瑞堂,骆文华,等.石山稀有濒危植物在迁地保护后的性状变异[J].生物多样性, 2001, 9(4): 359-365
    黄忠良,郭贵仲,张祝平.渐危植物格木的濒危机制及其繁殖特性的研究[J].生态学报, 1997, 17(6): 671-676
    江香梅,肖复明,叶金山,等.闽楠种源苗期生长性状地理变异及遗传参数估算[J].江西农业大学学报, 2008, 30(4): 666-670
    江泽慧,彭镇华.世界主要树种木材科学特性[M].北京:科学出版社. 2001, 147-148
    康明,叶其刚,黄宏文.植物迁地保护中的遗传风险[J].遗传, 2005, 27(1): 160-166
    孔国辉,陆耀东,刘世忠,等.大气污染对38种木本植物的伤害特征[J].热带亚热带植物学报, 2003, 11(4): 319-328
    李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究[J].生物多样性, 2002, 10: 181-188
    李力,李昆,崔凯.云南铁杉地理种源表型变异研究[J].林业科学研究, 2008, 21: 31-36
    李玲,张光富,王锐,等.天目山自然保护区银杏天然种群生命表[J].生态学杂志, 2011, 30(1): 53-58
    李珊,蔡宇良,徐莉,等.云南金钱槭果实、种子形态分化研究[J].云南植物研究, 2003, 25: 589-595
    李婷,张世熔,黄建元,等.横断山北部土壤钾素的区域分布特征[J].土壤学报, 2006, 43(2): 337-341
    李桂君,刘洪燕,袁桂华,等.黄波罗种源、家系苗期生长变异分析[J].植物研究, 2005, 25(3): 332-335
    李宏伟.滇皂荚—退耕还林的好树种[J].林业调查规划, 2005, 30(1): 80-82
    李炎香,陈伯珊,谭天泳,等.石梓混交林试验初报[J].热带林业科技, 1986, 4: 23-29
    李志安,邹碧,曹裕松,等.南方典型丘陵退化荒坡地土壤养分特征分析[J].生态学报, 2003, 23(8): 1648-1656
    李忠超,王小兰.保护生物学中若干术语的理解和辨析[J].生物学通报, 2005a, 40(10): 13-14
    李忠超,王小兰.保护生物学中若干术语的理解和辨析(续)[J].生物学通报, 2005b, 40(11): 3-5
    梁建平.广西珍濒危树种[M].南宁:广西科学技术出版社. 2001, 98-99
    梁丽丽,陈红跃,黄丽铭,等.东江水源涵养林土壤养分变化分析[J].华南农业大学学报, 2009, 30(1): 113-115
    林榕庚.格木播种育苗试验[J].广西林业科技, 1992, 21(3): 102-105
    刘军,陈益泰,何贵平,等.毛红椿优树子代苗期性状遗传变异研究[J].江西农业大学学报, 2008, 30(1): 64-67
    刘菊秀,周国逸,褚国伟,等.鼎湖山季风常绿阔叶林土壤酸度对土壤养分的影响[J].土壤学报, 2003, 40(5): 763-767
    刘世忠,薛克娜,孔国辉,等.大气污染对35种园林植物生长的影响[J].热带亚热带植物学报[J], 2003, 11(4): 329-335
    柳新红,何小勇,袁德.翅荚木地理种源苗期遗传性状变异[J].林业科学研究, 2007, 20(6) : 814-819
    吕贻忠,张凤荣,孙丹峰.百花山山地土壤中有机质的垂直分布规律[J].土壤, 2005, 37(3): 277-283
    罗建勋,顾万春.云杉天然群体表型多样性研究[J].林业科学, 2005, 41: 66-73
    马履一,王希群,郭保香.水杉引种及迁地保护进展[J].广西植物, 2006, 26(3): 235-241
    莫江明.鼎湖山退化马尾松林、混交林和季风常绿阔叶林土壤全磷和有效磷的比较[J].广西植物, 2005, 25(2): 186-192
    欧阳学军,黄忠良,周国逸,等.鼎湖山南亚热带森林群落演替对土壤化学性质影响的累积效应研究[J].水土保持学报, 2003, 17(4): 51-54
    彭新华,李元沅,赵其国.我国中亚热带山地土壤有机质研究[J].山地学报, 2001, 19(6): 489-496
    邱良妙,占志雄,林仁魁,等.龙眼园害虫群落结构与动态研究[J].华东昆虫学报, 2005, 14(2): 141-145
    茹文明,张金屯,张峰,等.濒危植物南方红豆杉濒危原因分析[J].植物研究, 2006, 26: 264-268
    时明芝,宋会兴.植物遗传多样性研究方法概述[J].世界林业研究. 2005, 18(5): 27-31
    史军辉,黄忠良,蚁伟民,等.渐危植物格木群落动态及其保护策略[J].西北林学院学报, 2005, 20, 65-69
    苏建荣,张志钧,邓疆,等.云南红豆杉种群结构与生命表分析林业科学研究, 2005, 18(6): 651-656
    孙玉玲,李庆梅,杨敬元,等.秦岭冷杉球果与种子的形态变异[J].生态学报, 2005, 25: 176-181
    万开元,陈防,陈树森,等.珍稀濒危植物迁地保护策略中植物营养问题的探讨[J].生物多样性, 2006, 14(2): 172-180
    汪松,解焱.中国物种红色名录(第一卷)[M].北京:高等教育出版社. 2002, 344
    汪殿蓓,李建华,陈玉兰,等.青檀天然群落土壤成分及其对青檀生长的影响[J].生态环境学报, 2010, 19(10): 2318-2324
    王燕,刘苑秋,曾炳生,等.江西大岗山常绿阔叶林土壤养分特征研究[J].江西农业大学学报, 2010, 32(1): 96-100
    王伯荪,余世孝,彭少麟,等.植物群落学手册[M].广州:广东高等教育出版社. 1996.
    王崇云.植物的交配系统与濒危植物的保护繁育策略[J].生物多样性, 1998, 6(4): 298-303
    王国宏.黄土高原自然植被演替过程中的植物特征与土壤元素动态[J].植物学报, 2002, 44(8): 990-998
    王明庥主编.林木遗传育种学[M].北京:中国林业出版社. 2001
    王献溥,蒋高明.中国木兰科植物受威胁的状况及其保护措施[J].植物资源与环境学报, 2001, 10(4): 43-47
    王献溥,李俊清,李信贤.广西酸性土地区季节性雨林的分类研究[J].植物研究, 2001, 21(4): 481-503
    王献溥,王有生.海南粗榧濒危的原因和保护措施[J].广西植物, 1994, 14(4): 369-372
    王娅丽,李毅,陈晓阳.祁连山青海云杉天然林表型性状遗传多样性分析[J].林业科学, 2008, 22: 70-77
    王铮峰,彭少麟.植物保护遗传学[J].生态学报, 2003, 23(1): 158-172
    王中仁.植物等位酶分析[M].北京:科学出版社. 1998
    王作明,蚁伟民,余作岳,等.豆科植物回接根瘤菌的研究[J].植物生态学报, 1996, 20(4): 363-370
    魏识广,李林,刘海岗,等.格木种群动态模型分析[J].生态环境, 2008, 17(1): 285-290.
    温达志,陆耀东,旷远文,等. 39种木本植物对大气污染的生理生态反应与敏感性[J].热带亚热带植物学报, 2003, 11(4): 341-347
    吴志东,彭福泉,车玉萍,等.我国南亚热带几种人工林的生物物质循环特点及其对土壤的影响[J].土壤学报, 1990, 27(3): 250-260
    武高林,杜国祯,尚占环.种子大小及其命运对植被更新贡献研究进展[J].应用生态学报, 2006, 17 (10): 1969-1972
    向志强,刘玉成.海南粗榧(Cephalotaxus mannii)不同种群表型结构的数量分析[J].生态学杂志, 2002, 215: 18~21
    许再富,黄加元,胡华斌,等.我国近30年来植物迁地保护及其研究的综述[J].广西植物, 2008, 28(6): 764-774
    薛立,陈红跃,徐英宝,等.混交林地土壤物理性质与微生物数量及酶活性的研究[J]. 土壤通报, 2004, 35(2): 154-158
    薛立,李燕,吴敏,等.马占相思林分改造混交树种选择[J].西北林学院学报, 2005, 25(4):60-63
    杨淑贞,马原,蒋平,等.浙江西天目山土壤理化性质的海拔梯度格局[J].华东师范大学学报(自然科学版), 2009, 6: 101-107
    杨万勤,钟章成,陶建平,等.缙云山森林土壤速效N、P、K时空特征研究[J].生态学报, 2001, 21(8): 1285-1289
    姚小华,任华东,孙银祥,等.樟树种源、家系苗期性状变异分析[J].林业科学研究, 1999, 12(3): 283-290
    蚁伟民,曹洪麟,王伯荪,等.鼎湖山格木群落的组成种类和结构特征[J].热带亚热带植物学报, 1999, 7: 7-14
    蚁伟民,张祝平,丁明懋,等.鼎湖山格木群落的生物量和光能利用效率[J].生态学报, 2000, 20(2): 397-403
    易观路,罗建华,林国荣,等.不同处理对格木种子发芽的影响[J].福建林业科技, 2004, 31(3): 68-70
    张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展[J].生物多样性, 1999, 7: 31-37
    张黎明,邓万刚,魏志远,等.五指山不同海拔高度的土壤化学性质特征[J].生态环境, 2006, 15(6): 1313-1318
    张文辉,许晓波,周建云.濒危植物秦岭冷杉生殖生态学特征[J].生态学报, 2006, 26: 2417-2424
    郑万钧.中国树木志[M].北京:中国林业出版社. 1985, 1207-1209
    中国科学院植物研究所.中国珍稀濒危植物[M].上海:上海教育出版社. 1989, 188-190
    中国科学院中国植物志编辑委员会编.中国植物志(第39卷) [M].北京:科学出版社. 1988, 117-119
    中国树木志编委会.中国主要树种造林技术[M].北京:农业出版社. 1978, 651-655
    周默.中国明清家具的材质研究之四?格木[J].收藏家, 2008, 67-74
    周铁烽.中国热带主要经济树木栽培技术[M].北京:中国林业出版社. 2001, 187-188.
    周忠实,邓国荣.龙眼和荔枝卷叶蛾类种群动态及其群落结构[J].昆虫知识, 2006, 43(3): 311-315
    邹喻萍,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社. 2001, 125-127
    Aguilar R, Quesada M, Ashworth L, et al. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches[J]. Molecular Ecology, 2008, 17: 5177-5188
    Andre T, Lemes MR, Grogan J, et al. Post-logging loss of genetic diversity in a mahogany(Swietenia macrophylla King, Meliaceae)populationin Brazilian Amazonia[J]. Forest Ecology and Management, 2008, 255: 340-345
    Andrianoelina O, Favreau B, Ramamonjisoa L, et al. Small effect of fragmentation on the genetic diversity of Dalbergia monticola, an endangered tree species of the eastern forest of Madagascar, detected by chloroplast and nuclear microsatellites[J]. Annals of Botany, 2009, 104: 1231-1242
    Ashley MV & Dow BD. The use of microsatellite analysis in population biology:Background, methods and potential applications. In: Schierwater B , Streit B, Wagner GP & DeSalle R (ed), Molecular Ecology and Evolution: Approaches and Applications. Switzerland: Berkhaacer Verlaa Basel, 1994, 185-201.
    Bacon CD & Bailey CD. Taxonomy and Conservation: A Case Study from Chamaedorea alternans[J] . Annals of Botany, 2006, 98: 755-763.
    Baraloto C & Forget PM. Seed size and seedling morphology, and response to deep shade and damage in neotropical forest trees[J]. American Journal of Botany, 2007, 94(6): 901-911.
    Bury RB. Natural history, field ecology ,conservation and wildlife management :time to connect the dots[J]. Herpetological Conservation and Biology, 2006, 1(1): 56-61.
    Butaud JF, Rives F, Verhaegen D, et al. Phylogeography of eastern Polynesian sandalwood (Santalum insulare),an endangered tree species from the Pacific:a study based on chloroplast microsatellites[J]. Journal of Biogeography, 2005, 32: 1763-1774
    Calero C, Ibanez O, Mayol M, et al. Random amplified polymorphic DNA (RAPD) markers detect a single phenotype in Lysimachia minoricensis J J Rodr. (Primulaceae), a Wild Extinct Plant[J] . Mol Ecol , 1999, 8: 2133-2136.
    Carey C. How Physiological Methods and Concepts Can Be Useful in Conservation Biology[J]. Integrative and Comparative Biology, 2005, 45: 4-11.
    Chandran SMD, Mesta DK, Rao G.R, et al. Discovery of two critically endangered tree species and issues related to relic forests of the western ghats[J]. The Open Conservation Biology Journal, 2008, 2: 1-8.
    Cordeiro NJ & Howe HF. Forest fragmentation severs mutualism between seed dispersers and an endemic African tree[J]. PNAS, 2003, 100, (24): 14052-14056.
    Du XJ, Guo QF, Gao XM,et al. Seed rain,soil seed bank,seed loss and regeneration of Castanopsis fargesii(Fagaceae) in a subtropical evergreen broad-leaved forest. Forest Ecology and Management, 2007, 238: 212-219
    Dunn RR, Harris NC, Colwell RK, et al. The sixth mass coextinction: are mosten dangered species parasites and mutualists? [J]. Proc. R. Soc. B. , 2009, 276: 3037-3045.
    Farwig N, Braun C, B?hning-Gaese K. Human disturbance reduces genetic diversity of an endangered tropical tree, Prunus africana(Rosaceae) [J]. Conservation Genetics, 2008, 9: 317-326.
    Fischer J, Stott J, Zerger A. Reversing a tree regeneration crisis in an endangered ecoregion[J]. PNAS, 2009, 106: 10386-10391
    Follett PA, Deluz S, Lower RA, et al. Suitability of Lychee Fruits on and off the Tree for Cryptophlebia spp[J]. Proc. Hawaiian Entomol. Soc., 2003, 36: 89-94.
    Frankham R,&Briscoe DA, Introduction to Conservation Genetics[M]. Cambridge University Press, 2002, pp: 1-3.
    Frankham R. Relationship of genetic variation to population size in wildlife[J]. Conservation Biology, 1996, 10: 1500-1508
    Fuchs EJ, Lobo JA, Quesada M. Effects of forest fragmentation and ?owering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata[J]. Conservation Biology, 2003, 17: 149-157
    García D, Zamora R, Gómez JM, et al.Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe[J]. Journal of Ecology 2000, 88: 436-446.
    Hamrick JL and Godt MJW (1990). Allozyme diversity in plant species. In: Plant population genetics, breeding and genetic resources (Brown AHD, Clegg MT, Kahler AL and Weir BS, eds.). Sinauer Associates, Sunderland, 145-162
    Hamrick JL and Murawski DA. Levels of allozyme diversity in populations of uncommon Neotropical tree species[J]. J. Trop. Ecol.,1991, 7: 395-399.
    Honnay O, Jacquemyn H. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation[J]. Conservation Biology, 2007, 21: 823–831
    Ibrahim AM, Fagg CW, Harris SA. Seed and seedling variation amonst provenances in Faidherbia albida[J] . Forest Ecology and Management, 1997, 97: 197-205.
    IUCN. IUCN Red List of Threatened Species. Version 2009,1. . Juchum FS, Leal JB, Santos LM, et al. Evaluation of genetic diversity in a natural rosewood population (Dalbergia nigra Vell. Allemao ex Benth.) using RAPD markers[J]. Genetics and Molecular Research, 2007, 6 (3): 543-553.
    Keighery GJ. Phytogeography, biology and conservation of western australian epacridaceae[J]. Annals of Botany , 1996, 77: 347-355.
    Kramer AT,Ison J.L.,Ashley M.V.,Howe HF. The paradox of forest fragmentation genetics. Conservation Biology,2008,22:878–885
    Laurance WF. Forest-climate interactions in fragmented tropical landscapes[J]. Philosophical Transactions of the Royal Society Biological Science, 2004, 359: 345-352.
    Lhuitllier E, Butaud JF, & Bouvet JM. Extensive clonality and strong differentiation in the insular pacific tree santalum insulare: Implications for its conservation[J]. Annals of Botany, 2006, 98: 1061–1072.
    Li F, et al. RAPD and morphological diversity among four populations of the tropical tree species Paramichelia baillonii (Pierre) Hu in China[J].Forest Ecol. Manage,2007, 12: 1-10.
    Lien et al. The Use of RAPD and chloroplast DNA markers in the study of genetic relationship of Erythrophloeum fordii Oliv. from different origins. 2004,pp:464–468, in Proceedings of Conference on Basic Research Issues in Life Science. Science and Technique Publishing House, Hanoi.
    Li N, Yu F,Yu SS. Triterpenoids from Erythrophleum fordii[J]. Acta Botanica Sinica(植物学报), 2004, 46 (3): 371-374
    Lira CF,et al. Long-term population isolation in the endangered tropical tree species Caesalpinia echinata Lam. Revealed by Chloroplast Microsatellites[J]. Molecular Ecology, 2003, 12: 3219-3225.
    Lowe AJ, Bosier D, Ward M, et al. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees[J]. Heredity, 2005, 95: 255–273
    Lundgren MR & Sultin SE. Seedling expression of cross-generational plasticity depends on reproductive architecture[J]. American Journal of Botany, 2005, 92(2): 377–381
    Luoma-aho T, Hong LT, Ramanatha V, Sim HC (eds.). Forest genetic resources conservation and management. Proceedings of the Asia Pacific Forest Genetic Resources Programme (APFORGEN) inception workshop, Kepong, Kuala Lumpur, Malaysia, 15-18 July, 2003. IPGRI-APO, Serdang, Malaysia.
    Lutz E, Schneller JJ, Holderegger R. Undersanding population history for population genetics of Saxifrage aizoides (SAXIFRAGACEAE) in the lowlands and lower mountains north of ALPS[J]. American Journal of Botany, 2000, 87(4): 583-590.
    Mace GM. The role of taxonomy in species conservation[J]. Phil Trans R Soc B, 2004, 359: 711-719.
    Manel S,Schwartz MK,Luikart G,et al. Landscape genetics: combining landscape ecology and population genetics[J]. Trends in Ecology and Evolution, 2003,18(4):189-197.
    Moles AT, Westoby M. Seedling survival and seed size:a sythesis of the literature[J] . Journal of Ecolgy, 2004, 92: 372-383
    Muller F, Voccia M, Ba A, et al. Genetic diversity and gene ?ow in a Caribbean tree Pterocarpus officinalis Jacq,a study based on chloroplast and nuclear microsatellites[J]. Genetica , 2009, 135: 185–198
    Noel F, Machon N, Porcher E, No genetic diversity at molecular markers and strong phenotypic plasticity in populations of Ranunculus nodiflorus,an endangered plant species in france[J] .Annals of Botany, 2007, 99: 1203-1212.
    Nunney L. The influence of mating system and overlapping generations on effective population-size[J]. Evolution, 1993, 47: 1329-1341
    Oldfield S. Choices for tree conservation[J]. Oryx, 2008, 42(2): 159-160
    Olfelt JP, Furnier GR, Luby JJ. What data determine whether a plant taxon is distinct enough to merit legal protection? A case study of Sedum integrifolium (Crassulaceae) [J]. Amer J Bot , 2001, 88 : 401-410.
    Pigliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation[J]. The Journal of Experimental Biology , 2006, 209, 2362-2367.
    Qu J, Hu YC, Yu SS. New cassaine diterpenoid amides with cytotoxic activities from the bark of Erythrophleum fordii[J]. Planta Medica , 2006, 72 (5) : 442-449
    Qu J, Wang YH, Li JB. Rapid structural determination of new trace cassaine-type diterpenoid amides in fractions from Erythrophleum fordii by liquid chromatography-diode-array detection/electrospray ionization tandem mass spectrometry and liquid chromatography/nuclear magn[J]. Rapid Communications in Mass Spectrometry, 2007, 21 (13) :2109-2119
    Ribeiro RA et al. genetic variation in remnant population of Dalbergia nigra(Papilionoideae),an endangered tree from the BrazilIan Atlantic forest[J]. Annals of Botany, 2005, 95: 1171-1177.
    Rossetto M, Kooyman R, Sherwin W, et al. Dispersal limitations, rather than bottlenecks or habitat specificity, can restrict the distribution of rare and endemic rainforest trees[J]. American Journal of Botany, 2008, 95: 321– 329
    Sala OE, Chapin FS, Armesto JJ, et al. Global biodiversity scenarios for the year 2100[J]. Science, 2000, 287, 1770-1774.
    Templeton AR, Shaw K, Rouetman E, et al. The genetic consequences of habitat fragmentation[J]. Annals of the Missouri Botanical Garden, 1990, 77:13-27
    Thomas CD, Cameron A, Green RE, et al. Extinction risk from climate change[J]. Nature, 2004, 427: 145-148
    Tracy CR, Nussear KE, Esque TC, et al. The importance of physiological ecology in conservation biology[J]. Integrative and Comparative Biology, 2006, 46(6): 1191-1205.
    Trombulak,et al. Principle of conservation biology:recommended guidelines for conservation literacy from the education committee of the society for conservation biology[J]. Conservation Biology, 2004, 18(5): 1180-1190.
    Trung, TV. Ecosystems of tropical forests in Vietnam[M]. Science and Technics Publishing House. Ha Noi,1998.
    Tsao CC, Shen YC, Su CR. New diterpenoids and the bioactivity of Erythrophleum fordii[J]. Bioorganic and Medicinal Chemistry, 2008, 16 (22): 9867-9870.
    White GM, Boshier DH& Powell W. Increased pollen flow counteracts fragmentation in a tropical dry forest: An example from Swietenia humilis zuccarini[J]. PNAS, 2002, 99(4): 2038-2042.
    Willi Y, Van Buskirk J, Schmid B, et al. Genetic isolation of fragmented populations is exacerbated by drift and selection[J]. Journal of Evolutionary Biology, 2007, 20: 534-542
    Willis KJ, Araújo MB, Bennett KD,et al. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies[J]. Philosophical Transactions of the Royal Society Biological Science, 2007, 362: 175-187
    Wuethrich B. Combined Insults Spell Trouble for Rainforests[J]. Science, 2000, 289: 35-37
    Yeh FC, Yang RC, Boyle TBJ, et al. POPGENE (Version 1.31), the user-friendly shareware for population genetic analysis[M]. Molecular Biology and Biotechnoly Centre, University of Alberta, Edmonton, Alberta, Canada, 1997.
    Young A, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plant[J]. Trends in Ecology and Evlution, 1996, 11: 413-418.
    Yu F, Li N, Yu SS. A new diterpenoid glucopyranoside from Erythrophleum fordii[J]. Journal of Asian Natural Products Research, 2005, 7(1): 19-24
    Zeng J, Wang ZR, Zhou SL, et al. Allozyme variation and population structure of Betula alnoides from Guangxi, China[J]. Biochemical Genetics, 2003, 41: 67-75
    Zoller S, Lutzoni F& Scheidegger C. Genetic variation within and among populations of the threatened lichen(Lobaria pulmonaria) in Switzerland and implications for its conservation[J] .Molecular Ecology, 1999, 8: 2049-2059.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700