用户名: 密码: 验证码:
新型聚倍半硅氧烷基酸—碱无水质子交换膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池是第五代燃料电池,相对于其他燃料电池具有转化效率高、启动快、比功率和比能量高等优点,是公认的最有发展前景的电化学能量转化装置之一,非常适宜用做便携式电源和分散型电站。质子交换膜作为其关键部件之一,直接影响到其制作成本及工作效率。研究低成本、高效率的质子交换膜将会对质子交换膜燃料电池的大规模应用产生巨大的推进作用。
     杂化材料是近年来材料研究的热点之一,它将有机物和无机物的优点相结合,因此具备普通材料所不具备的优异性能。而聚倍半硅氧烷是杂化材料中非常重要的一类,一般通过简便的溶胶-凝胶法进行制备。聚倍半硅氧烷基材料通常具有耐热性好、耐腐蚀性强、易于功能化等优点,将其应用于高温质子交换膜领域是一项既有意义也富有挑战性的工作。本文以碱性聚倍半硅氧烷为基体制备了一系列酸-碱型高温质子交换膜,并对其各种性能进行了研究,尤其对其质子传导机理进行了深入的阐释,具体内容如下:
     (1)以N-(2-氨乙基)-3-氨丙基三甲氧基硅烷(AAS)为单体,通过其在硫酸或者磷酸的水溶液中的溶胶-凝胶反应制备了PAAS-R质子交换膜。通过FTIR和29Si CP NMR对其化学结构进行了表征。这种酸-碱型杂化质子交换膜具有良好的热稳定性(高达300℃),在不同的温度范围内表现出不同的电导率。光学显微镜和SEM分析发现PAAS-HSO4膜中原位生成了大量的纳米粒子。AFM和EDS分析表明此种纳米颗粒的表面富集了软性的有机链段。AFM的RMS分析表明加水量越少,PAAS-HSO4膜的粗糙度越大,并且质子电导率越高。但是PAAS-H2PO4膜的表面非常光滑均一,其质子电导率也对粗糙度和加水量并不敏感。以上结果均表明,PAAS-HSO4膜较高的电导率是由于硫酸本身的电离能力较强,还因为其拥有着不同于PAAS-H2PO4的结构。最后,推测了一种能够很好的解释以上现象的质子传导机理,并且为在交联型无水质子交换膜中构造有效的质子传递通道提供了一种方法。
     (2)首先通过环氧基团的开环反应制备了一种有机链段含有三唑基团的新型硅氧烷单体,然后通过溶胶-凝胶法制备了PGA-xH3PO4系列质子交换膜。通过FTIR表征了其分子结构。通过SEM对其断面形貌进行了分析。TGA表明这种类型的质子交换膜在250℃下能够稳定工作。所有膜的质子电导率对温度都呈现出Arrhenius(阿尔尼乌斯)行为。膜的质子电导率随着酸含量的增加而增加,随着温度的升高而升高。在无水环境中,PGA-1H3PO4,PGA-2H3PO4与PGA-3 H3PO4在200℃时的电导率分别为1.48×10-3,1.07×10-2与1.43×10-2 S/cm.FTIR结果表明,加入的磷酸破坏了原有的PGA的氢键网络,将更加有利于三唑环的取向,从而促进了质子的跳跃。在PGA-2H3P04中,多余的磷酸会产生“桥”的作用,也有利于质子的有效传递。
     (3)以AAS为单体,在PVA与磷酸的水溶液中通过溶胶-凝胶法制备了PAAS-P-xPVA薄膜。用FTIR表征了其化学结构,并研究了其成膜性与酸含量之间的关系。PAAS-P-xPVA系列质子交换膜具有非常好的热稳定性,能够在300℃下稳定工作。此系列膜的无水质子电导率与温度之间的关系呈现出阿尔尼乌斯行为。当PVA含量从10%增加到15%时,质子电导率骤然下降。通过AFM与SEM分析发现,PVA含量在15%和20%时,膜中出现了较大尺度的相分离。这种现象不仅导致了膜质子电导率的下降,也导致了膜的机械性能出现了较大程度的下降。以上结果均表明,PVA含量在≤10%时,有利于提高体系酸含量、成膜性和机械性能,而且对质子电导率的影响较小。
     (4)以GA为单体,通过在PVA与磷酸的水溶液中的溶胶-凝胶反应制备了一种既能够在干燥环境中使用,也能够在潮湿环境中使用的“双栖”质子交换膜。此种新型的质子交换膜由三个部分构成:1.具有两个碱性位点的聚硅氧烷(侧链中的-N-,三唑环中的=N-);2.作为质子源的磷酸;3.具有良好成膜性的并且能够在有水环境中锚定磷酸的PVA,所有的膜均在200℃下稳定。断面SEM表明PVA与聚硅氧烷之间在PVA含量较高时会发生一个相转变。此系列膜的质子电导率均在无水和有水两种环境中进行了测量。在25℃到120℃之间测试了有水质子电导率,未经水浸泡和经水浸泡过后的膜的质子电导率分别在0.019~0.068和0.009~0.031 S/cm范围内。在干燥环境中150℃时,这些膜的质子电导率在0.0047~0.021 S/cm范围内。以上结果表明所得膜在无水和有水环境下均表现出较好的质子电导率,有潜力应用于聚合物电解质燃料电池中,因此也称之为“双栖质子交换膜”。
Proton exchange membrane fuel cells (PEMFCs) are the fifth generation of the fuel cells. There are a lot of advantages of the PEMFCs, such as efficient energy transformation, fast initiation, high power density and high specific energy. It is accepted that PEMFCs are one of the most promising electrochemical energy conversion devices. PEMFCs are suitable for portable and distributed power applications. PEM is one of the key items of the PEMFCs. It directly influences the cost and the efficiency of the PEMFCs. The research on the PEM will be helpful to the wide application of the PEMFCs.
     Hybrid materials is one of the hot materials in recent years, it combines the advantages of the organic and inorganic materials. So, hybrid materials have the excellent performance comparing with common materials. The Polysilsesquioxane is an important class in the hybrid materials. It is usually synthesized by sol-gel method. Polysilsesquioxane based materials typically have good heat resistance, corrosion resistance, easy functionalization, and so on. Thus, application of polysilsesquioxane to areas of high temperature proton exchange membrane is a meaningful and challenging work. In this paper, a series of acid-base type of high temperature proton exchange membranes based on basic polysilsesquioxane system were studied. Particularly the mechanism of the proton conduction in these membranes, as follows:
     (1) Inorganic-organic hybrid proton exchange membranes were prepared via sol-gel reaction of N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AAS) in a sulfuric or phosphoric acid aqueous solution. The chemical structures of these membranes are characterized by means of Fourier transform infrared (FTIR) and 29Si cross polarization nuclear magnetic resonance (29Si CP NMR). Those acid-doped membranes were stable at temperatures up to about 300℃and showed varied conductivities at different temperature ranges. Optical Microscopy and Scan Electron Microscopy (SEM) analysis revealed that the introduction of H2SO4 led to the generation of nanoparticles in situ. Atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS) results indicated that these nanoparticles were wrapped by the soft organic side chains. Root-mean-square (RMS) roughness measured by AFM demonstrated that lower water addition during synthesis led to rougher surface and higher conductivity of H2SO4-doped membrane, while the surface of H3PO4-doped membrane remained smooth and clean, and the conductivity did not show significant change by varying water additions. All those results demonstrated that the higher conductivity of the H2SO4-doped membrane achieved was contributed to not only the dissociation of the counter anion but also the morphology of the membrane. Finally, we proposed a potential mechanism for the proton conduction in such acid-doped membranes. This mechanism could possibly provide a method to construct effective proton channels in the cross-linked anhydrous proton exchange membranes.
     (2) In the present work, H3PO4-doped 1,2,4-triazole-polysiloxane proton conducting membrane is successfully prepared by sol-gel reaction. The molecular structure of the PGA-xH3PO4 is confirmed via FTIR. Thermogravimetry (TG) analysis shows that the samples were thermally stable up to approximately 250℃. The fracture surface morphology of the materials is characterized by SEM. The temperature dependence of proton conductivity of all the membranes exhibits an Arrhenius behavior. The proton conductivities of these membranes increase with dopant concentration and the temperature. In an anhydrous state, the proton conductivity of PGA-1H3PO4,PGA-2H3PO4 and PGA-3H3PO4 is 1.48×10-3 1.07×10-2,1.43×10-2 S/cm at 200℃, respectively. According to FTIR results, the added H3PO4 is presumed to break up the hydrogen-bonding network of pure PGA, facilitating ring-reorientation and thus Grotthus mechanism proton transport. In PGA-2H3PO4, the extra H3PO4 may act as a bridge providing effective proton conduction. Therefore the proton conductivity of PGA-2H3PO4 is greatly improved compared with PGA-1H3PO4.
     (3) The development of anhydrous proton exchange membrane is critical for the polymer electrolyte membrane fuel cell PEMFC operating at intermediate temperature (100~200℃). In the present work, inorganic-organic hybrid proton exchange membranes were prepared via sol-gel reaction of N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (AAS) and PVA in a phosphoric acid aqueous solution. The chemical structure of the hybrid membrane was confirmed by FTIR. The film-forming capacity and acid content of these membranes were enhanced by the introduction of the PVA. Those PVA-doped acid-base membranes were stable at temperatures up to about 300℃.The proton conductivities of the membranes were measured under anhydrous conditions. The dependence of proton conductivity to temperature of all membranes showed an Arrehnius behavior. There was a visible drop of conductivity from 10% to 15% PVA content. The surface and fracture surface morphology of the membrane was observed by AFM and SEM, respectively. A large scale phase separation was appeared at 15% or 20% PVA content which led to the decreased tensile strength and proton conductivity of the membranes. All the results suggest that appropriate PVA doping level (≤10%) was helpful to the membrane formation and improved the mechanical property of the membrane but with little effect on the proton conductivity.
     (4) Amphibious proton exchange membranes which could be used under both wet and dry conditions were prepared by sol-gel method in this work. Those novel hybrid PEMs were constructed by three parts:1) Polysiloxane with two basic sites (-NH-on the pendant and=N-in the triazole); 2) H3PO4 as the proton source; 3) Poly(vinyl alcohol) (PVA) which had good film-forming capacity and ability to anchor the H3PO4 under wet conditions. The resulting hybrid membranes were thermally stabilized up to 200℃. A matrix-change between polysiloxane and PVA could be observed at a high PVA doping level. The proton conducting property of these membranes was investigated under both hydrous and anhydrous conditions. From 25 to 120℃, the non-soaked and soaked (soaked in the water) membranes showed the proton conductivity of 0.019~0.068 and 0.009~0.031 S/cm at 100% relative humidity (RH), respectively. Under completely dry conditions, the proton conductivity of these membranes showed large dependence on the temperature and the proton conductivity of 0.0047~0.021 S/cm was achieved at 150℃for these membranes. The excellent performance of these hybrid membranes under both wet and dry conditions demonstrated that they have potential use as electrolytes in PEMFCs operating either in a watery or in a water-free environment and so called "amphibious" proton conducting membranes.
引文
[1]肖潇.氢能源:21世纪最大的能源革命.节能减排,2009,16(7):132
    [2]Xianguo L. Principles of fuel cells. New York:Taylor & Francis Group,2006
    [3]Peighambardoust S J, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications.2010,35(17):9349-9384
    [4]Ahamed M I, Zaidi S M J, Rahman S U. Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. Desalination,2006,193(1-3):387-397
    [5]Li Q, He R, Jensen J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100℃.2003,15(26): 4896-4915
    [6]Weber A Z, Breslau J B R, Miller I F. A hydrodynamic model for electroosmosis. Ind Eng Chem Fundam,1971,10(4):554-565
    [7]Hogarth W H J, Diniz da Costa J C, Lu G Q. Solid acid membranes for high temperature (140 oC) proton exchange membrane fuel cells. Journal of Power Source,2005,142:223-237
    [8]Deluca N W, Elabd Y A. Polymer electrolyte membranes for the direct methanol fuel cell:a review. Journal of Polymer Science Part B,2006,44: 2201-2213
    [9]Grot W G. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups. U.S. Patent,3770567.1973
    [10]Zhu X, Zhang H. Zhang Y, et al. An ultrathin self-humidifying membrane for PEM fuel cell application:fabrication, characterization, and experimental analysis. Journal of Physical Chemistry B,2006,110(29):14240-14248
    [11]Adjemian K T, Dominey R, Krishnan L, et al. Function and characterization of metal oxide-Nafion composite membranes for elevated-temperature H2/O2 PEM fuel cells. Chemistry of Materials,2006,18(9):2238-2248
    [12]Noto V D, Gliubizzi R, Negro E, et al. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes. Journal of Physical Chemistry B,2006,110(49):24972-24986
    [13]Zhu J, Tang H, Pan M. Fabrication and characterization of self-assembled Nafion-SiO2-ePTFE composite membrane of PEM fuel cell. Journal of Membrane Science,2008,312(1-2):41-47
    [14]So S Y, Kim S C, Lee S Y. In situ hybrid nafion/SiO2-P2O5 proton conductors for high-temperature and low-humidity proton exchange membrane fuel cells. Journal of Membrane Science,2010,360(1-2):210-216
    [15]Mahreni A, Mohamad A B, Kadhum A A H, et al. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. Journal of Membrane Science,2009,327(1-2):32-40
    [16]Tian J, Gao P, Zhang X, et al. Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. International Journal of Hydrogen Energy,2008,33(20):5686-5690
    [17]Chen S Y, Han C C, Tsal C H, et al. Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. Journal of Power Sources,2007,171(2):363-372
    [18]Santiago E I, Isidoro R A, Dresch M A, et al. Nafion-TiO2 hybrid electrolytes for stable operation of PEM fuel cells at high temperature. Electrochimica Acta, 2009,54(16):4111-4117
    [19]Baglio V, Arico A S, Blasi D, et al. Nafion-TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochimica Acta,2005,50(5):1241-1246
    [20]Amjadi M, Rowshanzamir S, Peighambardoust S J, et al. Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy,2010,35(17):9252-9260
    [21]Staiti P, Arico A S, Baglio V, et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics, 2001,145(1-4):101-107
    [22]Dimitrova P, Friedrich K A, Stimming U, et al. Modified Nafion(?)-based membranes for use in direct methanol fuel cells. Solid State Ionics,2002, 150(1-2):115-122
    [23]Zhai Y, Zhang H, Zhang Y, et al. A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells. Journal of Power Sources,2007,169(2):259-264
    [24]田双红.磺化聚芳醚质子交换膜的制备与性能研究:中山大学博士学位论文.广州:中山大学,2009,4
    [25]Miyatake K, Oyaizu K, Tsuchida E, et al. Synthesis and properties of novel sulfonated arylene ether/fluorinated alkane copolymers. Macromolecules,2001, 34:3211-3217
    [26]Pang J, Zhang H, Li X, et al. Novel wholly aromatic sulfonated poly(arylene ether) copolymers containing sulfonic acid groups on the pendants for proton exchange membrane materials. Macromolecules,2007,40:9435-9442
    [27]Lee K S, Jeong M H, Lee J P, et al. End-group cross-linked poly(arylene ether) proton exchange membranes. Marcromolecules,2009,42:584-590
    [28]Gu S, He G, Wu X, et al. Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane. Journal of membrane science,2008,312:48-58
    [29]Matsumura S, Hlil A R, Lepiller C, et al. Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end groups:novel linear aromatic poly(sulfide-ketone)s. Macromolecules,2008,41:277-280
    [30]Matsumura S, Hlil A R, Du N Y, et al. Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups:novel branched poly(ether-ketone)s with 3,6-ditrityl-9H-carbazole end-groups. Journal of polymer science Part A:Polymer Chemistry,2008,46:3860-3868
    [31]Hicker M A, Chassemi H, Kim Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs). Chemical Reviews,2004,104(10): 4587-4612
    [32]Serpico J M, Ehrenberg S G, Fontanella J J, et al. Transport and structural studies of sulfonated styrene-ethylene copolymer membranes. Macromolecules, 2002,35(15):5916-5921
    [33]Steck A E, Stone C, Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems, Canada,1997,792
    [34]Steck A E, Stone C. Alpha.,.beta.,.beta.-trifluorostyrene-based composite membranes. U.S. Patent,5985942.1999-11-16
    [35]Asano N, Aoki M, Suzuki S, et al. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. Journal of the American Chemical Society,2006,128(5):1762-1769
    [36]Wilhelm M, Jeske M, Marschall R, et al. New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO3H-functionalized mesoporous Si-MCM-41 particles. Journal of Membrane Science,2008,316(1-2):164-175
    [37]Gautier-luneau, Denoyelle A, Sanchez J Y, et al. Organic-inorganic protonic polymer electrolytes as membrane for low-temperature fuel cells. Electrochimica Acta,1992,37(9):1615-1618
    [38]Sanchez J Y, Denoyelle A, Poinsignon C. Poly(benzylsulfonic acid) siloxane as proton-conducting electrolyte. Polymers Advanced Technologies,1993,4(2-3): 99-105
    [39]Xu T, Wu D, Wu L. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)—A versatile starting polymer for proton conductive membranes (PCMs). Progress in Polymer Science,2009,33(9):894-915
    [40]Jeong Y G, Seo D W, Lim Y D, et al. Synthesis and characterization of sulfonated bromo-poly(2,6-dimethyl-1,4-phenyleneoxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer as proton exchange membrane.2010,55(4): 1425-1430
    [41]Einsla B R, Kim Y J, Tchatchoua C, et al. Disulfonated polybenzoxazoles for proton exchange membranes fuel cell applications. Polymer Preparation,2003, 44:645-646
    [42]Kim S, Cameron D A, Lee Y, et al. Aromatic and rigid rod polyelectrolytes based on sulfonated poly(benzobisthiazoles). Journal of Polymer Science Part A: Polymer Chemistry,1996,34:481-492
    [43]Kufaci M, Bozkurt A, Tulu M. Poly(ethyleneglycol methacrylate phosphate) and heterocycle based proton conducting composite materials. Solid state ionics, 2006,177(11-12):1003-1007
    [44]Itoh T, Hirai K, Tamura M, et al. Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells. Journal of Power Sources,2007,178(2):627-633
    [45]Aslan A, Celik S U, Bozkurt A. Proton-conducting properties of the membranes based on poly(vinyl phosphonic acid) grafted poly(glycidyl methacrylate). Solid State Ionics,180(23-25):1240-1245
    [46]Umeda J, Moriya M, Sakamoto W, et al. Synthesis of proton conductive membranes based on inorganic-organic hybrid structure bound with phosphonic acid. Electrochimica Acta,2009,55(1):298-304
    [47]Umeda J, Moriya M, Kato M, et al. Proton conductive inorganic-organic hybrid membranes functionalized with phosphonic acid for polymer electrolyte fuel cell. Journal of Power Sources,2010,195(18):5882-5888
    [48]Kim D S, Shin K H, Park H B, et al. Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymers containing carboxyl groups for direct methanol fuel cells. Journal of Membrane Science,2006,278(1-2): 428-436
    [49]Guo M, Liu B, Guan S, et al. Novel poly(arylene ether ketone)s containing sulfonic/carboxylic groups:Synthesis and properties. Journal of Membrane Science,2010,362(1-2):38-46
    [50]Lin H, Zhao C, Ma W, et al. Low water swelling and high methanol resistant proton exchange membrane fabricated by cross-linking of multilayered polyelectrolyte complexes. Journal of Membrane Science,2009,345(1-2): 242-248
    [51]Chang H Y, Thangamuthu R, Lin C W. Structure-property relationships in PEG/SiO2 based proton conducting hybrid membranes—A 29Si CP/MAS solid-state NMR study. Journal of Membrane Science,2004,228(2):217-226
    [52]Pandey G P, Hashmi S A, Agrawai R C. Hot-press synthesized polyethylene oxide based proton conducting nanocomposite polymer electrolyte dispersed with SiO2 nanoparticles, Solid State Ionics.2008,179(15-16):543-549
    [53]Zhang Y F, Wang S J, Xiao M, et al. The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy,2009,34(10):4379-4386
    [54]Peighambardoust S J, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy,2010,35(17):9349-9384
    [55]Colicchio I, Demco D E, Baias M, et al. Influence of the silica content in SPEEK-silica membranes prepared from the sol-gel process of polyethoxysiloxane:Morphology and proton mobility. Journal of Membrane Science,2009,337(1-2):125-135
    [56]Noto V D, Piga M, Piga L, et al. New inorganic-organic proton conducting membranes based on Nafion(?) and [(ZrO2)-(SiO2)0.67] nanoparticles:Synthesis vibrational studies and conductivity. Journal of Power Sources,2008,178(2): 561-574
    [57]Uma T, Nogami M. PMA/Zr02-P205-SiO2 glass composite membranes:H2/O2 fuel cells. Journal of Membrane Science,2009,334(1-2):123-128
    [58]Zhai Y, Zhang H, Hu J, et al. Preparation and characterization of sulfated zirconia (SO42-/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity. Journal of Membrane Science,2006,280(1-2): 148-155
    [59]Yang C C, Chien W C, Li Y J. Direct methanol fuel cell based on poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) composite polymer membrane. Journal of Power Sources, 2010,195(11):3407-3415
    [60]Luisa Di Vona M, Ahmed Z, Bellitto S, et al. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process. Journal of Membrane Science,2007,296(1-2):156-161
    [61]Namazi H, Ahmadi H. Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanocomposite membranes with TiO2 and SiO2 nanoparticles chemically modified surfaces. Journal of Power Sources,2011,196(5):2573-2583
    [62]Su Y H, Liu Y L, Sun Y M, et al. Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. Journal of Membrane Science,2007,296(21-28):21-28
    [63]Aihara Y, Sonai A. Novel proton conducting polymer electrolytes based on polyparabanic acid doped with H3PO4 for high temperature fuel cell. Journal of Power Sources,2006,163(1):60-65
    [64]Qiao J, Yoshimoto N, Lshikawa M, et al. A proton conductor based on a polymeric complex of poly(ethylene oxide)-modified poly(Methacrylate) with anhydrous H3PO4. Chemistry of Materials,2003,15(10):2005-2010
    [65]Montoneri E, Boffa V, Bottigliengo S, et al. A new polyfunctional acid material for solid state proton conductivity in dry environment:Nafion doped with difluoromethandiphosphonic acid. Solid State Ionics,2010,181(13-14): 578-585
    [66]Wasmus S, Valeriu A, Mateescu G D, et al. Characterization of H3PO4-equilibrated Nafion(?) 117 membranes using 1H and 31P NMR spectroscopy. Solid State Ionics,1995,80(1-2):87-92
    [67]Lakshminarayana G, Nogami M. Synthesis and characterization of proton conducting inorganic-organic hybrid nanocomposite membranes based on tetraethoxysilane/trimethylphosphate/3-glycidoxypropyltrimethoxysilane/hetero poly acids. Electrochimica Acta,2009,54(20):4731-4740
    [68]Chu Y H, Lim J E, Kim H J, et al. Proton conducting silica mesoporous/heteropolyacid-PVA/SSA nano-composite membrane for polymer electrolyte membrane fuel cell. Studies in Surface Science and Catalysis,2003, 146:787-790
    [69]Ramani V, Kunz H R, Fenton J M. Investigation of Nafion(?)/HPA composite membranes for high temperature/low relative humidity PEMFC operation. Journal of Membrane Science,2004,232(1-2):31-44
    [70]Tasaki K, DeSousa R, Wang H, et al. Fullerene composite proton conducting membranes for polymer electrolyte fuel cells operating under low humidity conditions. Journal of Membrane Science,2006,281(1-2):570-580
    [71]Irfan Ahmad M, Javaid Zaidi S M, Ahmed S. Proton conducting composites of heteropolyacids loaded onto MCM-41. Journal of Power Sources,2006,157(1): 35-44
    [72]Stalti P, Freni S, Hocevar S. Synthesis and characterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica. Journal of Power Sources,1999, 79(2):250-255
    [73]Aparicio M, Castro Y, Duran A. Synthesis and characterisation of proton conducting styrene-co-methacrylate-silica sol-gel membranes containing tungstophosphoric acid. Solid State Ionics,2005,176(3-4):333-340
    [74]Aparicio M, Mosa J, Etienne M, et al. Proton-conducting methacrylate-silica sol-gel membranes containing tungstophosphoric acid. Journal of Power Sources,2005,145(2):231-236
    [75]Zhang H, Yang Z, Coutinho D H, et al. Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes. Journal of Membrane Science,2005,364(1-2):56-64
    [76]Lavrencic Stangar U, Groselj N, Orel B, et al. Proton-conducting sol-gel hybrids containing heteropoly acids. Solid State Ionics,2001,145(1-4): 109-118
    [77]Kim E K, Son S, Won J, et al. Effect of acidity and structure on the anhydrous proton conduction of acid-doped inorganic-organic hybrid membranes. Journal of Membrane Science,2010,348(1-2):190-196
    [78]Lee D K, Won J, Hwang S S. Effect of the matrix on proton conductivity in electrolyte membranes containing deoxyribonucleic acids. Journal of Membrane Science,2009,328(1-2):211-218
    [79]Wang J, Jiang S, Zhang H, et al. Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres. Journal of Membrane Science, 2010,354(1-2):253-262
    [80]Al-Othman A, Tremblay A Y, Pell W, et al. Zirconium phosphate as the proton conducting material in direct hydrocarbon polymer electrolyte membrane fuel cells operating above the boiling point of water. Journal of Power Sources,2010, 195(9):2520-2525
    [81]Kozawa Y, Suzuki S, Miyayama M, et al. Proton conducting membranes composed of sulfonated poly(etheretherketone) and zirconium phosphate nanosheets for fuel cell applications. Solid State Ionics,2010,181(5-7): 348-353
    [82]Costamagna P, Yang C, Bocarsly A B, et al. Nafion(?) 115/zirconium phosphate composite membranes for operation of PEMFCs above 100℃. Electrochimica Acta,2002,47((7-11):1023-1033
    [83]Park Y, Nagai M. Proton exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane, silicotungstic acid and α-zirconium phosphate hydrate. Solid State Ionics,2001,145(1-4):149-160
    [84]Hill M L, Kim Y S, Einsla B R, et al. Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells. Journal of Membrane Science,2006,283(1-2):102-106
    [85]Casciola M, Alberti G, Ciarletta A, et al. Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride:Preparation and proton conductivity. Solid State Ionics,2005, 176(39-40):2985-2989
    [86]Alberti G, Casciola M, Capitani D, et al. Novel Nafion-zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochimica Acta,2007, 52(28):8125-8132
    [87]Anilkumar G M, Nakazawa S, Okubo T, et al. Proton conducting phosphated zirconia-sulfonated polyether sulfone nanohybrid electrolyte for low humidity, wide-temperature PEMFC operation. Electrochemistry Communications,2006, 8(1):133-136
    [88]Li Z, Dong F, Xu L, et al. Preparation and properties of medium temperature membranes based on zirconium sulfophenylphosphate/sulfonated poly(phthalazinone ether sulfone ketone) for direct methanol fuel cells. Journal of Membrane Science,351(1-2):50-57
    [89]Helen M, Viswanathan B, Murthy S S. Synthesis and characterization of composite membranes based on a-zirconium phosphate and silicotungstic acid. Journal of Membrane Science,2007,292(1-2):98-105
    [90]Bauer F, Willert-Porada M. Characterisation of zirconium and titanium phosphates and direct methanol fuel cell (DMFC) performance of functionally graded Nafion(R) composite membranes prepared out of them. Journal of Power Sources,2005,145(2):101-107
    [91]Krishnan P, Park J S, Kim C S. Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process. Journal of Membrane Science,2006,279(1-2):220-229
    [92]Yang C, Srinivasan S, Bocarsly A B, et al. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. Journal of Membrane Science,2004,237(1-2):145-161
    [93]Yang C, Costamagna P, Srinivasan S, et al. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. Journal of Power Sources,2001,103(1):1-9
    [94]Sevil F, Bozkurt A. Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole. Journal of Physics and Chemistry of Solids,2004,65(10):1659-1662
    [95]Pu H, Luo M, Yang Z. Transparent and anhydrous proton conductors based on PVA/imidazole/NH4H2PO4 composites. European Polymer Journal,2007, 43(12):5076-5083
    [96]Lee S Y, Scharfenvberger G, Meyer W H, et al. A new water-free proton conducting membrane for high-temperature application. Journal of Power Sources,2006,163(1):27-33
    [97]Kufaci M, Bozkurt A, Tulu M. Poly(ethyleneglycol methacrylate phosphate) and heterocycle based proton conducting composite materials. Solid State Ionic, 2006,177(11-12):1003-1007
    [98]Marschall R, Sharifi M, Wark M. Proton conductivity of imidazole functionalized ordered mesoporous silica:Influence of type of anchorage, chain length and humidity. Microporous and Mesoporous Materials,2009,123(1-3): 21-29
    [99]Liu Y, Yu Q, Yuan J, et al. Br(?)nsted acid-base polymer electrolyte membrane based on sulfonated poly(phenylene oxide) and imidazole. European Polymer Journal,2006,42(9):2199-2203
    [100]Sen U, Bozkurt A, Ata A. Nafion/poly(1-vinyl-1,2,4-triazole) blends as proton conducting membranes for polymer electrolyte membrane fuel cells. Journal of Power Sources,2010,195(23):7720-7726
    [101]Aslan A, Celik S U, Sen U, et al. Intrinsically proton-conducting poly(1-vinyl-1,2,4-triazole)/triflic acid blends. Electrochimica Acta,2009, 54(11):2957-2961
    [102]Celik S U, Aslan A, Bozkurt A. Phosphoric acid-doped poly(1-vinyl-1,2,4-triazole) as water-free proton conducting polymer electrolytes. Solid State Ionics,2008,179(19-20):683-688
    [103]Celik S U, Bozkurt A. The synthesis and proton-conducting properties of the copolymers based on 1-vinyl-1,2,4-triazole and 2-acrylamido-2-methyl-1-propanesulfonic acid. Solid State Ionics,2010,181(11-12):525-530
    [104]Guhathakurta S, Min K. Influence of crystal morphology of 1H-1,2,4-triazole on anhydrous state proton conductivity of sulfonated bisphenol A polyetherimide based polyelectrolytes. Polymer,2009,50(4):1034-1045
    [105]Subbaraman R, Ghassemi H, Zawodzinski Jr. T A. Triazole and triazole derivatives as proton transport facilitators in polymer electrolyte membrane fuel cells. Solid State Ionics,2009,180(20-22):1143-1150
    [106]Subbaraman R, Ghassemi H, Zawodzinski Jr. T A. 4,5-Dicyano-1H-[1,2,3]-Triazole as a Proton Transport Facilitator for Polymer Electrolyte Membrane Fuel Cells. Journal of the America Chemical Society, 2007,129(8):2238-2239
    [107]Sen U, Celik S U, Ata A, et al. Anhydrous proton conducting membranes for PEM fuel cells based on Nafion/Azole composites. International Journal of Hydrogen Energy,2008,23(11):2808-2815
    [108]Yamanda M, Honma I. Alginic acid-imidazole composite material as anhydrous proton conducting membrane. Polymer,2004,45(25):8349-8354
    [109]Gunday S T, Bozkurt A. Preparation and proton conductivity of polymer electrolytes based on alginic acid and 1,2,4-triazole. Polymer Journal,2008,40: 104-108
    [110]Ghosh B D, Ritchie J E. Effect of polymer structure on ion transport in an anhydrous proton conducting electrolyte. Chemistry of Materials,2010,22(4): 1483-1491
    [111]Ghosh B D, Lott K F, Ritchie J E. Conductivity dependence of PEG content in an anhydrous proton conducting Sol-Gel electrolyte. Chemistry of Materials, 2005,17(3):661-669
    [112]Srivastava N, Chandra S. Studies on a new proton conducting polymer system: poly(ethylene succinate)+NH4ClO4. European Polymer Journal,2000,36(2): 421-433
    [113]Kumar G G, Kim P, Nahm K S, et al. Structural characterization of PVdF-HFP/PEG/Al2O3 proton conducting membranes for fuel cells. Journal of Membrane Science,2007,303(1-2):126-131
    [114]Tanaka R, Yamamoto H, Kawamura K, et al. Proton conducting behavior of poly(ethylenimine)-H3PO4 systems. Electrochimica Acta,1995,40(13-14): 2421-2424
    [115]Tanaka R, Yamamoto H, Shono A, et al. Proton conducting behavior in non-crosslinked polyethylenimine with excess phosphoric acid. Electrochimica Acta,2000,45(2):1385-1389
    [116]Wieczorek W, Stevens J R. Proton transport in polyacrylamide based hydrogels doped with H3PO4 or H2SO4. Polymer,1997,38(9):2057-2065
    [117]Yuka O, Sounai A, Hori M. Influence of the phosphoric acid-doping level in a polybenzimidazole on the cell performance of high-temperature proton exchange membrane fuel cells. Journal of Power Sources,2000,189(2): 943-949
    [118]Yang Z, Coutinho D H, Sulfstede R, et al. Proton conductivity of acid-doped meta-polyaniline. Journal of Membrane Science,2008,313(1-2):86-90
    [119]Tezuka T, Tadanaga K, Hayashi A, et al. Proton conductive inorganic-organic hybrid membranes prepared from 3-aminopropyltriethoxysilane and phosphoric acid by the sol-gel method. Solid State Ionics,2008,179(21-26):1151-1154
    [120]Tezuka T, Tadanaga K. Hayashi A, et al. Inorganic-organic hybrid membranes prepared from 3-aminopropyltriethoxysilane and sulfuric acid as anhydrous proton conductors. Solid State Ionics,2007,178(7-10):705-708
    [121]Li M Q, Shao Z G, Scott K. A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature. Journal of Power Sources,2008,183(1):69-75
    [122]Zhai Y, Zhang H, Xing D, et al. The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test. Journal of Power Sources,2007, 164(1):126-133
    [123]Lobato J, Canizares P, Rodrigo M A, et al. Study of the influence of the amount of PBI-H3PO4 in the catalytic layer of a high temperature PEMFC. International Journal of Hydrogen Energy,2010,35(3):1347-1355
    [124]Siegel C, Bandlamudi G, Heinel A. Systematic characterization of a PBI/H3PO4 sol-gel membrane—Modeling and simulation. Journal of Power Sources,2011, 195(5):2735-2749
    [125]Liu G, Zhang H, Hu J, et al. Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI.Journal of Power Sources, 2006,162(1):547-552
    [126]Hu J, Zhang H, Hu J, et al. Two dimensional modeling study of PBI/H3PO4 high temperature PEMFCs based on electrochemical methods. Journal of Power Sources,2006,160(2):1026-1034
    [127]Lobato J, Canizare P, Rodrigo M A, et al. Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC. Journal of Membrane Science,2007,306(1-2):47-55
    [128]Hu J, Zhang H, Zhai Y, et al.500 h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC. International Journal of Hydrogen Energy,2006, 31(13):1855-1862
    [129]Hu J, Zhang H, Zhai Y, et al. Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis. Electrochimica Acta,2006,52(2):394-401
    [130]Li Q F, Rudbeck H C, Chromik A, et al. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. Journal of Membrane Science,347(1-2):260-270
    [131]Qi Z, Buelte S. Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells. Journal of Power Sources,161(2): 1126-1132
    [132]Mamlouk M, Scott K. The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell. International Journal of Hydrogen Energy,2010,35(2):784-793
    [133]Gu T, Shimpalee S, Van Zee J W, et al. A study of water adsorption and desorption by a PBI-H3PO4 membrane electrode assembly. Journal of Power Sources,2010,195(24):8194-8197
    [134]Neyerlin K C, Singh A, Chu D. Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell. Journal of Power Sources,2008,176(1):112-117
    [135]Bouchet R, Siebert E. Proton conduction in acid doped polybenzimidazole. Solid State Ionics,1999,118(3-4):274-299
    [136]Bouchet R, Miller S, Duclot M, et al. A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole. Solid State Ionics,2001, 145(1-4):69-78
    [137]Staiti P, Minutoli M, Hocevar S. Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application. Journal of Power Sources,2000, 90(2):231-235
    [138]Gomez-Romero P, Asensio J A, Borros S. Hybrid proton-conducting membranes for polymer electrolyte fuel cells:Phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40). Electrochimica Acta,2005, 50(24):4715-4720
    [139]Li Q, Jensen J O, Savinell R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science,2009,34(5):449-477
    [140]Pu H, Ye S, Wan D. Anhydrous proton conductivity of acid doped vinyltriazole-based polymers. Electrochimica Acta,2007,52:5879-5883
    [141]Nakamoto N, Matsuda A, Tadanaga K, et al. Medium temperature operation of fuel cells using thermally stable proton-conducting composite sheets composed of phosphosilicate gel and polyimide. Journal of Power Sources,2004,138(1-2): 51-55
    [142]Pu H, Qiao L, Liu Q, et al. A new anhydrous proton conducting material based on phosphoric acid doped polyimide. European Polymer Journal,2005,41(10): 2505-2510
    [143]Tadanaga K, Michiwaki Y, Tezuka T, et al. Structural change and proton conductivity of phosphosilicate gel-polyimide composite membrane for a fuel cell operated at 180℃. Journal of Membrane Science,2008,324(1-2):188-191
    [144]Lassegues J C, Desbat B, Trinquet O, et al. From model solid-state protonic conductors to new polymer electrolytes. Solid State Ionics,1989,35(1-2): 17-25
    [145]Rodriguez D, Jegat C, Trinquet O, et al. Proton conduction in poly (acrylamide)-acid blends. Solid State Ionics,1993,21(1-3):195-202
    [146]Radev I, Georgiev G, Sinigersky V, et al. Proton conductivity measurements of PEM performed in easy test cell. International Journal of Hydrogen Energy, 2008,33(18):4849-4855
    [147]Kreuer K D, Fushs A, Ise M, et al. Imidazole and pyazole-based proton conducting polymers and liquids. Electrochimica Acta,1998,43(10-11): 1281-1288
    [148]Subbaraman R, Ghassemi H, Zawodzinski Jr. T A.4, 5-dicyanco-1H-[1,2,3]-triazole as a proton transport facilitator for polymer electrolyte membrane fuel cells. Journal of the American Chemical Society, 2007,129(8):2238-2239
    [149]王春江,汪洋.有机硅化合物的生产现状和发展趋势.江苏化工,2002,30(2):16
    [150]沈新春,王大喜,栗秀刚.聚倍半硅氧烷的研究现状和发展趋势.有机硅材料,2004,18(1):22-26
    [151]Brijmonhan S B, Shaw M T. Proton exchange membranes based on sulfonated crosslinked polystyrene micro particles dispersed in poly(dimethyl siloxane). Polymer,2006,47(8):2856-2864
    [152]Zhang Z, Sherlock D, West R, et al. Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: synthesis and conductivity. Macromolecules,2003,36(24):9176-9180
    [153]Snyder J F, Hutchison J C, Ratner M A. Synthesis of comb polysiloxane polyelectrolytes containing oligoether and perfluoroether side chains. Chemistry of Materials,2003,15(22):4223-4230
    [154]Savaniu C, Irvine J T S. Sol-gel preparation and characterization of dense proton conducting Sr3CaZr0.5Ta1.5O8.75 thin films. Solid State Ionics,2002, 150(3-4):295-308
    [155]Mosa J, Duran A, Aparicio M. Proton conducting sol-gel sulfonated membranes produced from 2-allylphenol,3-glycidoxypropyl trimethoxysilane and tetraethyl orthosilicate. Journal of Power Sources,2009,192(1):138-143
    [156]Ritchie J E, Crisp J A. A sol-gel synthesis of polyether-based proton conducting electrolytes. Analytica Chimica Acta,2003,496(1-2):65-71
    [157]Eschenbaum J, Rosenberger J, Hempelman R, et al. Thin films of proton conducting SrZrO3-ceramics prepared by the sol-gel method. Solid State Ionics, 1995,77:222-225
    [158]Honma I, Nakajima H, Nishikawa O, et al. Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes. Solid State Ionics, 2003,162-163:237-245
    [159]Krishnan P, Park J S, Kim C S. Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process. Journal of Membrane Science,2006,279(1-2):220-229
    [160]Kato M, Sakamoto W, Yogo T. Proton-conductive sol-gel membranes from phenylvinylphosphonic acid and organoalkoxysilanes with different functionalities. Journal of Membrane Science,2008,311(1-2):182-191
    [161]Li H, Jin D, Kong X, et al. High proton-conducting monolithic phosphosilicate glass membranes. Microporous and Mesoporous Materials,2011,138(1-3): 63-67
    [162]Balgobin R, Garcia B, Karamanev D, et al. Preparation and proton conductivity of composite SiO2/Poly (2-hydroxyethyl methacrylate) gel membranes. Solid State Ionics,2010,181(31-32):1403-1407
    [163]Klein L C, Daiko Y, Aparicio M, et al. Methods for modifying proton exchange membranes using the sol-gel process. Polymer,2005,46(12):4504-4509
    [164]Sanchez J Y, Denoyelle A, Poinsignon C. Poly(benzylsulfonic acid) siloxane as proton-conducting electrolyte. Polymers Advanced Technologies,1993,4(2-3): 99-105
    [165]Gautier-Luneau I, Denoyelle A, Sanchez J Y, et al. Organic-inorganic protonic polymer electrolytes as membrane for low-temperature fuel cell. Electrochimica Acta,1992,37(9):1615-1618
    [166]Charbouillot Y, Ravaine D, Armand M, et al. AMINOSILS:New solid state protonic materials by the sol-gel process. Journal of Non-Crystalline Solids, 1988,103(2-3):325-330
    [167]Khiterer M K, Loy D A, Cornelius C J, et al. Hybrid polyelectrolyte materials for fuel cell applications:design, synthesis, and evalution of proton-conducting bridged polysilsesquioxanes. Chemistry of Materials,2006,18(16):3665-3673
    [168]Baradie B, Poinsignon C, Sanchez J Y, et al. Thermostable ionomeric filled membrane for H2/O2 fuel cell. Journal of Power Sources,1998,75(1):8-16
    [169]Honma I, Takeda Y, Bae J M. Protonic conducting properties of sol-gel derived organic/inorganic nanocomposite membranes doped with acidic functional molecules. Solid State Ionics,1999,120(1-4):255-264
    [170]Honma I, Nomura S, Nakajima H. Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane. Journal of Membrane Science,2001,195(1):83-94
    [171]Honma I, Hirakawa S,Yamada K, et al. Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol-gel processes. Solid State Ionics,1999,118(1-2):29-36
    [172]Stangar U L, Groselj N, Orel B, et al. Proton-conducting sol-gel hybrids containing heteropoly acids,2001,145(1-4):109-118
    [173]Tanaka Y, Norisuye T, Hirayama S, et al. DLS and AFM studies on the cluster evolution of organically modified silica gels catalyzed by a super strong acid. Macromolecules,2007,40(10):3773-3778
    [174]Stangar U L, Groselj N, Orel B, et al. Structure of and interactions between P/SiWA keggin nanocrystals dispersed in an organically modified electrolyte membrane. Chemistry of Materials,2000,12(12):3745-3753
    [175]Zhou Z, Li S, Zhang Y, et al. Promotion of proton conduction in polymer electrolyte membranes by 1H-1,2,3-triazole. Journal of the America Chemical Society,2005,127(31):10824-10825
    [176]Li S, Zhou Z, Zhang Y, et al. 1H-1,2,4-triazole:an effective solvent for proton-conducting electrolytes. Chemistry of Materials,2005,17(24): 5884-5886
    [177]Li S, Zhou Z, Liu M, et al. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes. Electrochimica Acta,2006,51(7): 1351-1358
    [178]Airoldi C, Gushikem Y, Espinola J G P. Adsorption of divalent cations on the silica-gel surface modified with N-(2-aminoethyl-3-aminopropyl) groups. Colloids and Surfaces,1986,17(4):317-323
    [179]Zheng F, Hu B. Novel bimodal porous N-(2-aminoethyl)-3-aminopropyl trimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B:Atomic Spectroscopy,2008,63(1):9-18
    [180]Wang X, Chan J C C, Tseng Y H, et al. Synthesis, characterization and catalytic activity of ordered SBA-15 materials containing high loading of diamine functional groups. Microporous and Mesoporous Materials,2006,95(1-3): 57-65
    [181]Chattopadhyay D K, Muehlberg A J, Webster D C. Organic-inorganic hybrid coatings prepared from glycidyl carbamate resins and amino-functional silanes. Progress in Organic Coatings,2008,63(4):405-415
    [182]Chotirat L, Chaochanchaikul K, Sombatsompop N. On adhesion mechanisms and interfacial strength in acrylonitrile-butadiene-styrene/wood sawdust composites. International Journal of Adhesion and Adhesives,2007,27(8): 669-678
    [183]Haken J K. Developments in polysiloxane stationary phases in gas chromatography. Journal of Chromatography A,1984,300:1-77
    [184]Cargillll R S, Dee K C, Malcolm S. An assessment of the strength of NG108-15 cell adhesion to chemically modified surfaces. Biomaterials,1999,20(23-24): 2417-2425
    [185]Photong S, Boonamnuayvitaya V. Enhancement of formaldehyde degradation by amine functionalized silica/titania films. Journal of Environmental Sciences, 2009,21:1741-1746
    [186]Colilla M, Salinas A J, Vallet-Regi M, et al. Chemistry of Materials,2006, 18(24):5676-5683
    [187]Kaneko Y, Lyi N, Kurashima K, et al. Hexagonal-Structured Polysiloxane Material Prepared by Sol-Gel Reaction of Aminoalkyltrialkoxysilane without Using Surfactants. Chemistry of Materials,2004,16(18):3417-3423
    [188]Gonzalez B, Colilla M, Vallet-Regi M. Time-Delayed Release of Bioencapsulates:A Novel Controlled Delivery Concept for Bone Implant Technologies. Chemistry of Materials,2008, (20)15:4826-4834
    [189]Volodina E, Pismenskaya N, Nikonenko V, et al. Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces. Journal of Colloid and Interface Science,2005,285(1):247-258
    [190]Kerres J, Ullrich A, Meier F, et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells. Solid State Ionics,1999,125(1-4):243-249
    [191]Ding F C, Wang S J, Xiao M, et al. Fabrication and properties of cross-linked sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane. Journal of Power Sources,2007,170(1):20-27
    [192]Gao Y, Robertson G P, Guiver M, et al. Low-swelling proton-conducting copoly(aryl ether nitrile)s containing naphthalene structure with sulfonic acid groups meta to the ether linkage. Polymer,2006,47(3):808-816
    [193]Celik S U, Akbey U, Bozkurt A, et al. Proton-Conducting Properties of Acid-Doped Poly(glycidyl methacrylate)-1,2,4-Triazole Systems. Macromolecular Chemistry and Physics,2008,209(6):593-603
    [194]Dippel Th, Kreuer K D, Lassegues J C, et al. Proton conductivity in fused phosphoric acid; A1H/31P PFG-NMR and QNS study. Solid State Ionics,1993, 61(1-3):41-46
    [195]Gupta P N, Singh K P. Characterization of H3PO4 based PVA complex system. Solid State Ionics,1996,86-88:319-323
    [196]Prajapati G K, Roshan R, Gupta P N. Effect of plasticizer on ionic transport and dielectric properties of PVA-H3PO4 proton conducting polymeric electrolytes. Journal of Physics and Chemistry of Solids,2010,71(12):1717-1723
    [197]Singh K P, Singh R P, Gupta P N. Polymer based solid state electrochromic display device using PVA complex electrolytes. Solid State Ionics,1995, 78(3-4):223-229
    [198]Prajapati G K, Gupta P N. Conduction mechanism in un-irradiated and y-irradiated PVA-H3PO4 polymer electrolytes. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2009,267(19):3328-3332
    [199]Petty-Weeks S, Polak A J. Differential scanning calorimetry and complex admittance analysis of PVA/H3PO4 proton conducting polymer blends. Sensors and Actuators,1987,11(4):377-386
    [200]Suzuki M, Yoshida T, Koyama T, et al. Ionic conduction in partially phosphorylated poly(vinyl alcohol) as polymer electrolytes. Polymer,2000, 41(12):4531-4536
    [201]Feng W, Wang J, Wu Q. Preparation and conductivity of PVA films composited with decatungstomolybdovanadogermanic heteropoly acid. Materials Chemistry and Physics,2005,93(1):31-34
    [202]Cui Y, Mao J, Wu Q. Preparation and conductivity of polyvinyl alcohol (PVA) films composited with molybdotungstovanadogermanic heteropoly acid. Materials Chemistry and Physics,2004,85(2-3):416-419
    [203]Wu Q, Wang H, Yin C, et al. Preparation and performance of PVA films composited with 12-tungstogermanic heteropoly acid. Materials Letters,2001, 50(2-3):61-65
    [204]Lin C W, Thangamuthu R, Yang C J. Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications. Journal of Membrane Science,2005,253(1-2):23-31
    [205]Xu W, Liu C, Xue X, et al. New proton exchange membranes based on poly (vinyl alcohol) for DMFCs. Solid State Ionics,2004,171(1-2):121-127
    [206]Gao H, Tian Q, Lian K. Polyvinyl alcohol-heteropoly acid polymer electrolytes and their applications in electrochemical capacitors. Solid State Ionics,2010, 181(19-20):874-876
    [207]Tripathi B P, Shahi V K. Functionalized Organic-Inorganic Nanostructured N-p-Carboxy Benzyl Chitosan-Silica-PVA Hybrid Polyelectrolyte Complex as Proton Exchange Membrane for DMFC Applications. The Journal of Physical Chemistry B,2008,112(49):15678-15690
    [208]Qiao J, Hamaya T, Okada T. New highly proton-conducting membrane poly(vinylpyrrolidone)(PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs). Polymer,2005,46(24):10809-10816
    [209]Alberti G, Casciola M, Massinelli L, et al. Polymeric proton conducting membranes for medium temperature fuel cells (110-160℃). Journal of Membrane Science,2001,185(1):73-81
    [210]Bai H, Winston Ho W S. New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells. Journal of The Taiwan Institute of Chemical Engineers,2009,40(3):260-267
    [211]Badami A S, Roy A, Lee H S, et al. Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes. Journal of Membrane Science,2009,328(1-2):156-164
    [212]Gubler L, Prost N, Gursel S A, et al. Proton exchange membranes prepared by radiation grafting of styrene/divinylbenzene onto poly(ethylene-alt-tetrafluoroethylene) for low temperature fuel cells. Solid State Ionics,2005, 176(39-40):2849-2860
    [213]Lee H S, Roy A, Lane O, et al. Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. Polymer,2008,4((25): 5387-5396
    [214]Zhao C, Lin H, Han M, et al. Covalently cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer. Journal of Membrane Science,2010,353(1-2): 10-16
    [215]Erdogan T, Unveren E E, Lnan T Y, et al. Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell. Journal of Membrane Science,2009,344(1-2):172-181
    [216]Ghil L J, Kim C K, Rhee H W. Phosphonic acid functionalized poly(dimethyl siloxane) membrane for high temperature proton exchange membrane fuel cells. Current Applied Physics,2009,9(2):56-59
    [217]Wen S, Gong C, Tsen W C, et al. Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells. International Journal of Hydrogen Energy,2009,34(21): 8982-8991
    [218]Park S J, Lee D H, Kang Y S. High temperature proton exchange membranes based on triazoles attached onto SB A-15 type mesoporous silica. Journal of Membrane Science,2010,357(1-2):1-5
    [219]Lakshminarayana G, Nogami M, Kityk I V. Synthesis and characterization of anhydrous proton conducting inorganic-organic composite membranes for medium temperature proton exchange membrane fuel cells (PEMFCs). Energy, 2010,35(12):5260-5268
    [220]Gu S, He G, Wu X, et al. Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane. Journal of Membrane Science,2008,312(1-2): 48-58
    [221]Luisa Di Vona M, Epifanio A D, Marani D, et al. SPEEK/PPSU-based organic-inorganic membranes:proton conducting electrolytes in anhydrous and wet environments. Journal of Membrane Science,2006,279(1-2):186-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700