用户名: 密码: 验证码:
龙胆抗肝损伤活性成分的分离、纯化及药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对龙胆环烯醚萜苷类化学成分进行了研究。采用反相硅胶色谱和制备高效液相色谱技术从龙胆70%乙醇提取物中分离得到6个环烯醚萜苷类化合物,通过UFLC/Q-TOF-MS和NMR解析鉴定了他们的结构,分别为:龙胆苦苷、獐牙菜苦苷、獐牙菜苷、马钱子酸、8-表马钱子酸和6'-O-β-D-吡喃葡萄糖基龙胆苦苷,其中,8-表马钱子酸和6'-O-β-D-吡喃葡萄糖基龙胆苦苷为从该植物中首次分离鉴定。
     以正丁醇-水(1:1)为溶剂体系,采用高速逆流技术从龙胆粗提物中分离制备了纯度可达98%以上的龙胆苦苷,该方法分析成本低,环保低毒,而且简便快速。
     建立了同时测定龙胆中龙胆苦苷、獐牙菜苦苷、獐牙菜苷的高效液相色谱法,该方法准确、简便、具有良好的重现性和稳定性,适合于龙胆的质量控制研究。同时采用大孔吸附树脂技术优化了龙胆中环烯醚萜苷类成分的纯化工艺,为药效学研究和体内药动学研究奠定了物质基础。
     对龙胆有效部位抗肝损伤作用进行了体内外活性研究。首先建立了CCl4诱导化学性肝损伤的细胞模型,采用MTT法检测药物处理后各组细胞的存活率,体外研究结果表明,龙胆有效部位浓度低于20mg/L时,能增强细胞存活率;通过检测细胞培养上清液中ALT和AST的活力,细胞内SOD和MDA含量的变化,发现龙胆有效部位具有抗氧化和清除氧自由基的作用。通过建立CCl4诱导的小鼠急性肝损伤模型,观察血清生化指标和肝脏组织病理学变化,结果表明,龙胆有效部位对CCl4引起的急性肝损伤具有明显的保护作用。
     对龙胆抗肝损伤活性成分在大鼠体内的药代动力学进行了研究。首次建立了同时测定大鼠血浆中龙胆苦苷和獐牙菜苦苷的超快速液相色谱-串联质谱分析方法,并将其成功应用于大鼠灌胃给予龙胆提取物后龙胆苦苷和獐牙菜苦苷的药动学行为研究。结果表明,龙胆苦苷和獐牙菜苦苷在雄、雌大鼠体内的药动学特征存在显著性差异(p<0.05)。
     采用已建立的高效液相色谱法研究了龙胆抗肝损伤有效部位在大鼠体内药动学和组织分布特征。血药浓度-时间曲线符合二室模型,龙胆苦苷在大鼠体内主要部位的分布顺序为:肝脏>肾脏>肺脏>心脏>脾脏。
Gentian, the dry roots and rhizomes of a family of herbs such as Gentianamanshurica Kitag., Geniana scabra Bge., Geniiarur triflora Pall. and Gentianarigescens Franch. is widely used in traditional medicine for liver protection. Recently,more effects of Gentian including diuretic, anti-inflammatory, antioxidant andantihypertensive have been scientifically proven. Although it is well established thathepatoprotection is the major clinical activity of Gentian, the toxic ingradients intraditional medicine can cause negative effects. Therefore, further exploring thepharmacological properties and in vivo pharmacokinetics of the active ingredientsfrom gentian are important for the determination of its efficacy and safety as ananti-hepatotoxic drug.
     1. Separation and identification of iridoid glycosides in Radix Gentianae
     Iridoide glycosides that commonly found in medicinal plants are responsible formany pharmaceutical effects. With reversed phase ODS column chromatography andpreparative high performance liquid chromatography separation techniques, a total ofsix iridoid glycosides were separated from70%ethanol-Radix Gentianae extract.Their structures that identified through NMR and MS analysis were as follows:loganic acid (1), gentiopicroside (2),8-epiloganic acid (3), swertianlarin (4),6'-O-β-D-glucopyranosylgentiopicroside (5), and sweroside (6).8-epiloganic acid and6'-O-β-D-glucopyranosylgentiopicroside were separated from Gentianamanshurica Kitag for the first time.
     2. Isolation of gentiopicroside from Gentian with HSCCC
     Separation and purification of gentiopicroside from Gentian extract wassuccessfully preformed by high-speed counter-current chromatography (HSCCC) withtwo-phase solvent system composed of n-butyl alcohol-water (1:1, v/v). The upper phase was used as stationary phase and lower phase was the mobile phase. At850rpmand a flow rate of2mL/min, the retention time of gentiopicroside was120.0-133.6min. The purity of gentiopicroside obtained by HSCCC was determined as98.48%byHPLC analysis. HSCCC method is simple, efficient, low toxicity, low costs andprovides an effective separation of the product, therefore it has been considered as anoptimum method for gentiopicroside purification.
     3. Quantitation and purification of active parts of Radix Gentianae
     Simultaneous determination of gentiopicroside, swertiamarin and sweroside inRadix Gentianae was achieved by reversed phase high performance liquidchromatography. This method is simple, accurate with high reproducibility andstability, which can be applied as a quality control strategy for isolating the activeingredients from Radix Gentianae. The resins with different pore size that used toseparate and purify iridoid glycoside from Radix Gentianae were screened by staticand dynamic adsorption, desorption assays. HPD300macro porous resin with thehighest adsorption and desorption efficiency was selected for purifiyingGentiopicroside, swertiamarin and sweroside from Radix Gentianae. This optimizedprocess was simple, stable and feasible, which supports further pharmacology and invivo pharmacokinetic investigations.
     4. Anti-hepatotoxicity effect of the active parts in Radix Gentianae
     In vitro activities: A CCl4-induced injury model in hepatic cells was established.MTT assay was employed to evaluate the anti-hepatotoxicity effect of the active partsin Radix Gentianae. Cells treated with the active ingredient showed an increasedsurvival rate compared to the control cells, indicting a hepatoprotective effect onCCl4-induced injury hepatic cells. However, a toxic effect that causing cell death wasshown with treatment concentration higher than20mg/L. In addition, activities ofALT and AST in the growth medium as well as the levels of SOD and MDA in theactive ingredient treated cells were determined, suggesting the antioxidant and radicaldeoxygenization activities of the active parts in Radix Gentianae.
     In vivo activities: A CCl4-induced acute liver injury model in mice wasdeveloped. By monitoring the levels of serum biochemical indicators of liver function and liver histopathological changes, the preventive and protective effect of the activeparts in Radix Gentianae was shown on liver injury mice model.
     5. Pharmacokinetics of active ingredients from Radix Gentianae in liver injuryrat model
     A rapid and sensitive method based on ultra-fast liquid chromatography-tandemmass spectrometry (UFLC-MS/MS) has been developed for the simultaneousdetermination of gentiopicroside and swertiamarin in rat plasma. The method wasfully validated and applied to a pharmacokinetic study involving oral administrationof a Radix Gentianae extract to groups of male and female rats. Theconcentration-time curves of gentiopicroside and swertiamarin were both described bytwo compartment model. The Tmaxof gentiopicroside and swertiamarin was between2h to3h and the t1/2was between0.8h to2h. Compared with male rats, the Cmax,AUC0-t, AUC0-∞and t1/2of gentiopicroside and swertiamarin in female rats weresignificantly improved(p<0.05). However, no significant change of Tmax(p﹥0.05)was obtained, indicating the pharmacokinetic properties of gentiopicroside andswertiamarin are remarkably different between male and female rats.
     6. Pharmacokinetics and distribution of active parts from Radix Gentianae in ratmodel
     Since pharmacokinetics of gentiopicroside was highly influenced by otheringredients of Radix Gentianae, a high performance liquid chromatography methodwas developed to investigate the pharmacokinetic properties of gentiopicroside fromRadix Gentianae extract to avoid interference.
     This well established high performance liquid chromatography method was alsoused to study the pharmacokinetic and tissue distribution of gentiopicroside after oraladministration of the active parts of Radix Gentianae in rats. The concentration-timecurve of gentiopicroside was described by two compartment model. The sequence ofgentiopicroside distribution in rats was as follows: liver>kidney>lung>heart>spleen.
引文
[1]国家药典委员会.中华人民共和国药典:2010年版一部[S].北京:中国医药科技出版社,2010:89.
    [2]张林玉,窦英,莫丽艳,等.龙胆质量研究[J].黑龙江医药,1995,3:43-45.
    [3]郑礼胜,刘向前.环烯醚萜类研究进展[J].天然产物研究与开发,2009,21:702-711.
    [4]刘净,梁敬钰,谢韬.环烯醚萜类化合物近年研究进展[J].海峡药学,2004,16(1):14-19.
    [5] Liu YH. Five new iridoidoside in G.urnula[J]. Acta Bot.yuannan,1994,16(4):417-423.
    [6] Ma WG.. Purther acylated seccirideid glacconidea from Gentiana rhodantha [J].Phytochemistry,1996:43.
    [7]郁关平.等翅萼龙胆种的两个寡聚裂环环烯醚萜苷[J].云南植物研究,1966,(1):110-114.
    [8] R.X.Tan, J.-L. Wolfender. Secoiridoids and antifungal aromatic acids fromGentiana Algida [J]. Phytochemistry,1996,41(1):111-116.
    [9] Tan RX, Hu J, Dong LD, et al. Two new secoiridoid glycosides from Gentianaalgida[J]. Planta Med,1997,63(6):567-569.
    [10] Kakuda R, lijima T, et al. Secoiridoid glycosides from Gentiana scabra[J]. J NatProd,2001,64(12):1574-1575.
    [11]Kikuchi M, Kakuda R. Secoiridoid glycosides from Gentiana scabra [J]. J NatProd,2005,68(5):751-753.
    [12]Tan RX, Kong LD, Wei HX. Secoiridoid glycosides and an antifungal anthranilatederivative from Gentiana tibetica[J]. phytochemistry,1998,47(7):1223-1226.
    [13] Kim JA, Son NS, et al. Two new secoiridoid glycosides from the rhizomes ofGentiana scabra Bunge[J]. Arch Pharm Res,2009,32(6):863-867.
    [14]Jiang RW, Wong KL, et al. Isolation of iridoid and secoiridoid glycosides andcomparative study on Radix gentianae and related adulterants by HPLCanalysis[J]. Phytochemistry,2005,66(22):2674-2680.
    [15]Takaaki Hayashi, Takashi Yamagishi. Two xanthone glycosides from Gentianalutea[J]. Phytochemistry,1988,27(11):3696-3699.
    [16]陈云,王国凯,武璨,等.红花龙胆化学成分研究[J].中国中药杂志,2013,38(3):362-365.
    [17]Min Xu, Chong Ren Yang, Yang Jun Zhang. Minor antifungal aromatic glycosidesfrom the roots of Gentiana rigescens (Gentianaceae)[J]. Chinese Chemical Letters,2009,20(10):1215-1217.
    [18]孙南君,夏春芳.坚龙胆中化学成分的研究[J].中药通报,1984,9(1):33-34.
    [19]王世盛,张敬莹,赵伟杰,等.龙胆草中6-去甲氧基-7-甲基茵陈色原酮分离和波谱表征[J].大连理工大学学报,2009,49(4):482-487.
    [20]李艳秋,赵德化,潘伯荣,等.龙胆苦甙抗鼠肝损伤的作用[J].第四军医大学学报,2001,22(18):1645-1648.
    [21]崔兴日,郑光浩,南极星.关龙胆提取物的保护肝脏作用实验研究[J].延边大学医学学报,2004,27(3):170-172.
    [22]江尉新,薛宝玉.龙胆对小鼠急性肝损伤保护作用的研究[J].中国中药杂志,2005,30(14):1105-1107.
    [23]郭海风.关龙胆抗肿瘤活性成分的研究[D].吉林:延边大学,2010.
    [24]程渝.龙胆草水提物对细菌性、霉菌性阴道炎模型大鼠的保护作用研[J].中国药房,2010,23(31):2895-2896.
    [25]Bilal A, Wani, D.Ramamoorthy, et al. Induction of apoptosis in humanpancreatic MiaPaCa-2cells through the loss of mitochondrial membranepotential() by Gentiana kurroo root extract and LC-ESI-MS analysis ofits principal constituents[J]. Phytomedicine,2013,20:723-733.
    [26]王宏金.龙胆中植物多糖保肝、降血脂及免疫调节作用的研究[D].黑龙江:哈尔滨商业大学,2012.
    [27]吴素焕,高伟敏.中药抗肝损伤研究进展[J].军医进修学院学报,2009,30(2):247-249.
    [28]朱鹤云,张丽,冯波.超声法与闪式提取法提取龙胆中龙胆苦苷的工艺对比研究[J].中国现代应用药学,2011,28(5):395-398.
    [29]许有威,齐艳,韩旭,等.高速逆流色谱结合大孔树脂从龙胆中快速分离高纯度龙胆苦苷[J].中国中药杂志,32(24):2595-2597.
    [30]王艳艳,王英平,刘继永,等. HSCCC法分离制备龙胆有效成分龙胆苦苷[J].中药材,2007,30(7):789-790.
    [31]王良贵.微波辅助萃取-大孔树脂分离纯化龙胆苦苷的研究[J].时珍国医国药,2007,18(11):2723-2724.
    [32]才谦,刘涛,付玉芹,等.大孔吸附树脂法富集龙胆中裂环烯醚萜苷类成分的实验研究[J].中成药,2003,25(4):271-272
    [33]李文龙,陈军辉,吴凤琪,等.大孔吸附树脂分离纯化龙胆药材中龙胆苦苷和马钱子苷酸的研究[J].中成药,2008,30(4):522-525.
    [34]万海同,郭瑛.中药药物代谢动力学[M].北京:化学工业出版社,2009:6-8.
    [35]郝海平,郑超湳,王广基.多组分、多靶点中药整体药代动力学研究的思考与探索[J].药学学报,2009,44(3):270-275.
    [36]郜尽.龙胆苦苷的制备及药代动力学研究[D].陕西:西北大学,2002.
    [37]冯怡,曾星,陈延,等.龙胆苦苷在健康受试者尿中的药代动力学[J].中国临床药理学杂志,2009,25(1):22-25.
    [38]H-L. Li, J-C.He, M.Bai, et al. Determination of the plasma pharmacokinetic andtissue distributions of swertiamarin in rats by LC-MS/MS[J].Arzeimittelforschung,2012,62:138-144.
    [39]H.L. Li, X.J. Peng, J.C. He, et al. Development and validation of aLC-ESI–MS/MS method for the determination of swertiamarin in rat plasma andits application in pharmacokinetics[J]. J. Chromatogr. B.2011,879:1653-1658.
    [40]Chang-hong Wang, Xue-mei Cheng, et al. Pharmacokinetics andbioavailability of gentiopicroside from decoctionsof Gentianae and LongdanXiegan Tang after oral administration inrats-Comparison with gentiopicrosidealone[J]. J Pharm Biomed Anal,2007,44:1113-1117.
    [41]姜少灏,康丽娟,蒋晔,等.龙胆及其复方中龙胆苦苷在大鼠体内的药动学研究[J].中国药学杂志,2005,40(3):212-215.
    [42]冯波,朱鹤云,关皎,等.龙胆苦苷及龙胆提取物在大鼠体内药动学对比研究[J].中药材,2013,36(5):783-786.
    [43]冯英菊,杨甫昭,郭五保,等.龙胆苦苷在Beagle犬体内药代动力学研究[J].中药新药与临床药理,2004,15(5):333-335.
    [44]冯英菊,杨甫昭,孙文基,等.龙胆苦苷在大鼠体内的组织分布研究[J].现代中医药,2004,(5):1-2.
    [45]郑礼胜,刘向前.环烯醚萜类研究进展[J].天然产物研究与开发,2009,21:702-711,725.
    [46]刘净,梁敬钮.环烯醚菇类化合物近年研究进展[J].海峡药学,2004,16(l):l4.
    [47]杨书彬,王承.龙胆化学成分和药理作用研究进展[J].中医药学报,2005,33(6):54-56.
    [48]王艳艳,王英平,王晓杰,等.龙胆化学成分及药理作用研究进展[J].特产研究,2006,3:68-71.
    [49]Wang JR, Wang K L, CHan YM, et al. Isolation of iridoid and secoiridoidglycosides and comparative study on Radix gentianae and related adulterants byHPLC analysis [J]. Phytochemistry,2005,66:2674-2680.
    [50]刘艳红,李兴从,刘玉清,等.秦艽中的环烯醚萜苷成分[J].云南植物研究,1994,16(1):85-89.
    [51]刘明韬.龙胆的化学成分研究[D].辽宁:沈阳药科大学,2004.
    [52]冯卫生,张艳丽,郑晓珂,等.绣球花的化学成分研究[J].中国药学杂志,2011,46(8):576-579.
    [53]曾光尧,谭桂山,徐康平,等.川东嶂牙菜水溶性化学成分[J].药学学报,2004,39(5):351-353.
    [54]蒋富强,张雪梅,马云保,等.毛萼獐牙菜化学成分的研究[J].中国中药杂志,2011,36(16):2215-2218.
    [55]陈军,马双成.忍冬藤中马钱素和当药苷提取分离及结构鉴定[J].中国现代应用药学杂志,2006,23(3):199-120.
    [56]郑杰,武强,黎学明,等.高效逆流色谱技术在植物活性成分分离中的应用[J].食品工业科技,2009,30(3):351-354.
    [57]Shepo Shi, Dan Jiang, Mingbo Zhao, et al. Preparative isolation and purificationof triterpene saponins from Clematismandshurica by high speed counter currentchromatography coupled with evaporative light scattering detection [J]. JChromatography B,2007,852:679~683.
    [58]Qizhen Du, Gerold Jerzc, Reiner Waibel, et al. Isolation of dam-marane saponinsfrom Panax notoginseng by high speed counter current chromatography1[J].Journal of Chromatography A,2003,1008(2):173~1801.
    [59]张敏.高速逆流色谱分离纯化人参、龙胆中有效成分[D].吉林:长春师范学院,2011.
    [60]朱鹤云,郭晓存,冯波. RP-HPLC法同时测定龙胆中3种活性成分的含量[J].药物分析杂志,2011,31(12):2298-2301.
    [61]冯波,朱鹤云,关皎,等.龙胆中环烯醚萜苷的大孔吸附树脂纯化工艺[J].中国实验方剂学杂志,2012,18(7):20-23.
    [62]江蔚新,闫丽丽.双波长薄层扫描法测定东北龙胆中龙胆苦苷的含量[J].黑龙江中医药,2008,21(1):5.
    [63]魏岚,陈晓辉,王晓辉,等.不同产地龙胆中龙胆苦苷的含量测定[J].沈阳药科大学学报,2004,21(2):114.
    [64]肖琳,贾娜,何姣等.青叶胆药材及饮片中獐牙菜苦苷和龙胆苦苷的含量测定[J].药物分析杂志,2009,29(5):876
    [65]董婷霞,詹华强,王峥涛,等.龙胆药材中龙胆苦苷的含量测定[J].上海中医药杂志,2005,39(11):53.
    [66]王金鹏,王砚,任华忠. HPLC测定复方茵陈糖浆中龙胆苦苷[J].中国实验方剂学杂志,2008,5(7):28.
    [67]曹晓燕,王喆之.云南粗茎秦艽不同采收期4种环烯醚萜苷类成分的测定[J].药物分析杂志,2010,30(4):623.
    [68]王辉,何伟,任军,等.大孔吸附树脂纯化人参皂苷类成分的工艺研究[J].中国药房,2009,20(24):1865.
    [69]李文霞,颜彦,叶晓川,等.大孔吸附树脂分离纯化菝葜总黄酮[J].中国中药杂志,2007,32(13):1292.
    [70]周剑,丁玉峰.大孔吸附树脂分离中草药有效成分的应用[J].中国中药杂志,2006,26(1):69.
    [71]沈涛,金航,杨涛,等.不同产地野生滇龙胆中主要裂环烯醚萜类成分的含量比较[J].中国实验方剂学杂志,2011,17(13):70.
    [72]徐泽红,才谦.秦艽中裂环环烯醚萜苷类成分的纯化工艺研究[J].中国医药导报,2008,5(7):28.
    [73]Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury[J].Gastroenterology,2008,134(6):1641-54.
    [74]Zhang C, Peng W, Jiang X, et al. Transgene expression of human PON1Q inmice protected the liver against CCl4-induced injury[J]. J Gene Med,2008,10(1):94-100.
    [75]Iniguez M, Dotor J, Feijoo E, et al. Novel pharmacologic strategies to protect theliver from ischemia-reperfusion injury[J]. Recent Pat Cardiovasc Drug Discov,2008,3(1):9-18.
    [76]刘占文,陈长勋,金若敏,等.龙胆苦苷的保肝作用研究[J].中草药,2002,33(1):47-50.
    [77]徐关丽,陈露露,蔡江辉,等.龙胆苦苷对脓毒症小鼠急性肝损伤的保护作用[J].激光杂志,2013,34(1):96-97.
    [78]吴海建,龚秀,杨倚天,等.四氯化碳药物性肝损伤体外模型的改进[J].中国中药杂志,2012,37(23):3633-3636.
    [79]刘鹏.淫羊藿素减轻急性肝损伤及其分子机制的研究[M].上海:第二军医大学,博士学位论文,2009,5;1-95.
    [80]宋雨鸿.丹参多糖抗小鼠免疫性肝损伤及其免疫调节机制的研究[M].南方医科大学,博士学位论文,2010,4;1-85.
    [81]马瑛.藏茵陈的化学成分和抗肝细胞损伤实脸研究[M].中央民族大学,硕士学位论文,2011,3;1-78.
    [82]Kamijo-Ikemori A, Sugaya T, Kimura K.Urinary fatty acid binding protein inrenal disease[J].Clin Chim Acta.2006,374(1-2):1-7.
    [83]Pelsers MM, Morovat A, Alexander GJ, et al. Liver fatty acid-binding protein as asensitive serum marker of acute hepatocellular damage in liver transplantrecipients[J]. Clin Chem,2002,48:2055-2057.
    [84]Monbaliu D, de Vries B, Crabbe T, et al. Liver fatty acid-binding protein: an earlyand sensitive plasma marker of hepatocellular damage and a reliable predictor ofgraft viability after liver transplantation from non-heart-beating donors[J].Transplant Proc,2005,37:413-416.
    [85]许金鹏,张慧慧.原卟啉钠对四氯化碳致小鼠急性肝损伤的保护作用及其机制[J].中国实验方剂学杂志,2011,5(17):168-172.
    [86]王欣,熊哲.黄芩素对急性肝损伤模型小鼠的保护作用及其机制[J].医药导报,2012,8(31):1000-1002.
    [87]Melin A M, Perromat A, Deleris G. Pharmacologic application of Fouriertransform IR spectroscopy:in vivo toxicity of carbon tetrachloride on rat liver[J].Biopolymers,2005,7(30):160.
    [88]Pramy othin P, Janthasoot W, Pongnimitprasert N, et al. Hepatotoxin effect ofusnic acid from Usnea siamensis Wainio in rats, isolated rat hepatocytes andisolated rat liver mitochondria[J]. J Ethnopharmacol,2004,90(2/3):381.
    [89]Michiels C, Raes M, Toussaint O, et al.Importance of Seglutathioneperoxidade,Catalase,and Cu/Zn-SOD for cell survival against oxidative stress[J].Free Radic Biol Med,1994,7(N3):235.
    [90]Mottaran E, Stewart S F, Rolla R, et al. Lipid peroxidation contributes to immunereaction associated with alcoholic liver disease[J]. Free Radic Biol Med,2002,32(1):38.
    [91]钟大放.以加权最小二乘法建立分析标准曲线的若干问题[J].药物分析杂志,1996,16(5):343-346.
    [92]Food and Drug Administration Guidance for Industry: Bioanalytical MethodValidation,2001,http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf.
    [93]V.P. Shah, K.K. Midha, A. Yacobi. Bioanalytical method validation-a revisit witha decade of progress[J]. Pharm Res,2000,17:1551-1557.
    [94]Asaoka Y, Sakai H, Sasaki J. Changes in the Gene Expression and EnzymeActivity of Hepatic Cytochrome P450in Juvenile Sprague-Dawley Rats[J].Toxcol,2010,72:471-479.
    [95]Iwano S, Higashi E, Miyoshi T. Focused DNA microarray analysis forsex-dependent gene expression of drug metabolizing enzymes, transporters andnuclear receptors in rat livers and kidneys[J]. J Toxcol Sci,2012,37:863-869.
    [96]Wang C.H, Cheng X.M, Annie Bligh S.W. Pharmacokinetic behavior ofgentiopicroside from decoction of Radix Gentianae, Gentiana Macrophyllaafter oral administration in rats: a pharmacokinetic comaprison withgentiopicroside after oral and intravenous administration alone[J]. Arch PharmRes,2007,30:1149-1154.
    [97]Wang C.H, Cheng X.M, Annie Bligh S.W. Pharmacokinetics and bioavailabilityof gentiopicroside from decoctions of Gentianae and Longdan Xiegan Tangafter oral administration in rats-Comparison with gentiopicroside alone[J]. JPharm Biomed Anal,2007,44:1113-1117.
    [98]Wan-Ling C.L., Chien C.F., Lin L.C. Isolation of gentiopicroside from GentianaeRadix and its pharmacokinetics on liver ischemia/reperfusion rats[J]. JEthnopharmacol.2012,141:668-673.
    [99]Li H.L., Peng X.J., He J.C. Development and validation of a LC-ESI–MS/MSmethod for the determination of swertiamarin in rat plasma and its applicationinpharmacokinetics[J]. J Chromatogr B,2011,879:1653-1658.
    [100] Feng Y, Zeng X, Chen Y. Urine pharmacokinetics of gentiopicroside inhealthy volunteers[J]. Chin J Clin Pharmacol,2009,25:22-25.
    [101]钟杰,王海南,马越鸣.中药药物代谢动力学在中药新药研究中的作用[J].中国临床药理学与治疗学,2010,15(3):241-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700