用户名: 密码: 验证码:
β-FeSi2和ZnO及其复合陶瓷材料的制备与热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用基于密度泛函理论的第一性原理的赝势平面波方法,对掺杂引起的ZnO、β-FeSi_2系的电子结构变化进行了详细的计算研究,在理论上预测了掺杂引起的热电性能变化。采用化学共沉淀的方法制备了Al及Al和Sn共掺杂的ZnO系块体材料,研究了掺杂含量及热处理温度对组织结构及热电性的影响。由于纳米材料的独特性能,也合成了几种形貌的ZnO纳米材料,并对其形成机理作了详细阐述。另外,通过高能球磨和热处理两步获得了β-FeSi_2粉体,对球磨时间及热处理温度的影响作了详细探讨,深入分析了机械合金化及相变的微观机制。最后,通过表面活性剂处理及溶胶凝胶的办法,获得了均匀致密的ZnO纳米粒子包覆的β-FeSi_2样品,对其热电性能与掺杂含量关系作了详细探究。
     计算发现Al和Sn掺杂会使ZnO电子结构发生显著变化。随掺杂含量增加,费米能级由价带顶移向导带,态密度增大。Co原子掺杂会使β-FeSi_2由间接带隙变为直接带隙,带隙变窄。因而,从理论上预测了向β-FeSi_2-ZnO系材料中引入Al、Sn和Co掺杂原子会使材料的电学性质得到提高。
     ZnO系材料的热电性能随着Al掺杂含量增加而逐渐提高。对于Al/Sn共掺的ZnO样品,Al掺杂量1at.%不变,Sn分别掺杂2at.%和3at.%时,Sn掺杂含量越高样品越难致密,对于纯Sn掺杂的样品会形成稳定的多孔结构。Sn掺杂含量增加,样品热导率会大幅度降低。
     通过控制化学反应条件,获得了各种奇特形貌的纳米ZnO热电材料。首先,乙酸锌与氨水反应制得ZnO前躯体,当反应物浓度较低时,得到的是带状前躯体,增加反应物浓度就可以获得八面体状前躯体,将各种形貌前躯体热分解就可以制得对应形貌的ZnO超结构。若带状前躯体经过不同条件湿化处理,就可以获得粗细不同的棒状ZnO。另外,当在化学反应过程中掺入Al离子时,就可以得到ZnO纳米片。
     以Fe, Co, Si粉为原料通过高能球磨可以获得α-Fe_2Si_5和ε-FeSi的混合粉体,随着球磨时间增加,粒子逐渐细化,甚至经过30h球磨的粉体粒径可降到500nm。将球磨获得的α-Fe_2Si_5和ε-FeSi混合粉体在800oC热处理5h后即可生成β-FeSi_2,粉体经过热压或SPS烧结可获得致密的块体材料。当Si过量时,经过热处理在β-FeSi_2粉体和SPS烧结的块体中会原位生长Si纳米线,使得样品热导率降到4W·m~(-1)K~(-1)左右。
     对于ZnO包覆的β-FeSi_2样品,采取的是先将β-FeSi_2粒子进行带电处理,然后在sol-gel的过程生成ZnO纳米粒子的过程将经过处理的β-FeSi_2粒子引入,以达到很好的包覆效果。ZnO包覆的β-FeSi_2热电性能得到了很大提高,并且由于ZnO的引入使得β-FeSi_2基材料的最佳工作温区向高温方向扩展了100oC,对于热电器件来说是具有重要意义的。
In this thesis, varieties of electronic structures ofβ-FeSi_2-ZnO due to doping in detail by using firsy principles pseudo-potential methods based on the density function theory. The thermoelectronic properties are estimated on theory. Al-doped and Al/Sn co-doped ZnO bulks are prepared by chemical co-deposition method. The effects of the dopant on the structure and properties of theβ-FeSi_2-ZnO sample are investigated. Severial ZnO nanomaterials are also synthesized, and the formation mechanisms are analysized.β-FeSi_2 powders can be obtained by high-energy ball-milling and heat-treating. The effects of milling time and treated temperature on the microstructures ofβ-FeSi_2 powders are discussed, and the phase-transition mechanism of Fe-Si alloys is discussed. Well-proportioned ZnO nanoparticles-coatedβ-FeSi_2 sample are obtained by sol-gel method.
     The caculated results show that the electronic structures of Al and Al/Sn co-doped ZnO samples change obviously. With increase of the dopants concentration, Fermi energy levels move from top of the valence band into conduction band. The gap nature inβ-FeSi_2 turn from indirect to direct when Co atom is induced in the structure, and the band gap is narrower compared with undopedβ-FeSi_2.Thus, it is estimated that the doping can improve the thermolelectronic properties ofβ-FeSi_2-ZnO sample.
     With the concentration of Al increasing, the thermoelectronic properties will improve. The pores will increase with Sn concentration, and steady porous structures can be formed when Sn single doping. Thermal conductivity deduced distinctly with the increase of Sn concentration.
     Octahedral and belt-like ZnO precursors can by synthesized by controlling reaction conditions. Octahedral and belt-like ZnO superstructures can be obtained by decomposition the corresponding precursors. ZnO rods and flowers can be obtained by exposed the belt-like ZnO precursor into humid atmosphere for a period of time. On the other hands, Al-doped ZnO nanoplates can be obtained by appropriate concentration.
     α-Fe_2Si_5 andε-FeSi powders are first obtained by high-energy ball milling, which starting from elemental powders. The particle sizes decrease with the increase of milling time from 20 h to 30 h, and the particle sizes can reach 500 nm after 30h.α-Fe_2Si_5 andε-FeSi phases can completely transform intoβ-FeSi_2 during annealing for 5h at 800 oC. When Si is extensive, Si nanowires can be observed in bothβ-FeSi_2 powders and bulks sinterred by SPS. Due to the existence of Si nanowires, the thermal conductivity is reduced to about 4W·m~(-1)K~(-1).
     In order to obtain well-proportioned ZnO nanoparticles-coatedβ-FeSi_2 sample,β-FeSi_2 particles were treated by surfactant. The diffusion of Si atoms will be held back due to the coating of ZnO nanoparticles, thus Si nanowires will appear even though Si is not excessive. The thermoelectronic performances of the ZnO nanoparticles-dopedβ-FeSi_2 materials were improved distinctly. Especially, For 8 wt.% ZnO-doped samples, the total thermal conductivity decreases with increasing temperature, even though above 600oC, due to the increament of phone scattering on the grain boundaries.
引文
1 T. Kanno, S. Yotsuhashi, A. Sakai, K. Takahashi, H. Adachi. Enhancement of Transverse Thermoelectric Power Factor in Tilted Bi/Cu Multilayer. Appl. Phys. Lett. 2009, 94: 061917
    2 H. Li, X. F. Tang, X. L. Su, Q. J. Zhang. Preparation and Thermoelectric Properties of High-Performance Sb Additional Yb0.2Co4Sb12+y Bulk Materials with Nanostructure. Appl. Phys. Lett. 2008, 92: 202114
    3 J. C. Li, C. L. Wang, M. X. Wang, H. Peng, R. Z. Zhang, M. L. Zhao, J. Liu, J. L. Zhang, L. M. Mei. A Study of the Vibrational and Thermoelectric Properties of Silicon Type and II Clathrates. J. Appl. Phys. 2009, 105: 043503
    4 G. J. Snyder. Application of the Compatibility Factor to the Design of Segmented and Cascaded Thermoelectric Generators. Appl. Phys. Lett. 2004, 84: 2436~2438
    5 E. Müller, ?. Dra?ar, J. Schilz, W. A. Kaysser. Functionally Graded Materials for Sensor and Energy Applications. Mater. Sci. Eng. A 2003, 362: 17~39
    6 J. G. Noudem, S. Lemonnier, M. Prevel, E. S. Reddy, E. Guilmeau, C. Goupi. Thermoelectric Ceramics for Generators. J. Eur. Ceram. Soc. 2008, 28: 41~48
    7 X. Shi, H. Kong, C. -P. Li, C. Uher, J. Yang, J. R. Salvador, H. Wang, L. Chen, W. Zhang. Low Thermal Conductivity and High Thermoelectric Figure of Merit in n-type BaxYbyCo4Sb12 Double-Filled Skutterudites. Appl. Phys. Lett. 2008, 92: 182101
    8 Y. D. Xu, G. Y. Xu, C. C. Ge. Improvement in Thermoelectric Properties of n-type Si95Ge5 Alloys by Heavy Multi-Dopants. Scripta Mater. 2008, 58: 1070~1073
    9 Z. X. Liu, S. N. Wang, N. Otogawab,Y. Suzukia, M. Osamuraa, Y. Fukuzawab, T. Ootsukaa, Y. Nakayamab, H. Tanouec, Y. Makita. A Thin-film Solar Cell of High-Qualityβ-FeSi2/Si Heterojunction Prepared by Sputtering. Sol. Energy Mater. Sol. Cells. 2006, 90: 276~282
    10 S. W. Kim, M. K. Cho, Y. Mishima, D. C. Choi. High Temperature Thermoelectric Properties of p- and n-typeβ-FeSi2 with Some Dopants. Intermetallics. 2003, 11: 399~405
    11 J. Tani , H. Kido. Electrical Pproperties of Co-doped and Ni-Dopedβ-FeSi2. J. Appl. Phys. 1998, 84: 1408~1411
    12 K. Park, J. K. Seong, S. Nahm. Improvement of Thermoelectric Properties with the Addition of Sb to ZnO. J. Alloys Compd. 2008, 455: 331~335
    13 L. E. Bell. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science. 2008, 321: 1457~1461
    14刘恩科,朱秉升,罗晋生,半导体物理学.第四版.国防工业出版社, 2002: 289~291
    15 K. T. Wojciechowski, M. Schmidt, Structural and Thermoelectric Properties of AgSbTe2-AgSbSe2 Pseudobinary System. Phys. Rev. B. 2009, 79: 184202
    16 D. T. Crane, L. E. Bell. Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source. J. Energy Resour. Technol. 2009, 131: 012401
    17 A. K. Pramanick, P. K. Das. Constructal Design of a Thermoelectric Device. Int. J. Heat Mass Transfer. 2006, 49: 1420~1429
    18 G. A. Lamberton, J. S. Bhattacharya, R. T. Littleton, M. A. Kaeser, R. H. Tedstrom, T. M. Tritt. High Figure of Merit in Eu-filled CoSb3-based Skutterudites. Appl. Phys. Lett. 2002, 80: 598~600
    19 A. Popescu, L. M. Woods, J. Martin, G. S. Nolas. Model of Transport Properties of Thermoelectric Nanocomposite Materials. Phys. Rev. B. 2009, 79: 205302
    20 N. Zuckerman, J. R. Lukes. Acoustic Phonon Scattering from Particles Embedded in an Anisotropic Medium: A Molecular Dynamics Study. Phys. Rev. B 2008, 77: 094302
    21 J. W. Sharp, S. J. Poon, H. J. Goldsmid. Boundary Scattering and the Thermoelectric Figure of Merit. phys. stat. sol. (a). 2001, 187: 507~516
    22 G. H. Zhu, H. Lee, Y. C. Lan, X. W. Wang, G. Joshi, D. Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. S. Dresselhaus, G. Chen, Z. F. Ren. Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium. PRL. 2009, 102: 196803
    23刘玮书,张波萍,李敬锋,张海龙,赵立东,Co1 - x Nix Sb3 - y Se y热电输运中晶界和点缺陷的耦合散射效应.物理学报. 2008, 57(6): 3791~3797
    24 B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, Z. F. Ren. High Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science. 2008, 320: 634~638
    25 S. A. Omer, D. G. Infield. Design Optimization of Thermoelectric Devices for Solar Power Generation. Sol. Energy Mater. Sol. Cells. 1998, 53: 67~82
    26 G. J. Snyder. Application of the Compatibility Factor to the Design of Segmentedand Cascaded Thermoelectric Generators. Appl. Phys. Lett. 2004, 84: 2436~2438
    27 S. A. Whalen, C. A. Apblett, T. L. Aselage. Improving Power Density and Efficiency of Miniature Radioisotopic Thermoelectric Generators. J. Power Sources. 2008, 180: 657~663
    28 C. Escriba, E. Campo, D. Est`eve, J. Y. Fourniols. Complete Analytical Modeling and Analysis of Micromachined Thermoelectric Uncooled IR sensors. Sens. Actuators A. 2005, 120: 267~276
    29 X. Niu, J. L. Yu, S. Z. Wang. Experimental Study on Low-Temperature Waste Heat Thermoelectric Generator. J. Power Sources. 2009, 188: 621~626
    30 S. B. Riffat and G. Q. Qiu. Design and Characterization of a Cylindrical, Water-Cooled Heat sink for Thermoelectric Air-Conditioners. Int. J. Energy Res. 2006, 30: 67~80
    31 P. K. Bansal, A. Martin. Comparative Study of Vapour compression. Thermoelectric and Absorption Refrigerators. Int. J. Energy. Res. 2000, 24: 93~107
    32 S. B. Riffat, X. L. Ma. Improving the Coefficient of Performance of Thermoelectric Cooling Systems: a Review. Int. J. Energy Res. 2004, 28: 753~768
    33 B. C. Sales. Smaller Is Cooler. Science. 295: 1248~1249
    34 X. H. Chen, B. H. Lin, J. C. Chen. The Parametic Optimum Design of a New Combined System of Semiconductor Thermoelectric Devices. Appl. Energy. 2006, 83: 681~686
    35 M. H. Aguirre, D. Logvinovich, L. Bocher, R. Robert, S. G. Ebbinghaus. A. Weidenkaff. High-temperature Thermoelectric Properties of Sr2RuYO6 and Sr2RuErO6 Double Perovskites Influenced by Structure and Microstructure. Acta Mater. 2009, 57: 108~115
    36 D. Li, X. Y. Qin, J. Zhang, H. J. Li. Enhanced Thermoelectric Properties of Neodymium Intercalated Compounds NdxTiS2. Phys. Lett. A. 2006, 348: 379~385
    37 D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M. G. Kanatzidis. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science. 2000, 287: 1024~1027
    38 Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang, J. P. Tu. Syntheses and Thermoelectric Properties of Bi2Te3/Sb2Te3 Bulk Nanocomposites with Laminated Nanostructure. Appl. Phys. Lett. 2008, 92: 143106
    39 L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang, W. S. Liu. Enhanced Thermoelectric and Mechanical Properties in Textured n-type Bi2Te3 Prepared by Spark PlasmaSintering. Solid State Sci. 2008, 10: 651~658
    40 J. I. Tani, H. Kido. Thermoelectric Properties of Bi-Doped Mg2Si Semiconductors. Physica B: Condens. Matter. 2005, 364: 218~224
    41 F. B. Qiu, W. Shin, M. Matsumiya, N. Izu, I. Matsubara, N. Murayama. Miniaturization of Thermoelectric Hydrogen Sensor Prepared on Glass Substrate with Low-temperature Crystallized SiGe Film. Sens. Actuators B. 2004, 103: 252~259
    42 B. A. Simkin, Y. Hayashi, H. Inui. Directional Thermoelectric Properties of Ru2Si3, Intermetallics. 2005, 13: 1225~1232
    43 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science. 2008, 321: 554~557
    44 K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science. 2004, 303: 818~821
    45 G. J. Snyder, E. S.Toberer. Complex Thermoelectric Materials. Nature materials. 2008, 7: 105~114
    46 M. Ito, D. Furumoto. Effects of Noble Metal Addition on Microstructure and Thermoelectric Properties of NaxCo2O4. J. Alloys Compd. 2008, 450: 494~498
    47 Y. Song, C. -W. Nan. Preparation of Ca3Co4O9 by Polyacrylamide Gel Processing and Its Thermoelectric Properties. J. Sol-Gel. Sci. Technol. 2007, 44: 139~144
    48 Y. H. Lin, J. L. Lan, Z. J. Shen, Y. H. Liu, C.-W. Nan, J. F. Li. High-temperature Electrical Transport Behaviors in Textured Ca3Co4O9-base Polycrystalline Ceramics. Appl. Phys. Lett. 2009, 94: 072107
    49 K. Park, J. H. Lee. Enhanced Thermoelectric Properties of NaCo2O4 by Adding ZnO. Mater. Lett. 2008, 62: 2366~2368
    50 I. El-Kassab, A. M. Ahmed, P. Mandal, K. Barner, A. Kattwinkel, U. Sondermann. Heat Conductivity of La1-xSrxMnO3 Surface Layers. Physica B. 2001, 305: 233~241
    51 S. Neeleshwar, M. Muralidhar, M. Murakami, P. V. Reddy. Thermoelectric Power Studies of (Nd–Eu–Gd)Ba–Cu–O Superconductors. Physica C. 2003, 391: 131~139
    52 L. Li, L. Fang, X. M. Chen, J. Liu, F. F. Yang, Q. J. Li , G. B. Liu , S. J. Feng. Influence of Oxygen Argon Ratio on the Structural, Electrical, Optical and Thermoelectrical Properties of Al-Doped ZnO Thin Films. Physica E. 2008, 41:169~174
    53 Y. F. Wang, K. H. Lee, H. Ohta, K. Koumoto. Fabrication and Thermoelectric Properties of Heavily Rare-earth Metal-doped SrO(SrTiO3)n (n = 1, 2) Ceramics. Ceram. Int. 2008, 34: 849~852
    54 H. Muta, K. Kurosaki, M. Uno, S. Yamanaka. Thermoelectric Properties of Ti- and Sn-dopedα-Fe2 O3. J. Alloys Compd. 2002, 335: 200~202
    55 S. Katsuyama, H. Matsushima, M. Ito. Effect of Substitution for Ni by Co and/or Cu on the Thermoelectric Properties of Half-Heusler ZrNiSn. J. Alloys Compd. 2004, 385: 232~237
    56 Y. Kimura, Y. Tamura, T. Kita. Thermoelectric Properties of Directionally Solidified Half-Heusler Compound NbCoSn alloys. Appl. Phys. Lett. 2008, 92: 012105
    57吴汀,江莞,陈立东,李小亚,,张延峰. Te掺杂对TiCoSb基Half-Heusler化合物高温热电性能的影响.稀有金属材料与工程. 2007, 36(2): 412~414
    58 S. W. Kim, Y. Kimura, Y. Mishima. Enhancement of High Temperature Thermoelectric Properties of Intermetallic Compounds Based on a Skutterudite IrSb3 and a Half-Heusler TiNiSb. Sci. Technol. Adv. Mater. 2004, 5: 485~489
    59熊聪,邓书康,唐新峰,祁琼,张清杰. Zn掺杂n型笼合物Ba8Ga16-2xZn xGe30+ x的热电传输特性.物理学报. 2008, 57(2): 1190~1196
    60 H. Zhang, J. T. Zhao, M. B. Tang, Z. Y. Man, H. H. Chen, X. X. Yang. Structure and Low Temperature Physical Properties of Ba8Cu6Ge40. J. Alloys Compd. 2009, 476: 1~4
    61 G. A. Lamberton, J. S. Bhattacharya, R. T. Littleton, M. A. Kaeser, R. H. Tedstrom, T. M. Tritt, J. Yang, G. S. Nolas. High Figure of Merit in Eu-filled CoSb3-based Skutterudites. Appl. Phys. Lett. 2002, 80(4): 598~600
    62苏贤礼,唐新峰,李涵,邓书康. Ga填充n型方钴矿化合物的结构及热电性能.物理学报. 2008, 57: 6488~6493
    63 K. Berggold, M. Kriener, C. Zobel, A. Reichl, M. Reuther, R. Müller, A. Freimuth, T. Lorenz. Thermal Conductivity, Thermopower and Figure of Merit of La1?xSrxCoO3. Phys. Rev. B. 2005, 72: 155116
    64 C. Yu, M. L. Scullin, M. Huijben, R. Ramesh, A. Majumdar. The Influence of Oxygen Deficiency on the Thermoelectric Properties of Strontium Titanates. Appl. Phys. Lett. 2008, 92: 092118
    65 A. P. Litvinchuk, B. Lorenz, F. Chen, J. Nylé,U. H?ussermann, S. Lidin, L. M. Wang, A. M. Guloy. Optical and Electronic Properties of Tthermoelectric Zn4Sb3 Acrossthe Low-temperature Phase Transitions. Appl. Phys. Lett. 2007, 90: 181920
    66 L. T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi. Thermoelectric Properties of Zn4Sb3 Thin Films Prepared by Magnetron Sputtering. Thin Solid Films. 2003, 443: 84~90
    67 T. Koya, X. Sun, S. B. Cronin, M. S. Dresselhaus. Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattice. Appl. Phys. Lett. 1998, 73: 2950~2952
    68 X. B. Zhao, Y. H. Zhang, X. H. Ji. Solvothermal Synthesis of Nano-sized LaxBe2-xTe3 Thermoelectric Powders. Inorg. Chem. Commun. 2004, 7: 386~388
    69 E. S. Landry, M. I. Hussein, A. J. H. Maughey. Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity. Phys. Rev. B, 2008, 77: 184302
    70 M. Sasase, T. Nakanoya, H. Yamamoto, K. Hojou. Formation of‘Environmentally Friendly’Semiconductor (β-FeSi2) Thin Films Prepared by Ion Beam Sputter Deposition (IBSD) Method. Thin Solid Films. 2001, 401: 73~76
    71 V. B. Antonyuk, A. G. Mal’shukov, Z. S. Ma, K. A. Chao. Thermoelectric Figure of Merit for Parallel Transport in Superlattices. Appl. Phys. Lett. 2001, 79(23): 3791~3793
    72 L. Liu, A. Khitun, K. L. Wang, T. Borca-Tasciuc, W. L. Liu, G. Chen, D. P. Yu. Growth of Ge Quantum Dot Superlattices for Thermoelectric Applications. J. Cryst. Growth. 2001, 227~228: 1111~1115
    73 R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn. Thin film Thermoelectric Devices with High Room-Temperature Figures of Merit. Nature. 2001, 413: 597~602
    74 G. Granger, J. P. Eisenstein, J. L. Reno. Observation of Chiral Heat Transport in the Quantum Hall Regime. Phys. Rev. Lett. 2009, 102: 086803
    75 M. P. Singh, C. M. Bhandari. Thermoelectric Properties of Bismuth Telluride Quantum Wires. Solid State Commun. 2003, 127: 649~654
    76 I. Bejenari1, V. Kantser. Thermoelectric Properties of Bismuth Telluride Nanowires in the Constant Relaxation-time Approximation. Phys. Rev. B. 2008, 78: 115322
    77 T. C. Harman, P. J. Taylor, M. P. Walsh, B. E. LaForge. Quantum Dot Superlattice Thermoelectric Materials and Devices. Science. 2002, 297: 2229~2232
    78 T. T. M. Vo, A. J. Williamson, and V. Lordi,G. Galli. Atomistic Design of Thermoelectric Properties of Silicon Nanowires. Nano Letters. 2008, 8: 1111~1114
    79 A. I. Hochbaum, R. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. D. Yang. Enhanced Thermoelectric Performance of Rough SiliconNanowires. Nature. 2008, 451: 163~167
    80 A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. -K. Yu, W. A. Goddard, J. R. Heath. Silicon Nanowires as Efficient Thermoelectric Materials. Nature. 2008, 451: 168~171
    81 S. Farhangfar. Quantum Size Effects in a One-dimensional Semimetal. Phys. Rev. B. 2006, 74: 205318
    82 K. Sugiura and H. Ohta, K. Nomura, M. Hirano, H. Hosono, K. Koumoto. Fabrication and Thermoelectric Properties of Layered Cobaltite. Sr0.32Na0.21CoO2 Epitaxial Films. Appl. Phys. Lett. 2006, 88: 082109
    83 T. J. Zhu, Y. Q. Liu, X. B. Zhao. Synthesis of PbTe Thermoelectric Materials by Alkaline Reducing Chemical Routes. Mater. Res. Bull. 2008, 43: 2850~2854
    84 T. Ikeda, E. S. Toberer, V. A. Ravi, G. J. Snyder, S. Aoyagi, E. Nishiboric, M. Sakata. Insitu Observation of Eutectoid Reaction Forming a PbTe–Sb2Te3 Thermoelectric Nanocomposite by Synchrotron X-ray Diffraction. Scripta Mater. 2009, 60: 321~324
    85崔教林,赵新兵, p-型FeSi2/Bi2Te3梯度热电材料的优值推证与界面温度优化.稀有金属材料与工程. 2002, 131: 118~121
    86 J. L. Liu, K. L. Wang, C. D. Moore, M. S. Goorsky, T. Borca-Tasciuc, G. Chen. Experimental Study of a Surfactant-assisted SiGe Graded Layer and a Symmetrically Strained Si/Ge Superlattice for Thermoelectric Applications. Thin Solid Films. 2000, 369: 121~125
    87 F. V. Gasparyan, V. M. Aroutiounian, Y. A. Abrahamian, A. I. Vahanian, Thermoelectric Coefficient of the Non-homogeneously Doped p–n junctions Made on Si and Pb0.8Sn0.2Te. Sens. Actuators A. 2004, 113: 370~375
    88 L. Helmers, E. Muller, J. Schilz, W. A. Kaysser. Graded and Stacked Thermoelectric Generators-numerical Description and Maximisation of Output Power. Mater. Sci. Eng. B. 1998, 56: 60~68
    89 J. L. Cui. Optimization of p-type Segmented FeSi2/Bi2Te3 Thermoelectric Material Prepared by Spark Plasma Sintering. Mater. Lett. 2003, 57: 4074~4078
    90 Y. Qiao, V. K. Punyamurtual, A. Han, H. Lim. Thermal-to-electric Energy Conversion of a Nanoporous Carbon. J. Power Sources. 2008, 183: 403~405
    91 R. Prasher. Thermal Conductivity of Composites of Aligned Nanoscale and Microscale Wires and Pores. J. Appl. Phys. 2006, 100, 034307
    92 K. F. Cai, E. Müller, C. Dra?ar, A. Mrotzek. Preparation and ThermoelectricProperties of Al-Doped ZnO ceramics. Mater. Sci. Eng. B. 2003, 104: 45~48
    93 J. Tani, H. Kido. First-principle Study of Native Point Defects inβ-FeSi2. J. Alloys Compd. 2003, 352: 153~157
    94 Y. Kawaharada, H. Uneda, K. Kurosaki, S. Yamanaka. Thermoelectric Properties of Fe–V–Si Heusler Type Compounds. J. Alloys Compd. 2003, 359: 216~220
    95 Y. Ohta, S. Miura, Y. Mishima. Thermoelectric Semiconductor Iron Disilicides Produced by Sintering Elemental Powders. Intermetallics. 1999, 7: 1203~1210
    96 S. S. Pan, C. Ye, X. M. Teng, H. T. Fan, G. H. Li. Controllable Growth ofα- andβ-FeSi2 Thin Films on Si(100) by Facing-target Sputtering. phys. stat. sol. (a). 2007, 204: 3316~3320
    97 Z. Q. Tan, F. Namavar, J. I. Budnick, F. H. Sanchez, A. Fasihuddin, S. M. Heald, C. E. Bouldin, J. C. Woicik. Silicide Formation and Structural Evolution in Fe-, Co-, and Ni-Implanted Silicon. Phys. Rev. B. 1992, 46(7): 4077~4085
    98 K. A. M?der, H. K?nel. Electronic Structure and Bonging in Epitaxially Stabilized Cubic Iron Silicides. Phys. Rev. B. 1993, 48(7): 4364~4372
    99 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakde, S. Yamanaka, G. J. Snyder. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science. 2008, 321: 554~557
    100潘志军,张澜庭,吴建生.掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.物理学报. 2005, 54(11): 5308~5313
    101 H. Kakemoto, T. Higuchi, H. Shibata, S. Wada, T. Tsurumi. Modified Thermoelectric Figure of Merit Estimated from Enhanced Mobility of [100] Oriented Beta-FeSi2 Thin Film. J. Mater. Sci.: Mater. Electron. 2008, 19: 311~314
    102 N. Uchitomia, N. Nishino, A. Mori, M. Takeda, Y. Jinbo. Characterization of aβ-FeSi2 p–n Junction Formed by the PECS Method. Thin Solid Films. 2004, 461: 174~ 178
    103李伟文,赵新兵,邬震泰,周邦昌.含Sm、Mn的P型FeSi2基热电材料的电学性能.中国有色金属学报. 2003, 13: 419~422
    104 M. Ito, T. Tada, S. Hara. Thermoelectric Properties of Hot-Pressedβ-FeSi2 with Yttria Dispersion by Mechanical Alloying. J. Alloys Compd. 2006, 408~412: 363~367
    105 M. Ito, T. Tanaka, S. Hara. Thermoelectric Properties ofβ-FeSi2 with Electrically Insulating SiO2 and Conductive TiO Dispersion by Mmechanical Alloying. J. Appl.Phys., 2004, 95(11): 6209~6215
    106 K. F. Cai, E. Mueller, C. Drasar, C. Stiewe. The Effect of Titanium Diboride Addition on the Thermoelectric Properties ofβ-FeSi2 Semiconductors. Solid State Commun. 2004, 131: 325~329
    107 W. W. Li, X. B. Zhao, T. J. Zhu, G. S. Gao. Transport Properties of Fe-Co-Si-Cu Thermoelectric Alloys. Rare Metal Mat. Eng. 2003, 32(8): 621~623
    108芦玉峰,赵新兵,陈海燕,倪华良,李红星. Fe0.92Mn0.08Six半导体热电性能的研究.功能材料. 2003, 34(6): 693~695
    109 Y. Qiu, H. L. Shen, Y. G. Yin , K. H. Wu. Fabrication and Thermoelectric Properties ofβ-FeSi2 Prepared by Mechanical Alloying. Trans. Nonferrous Met. Soc. China. 2007, 17: 618~621
    110 T. Yoshitake, Y. Inokuchi, A. Yuri, K. Nagayama. Direct Epitaxial Growth of Semiconductingβ-FeSi2 Thin Films on Si(111) by Facing Targets Direct-current Sputtering. Appl. Phys. Lett. 2006, 88: 182104
    111 K. Akiyama, S. Ohya, H. Funakubo. Preparation ofβ-FeSi2 Thin Film by Metal Organic Chemical Vapor Deposition Using Iron-carbonyl and Mono-silane. Thin Solid Films. 2004, 461: 40~ 43
    112 M. Mukaida, I. Hiyama, T. Tsunoda, Y. Imai. Preparation ofβ-FeSi2 Films by Chemical Vapor Deposition.Thin Solid Films. 2001, 381: 214~218
    113 T. Sunohara, K. Kobayashi, T. Suemasu. Epitaxial Growth and Characterization of Si-based Light-emitting Si/β-FeSi2 Film/Si Double Heterostructures on Si(001) Substrates by Molecular Beam Epitaxy. Thin Solid Films. 2006, 508: 371 ~ 375
    114 T. Yamada, H. Yamane. Low-Temperature Synthesis ofβ-FeSi2 Powder Using a Sodium Melt. Chem. Mater. 2007, 19: 6047~6051
    115 M. Ito, H. Nagai, T. Tanaka1, S. Katsuyama, K. Majima. Thermoelectric Performance of n-type and p-typeβ-FeSi2 Prepared by Pressureless Sintering with Cu Addition. J. Alloys Compd. 2001, 319: 303~311
    116 I. Yamauchi, A. Suganuma, T. Okamoto, I. Ohnaka. Effect of Copper Addition on theβ-phase Formation Rate in FeSi2 Thermoelectric Materials. J. Mater. Sci. 1997, 32: 4603 ~ 4611
    117 I. Yamauchi, T.Nagase, I. Ohnaka. Temperature Dependence ofβ-phase Transformation in Cu added Fe2Si5 Thermoelectric Material. J. Alloys Compd. 1999, 292: 181~190
    118 Z. J. Pan, L. T. Zhang, J. S. Wu. First-Principles Study of Electronic and GeometricalStructures of Semiconductingβ-FeSi2 with Doping. Mater. Sci. Eng. B. 2006, 131: 121~126
    119 J. P. Wiff, Y. Kinemuchi, H. Kaga, C. Ito, K. Watari. Correlations between Thermoelectric Properties and Effective Mass Caused by Lattice Distortion in Al-Doped ZnO Ceramics. J. Eur. Ceram. Soc. 2009, 29: 1413~1418
    120 C. E. Jácome, J. C. Giraldo. Thermoelectric Power of SnO2 Anisotropic Thin Films. Microelectron. 2008, 39: 1314~1315
    121 L. Poul, N. Jouini, F. Fiévet. Layered Hydroxide Metal Acetates (Metal = Zinc, Cobalt, and Nickel): Elaboration via Hydrolysis in Polyol Medium and Comparative Study. Chem. Mater. 2000, 12: 3123~3132
    122 H. B. Weister, A. P. Bloxsom. The Formation of Arsenate Jellies. J Phys Chem. 1924, 28(1): 26~40
    123 S. H. Jung, E. Oh, K. H. Lee, W. Parks, S. H. Jeong. A Sonochemical Method for Fabricating Aligned ZnO Nanorods. Adv. Mater. 2007, 19: 749~753
    124 X. M. Sun, X. Chen, Z. X. Deng, Y. D. Li. A CTAB-assisted Hydrothermal Orientation Growth of ZnO Nanorods. Mater.Chem. Phys. 2003, 78: 99~104
    125 E. Hosono, S. Fujihara, T. Kimura, H. Imai. Growth of Layered Basic Zinc Acetate in Methanolic Solutions and Its Pyrolytic Transformation into Porous Zinc Oxide Films. J. Colloid Interface Sci. 2004, 272: 391~398
    126 B. P. Lim, J. Wang, S. C. Ng, C. H. Chew, L. M. Gan. A Bicontinuous Microemulsion Route to Zinc Oxide Powder. Ceram. Int. 1998, 24: 205~209
    127 E. S. Jang, J. H. Won, S. J. Hwang, J. H. Choy. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity. Adv. Mater. 2006, 18: 3309~3312
    128 A. Kasai, S. Fujihara. Layered Single-metal Hydroxide/Ethylene Glycol As a New Class of Hybrid Material. Inorg. Chem. 2006, 45(1): 415~418
    129 Y. W. Koh, M. Lin, C. K. Tan, Y. L. Foo, K. P. Loh. Self-assembly and Selected Area Growth of Zinc Oxide Nanorods on Any Surface Promoted by an Aluminum Precoat. J. Phys. Chem. B, 2004, 108: 11419
    130 H. W. Hu, C. S. Xie, D. W. Zeng, Z H. Yang. Controlled Organization of ZnO Building Blocks into Complex Nanostructures. J.Colloid Interface Sci. 2006, 297: 570~577

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700