用户名: 密码: 验证码:
现代地壳运动参考基准的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地壳运动参考基准的混乱,同一个板块或同一个地壳形变区域,不同的文献资料给出的运动或形变速度和方向常常大不相同,差异的量级远大于测量误差,因此深入开展现代地壳运动参考基准研究,理清当前地壳运动参考基准使用中的混乱现象,不仅是大地测量学科发展的急需,对于促进地震、地质和地球物理等相关学科的发展也具有重要意义。
     本文基于最新的地壳运动实测数据、地学热点数据、冰期后地壳回弹模型数据和其他相关研究成果,对现代地壳运动参考基准展开深入研究,并针对全球水平地壳运动、垂直地壳运动和区域水平地壳运动、垂直地壳运动分别提出了一套地球物理意义明确、易于实现、便于应用的参考基准。
     本文的主要成果和创新点如下:
     1.全面回顾了现代地壳运动参考基准的发展历程,深入分析了相关研究现状,指出了现代地壳运动参考基准即水平运动基准、垂直运动基准和区域基准当前存在的主要问题,明确了建立全球统一地壳运动参考基准的重要性和必要性。
     2.建立了全球板块运动模型ITRF2005VEL和ITRF2008VEL,并和地学模型NNR-NUVEL1A以及以往的ITRF序列进行了深入比较,深入分析了彼此之间的一致性以及差异性,明确了差异性的主要原因,即与相应板块的测站较少、分布不均或者台站观测时间短对板块的约束不够等原因有关。讨论了构造板块总角动量的大小,13个板块的总角动量和不为零,说明ITRF2005和ITRF2008框架有可能不满足无整体旋转的要求;也有可能是由于台站选择的不同使得板块的总角动量之和不为零。
     3.建立并优化了全球水平地壳运动参考基准,提出了建立平均热点参考基准(Medial-HotSpot Reference Datum)的方法及其约束准则。利用ITRF2005和ITRF2008的实测数据,分别建立了无整体旋转(NNR-no net rotation)参考基准NNR-ITRF2005和NNR-ITRF2008;根据目前板块运动和热点之间相对运动的现状,提出了建立平均热点参考基准的方法及其相应的约束准则,并综合利用地学热点数据和ITRF2005的实测数据,建立了基于平均热点参考架的绝对板块运动模型MHS-NUVEL1A和MHS-ITRF2005。
     4.针对NNR基准和HS基准之间的较差旋转给出了定量估计。结果表明,基于热点的参考基准得到的岩石圈整体旋转与地球物理学家根据板块受力模型计算的岩石圈整体旋转在量级和方向上都基本一致,说明平均热点参考基准可能更符合实际情况。基于热点的参考基准能够更加真实的反映地幔对流的实际情况,研究地幔对流和板块运动的地球物理学家更倾向于采用热点参考基准,而大地测量学家则倾向于采用NNR参考基准。因此,我们提出,将基于实测数据的平均热点参考基准MHS-ITRF2005作为地球物理工作者研究全球水平地壳运动的参考基准,将无整体旋转模型NNR-ITRF2008作为大地测量学者研究水平地壳运动的参考基准。
     5.提出并建立了最优全球垂直地壳运动的参考基准。深入分析了影响地壳垂直运动的主要因素,包括冰期后地壳的回弹、地面沉降、各种潮汐的变化等,提出4种建立垂直地壳运动参考基准的方案,即SLR垂向运动基准、ICE-5G模型基准、赤道附近垂向速度约束为零基准和地壳均衡学说基准,并分别进行了推导、验证和比较。结果表明,SLR垂直运动基准地球物理意义明确、易于实现、便于应用,是最优的地壳垂直运动的参考基准,因此我们提出将ITRF2008框架下SLR技术实现的垂向运动作为全球垂直地壳运动的参考基准。
     6.针对中国地区的构造块体,分别提出了区域水平地壳运动和垂直运动参考基准的建立方案,并利用实测数据建立了中国地区的水平地壳形变模型。对于区域的水平地壳运动,提出将该形变区所依附板块的稳定主体作为该地区水平地壳形变研究的参考基准;对于区域的垂直地壳运动,提出将该区域的地壳垂直运动数据统一归算到最优的全球地壳垂直运动的参考基准上来,以建立一个与全球基准一致的该区域的地壳垂直运动速度场。
     7.探讨并利用实测数据检测了固体地球的变化趋势,提出将全球的垂向运动归算到建立的SLR垂向基准上。系统分析了地球的非对称性变化现象,阐述了地球膨胀学说和地球压缩学说,并提出利用本文建立的最优全球垂直地壳运动参考基准,将全球的垂向速度都统一到该基准上,通过ITRF2008的数据研究地球的非对称性变化现象。结果表明地球半径的变化近似为(-0.1±0.2)mm/a,即在目前的1倍中误差范围内,还不能认为地球的半径发生了变化。
Due to the confusion of the crustal motion reference datum, for the same plate or crustaldeformation region, the speed and direction of motion or deformation given by differentdocuments are often very different, whose order of magnitude of the difference are much largerthan the measurement error, so an exhaustive study about modern crustal motion reference datumand sorting out the confusion in the use of crustal motion reference datum not only are in urgentneed of geodetic development of the subject, but also are of great significance to promote thedevelopment of related subjects such as earthquakes, geology and geophysics. By using acombination of crustal motion measured data of the newest space observation technology,hotspot data, postglacial crustal rebound model data and other relevant research, this papermakes an exhaustive study of crustal motion reference datum, exploring and putting forward aset of modern crustal motion reference datum which has a clear geophysical significance and iseasy to implement and apply and whose content covers the refinement of global horizontalcrustal motion reference datum, the establishment of vertical crustal motion reference datum anddiscussion on regional crustal motion and so on. The main conclusions and innovation are as thefollowings:
     1. Summing up the definitions, the present development situations and the existing problemsof modern crustal motion, reference datum, and modern crustal motion reference datumrespectively. This paper elaborates the concepts and relations among reference system, referenceframe and the reference datum, gives the development of International Terrestrial ReferenceFrame (ITRF) series, and introduces the newest ITRF2008frameworks. It points out theproblems existing in the research of modern crustal motion reference datum, including thepresent research situation and existing problems of horizontal datum, vertical datum and theregional datum respectively, and puts forward the importance and necessity to establish theglobal uniform crustal motion datum.
     2. Using space observation data to build a global plate motion model ITRF2005VEL andITRF2008VEL. Plate motion model is the first step in establishing horizontal crustal motionreference datum. This paper summarizes the plate motion model systematically, includinggeological and geophysical method and space geodetic method, and makes use of the latestITRF2005and ITRF2008data to establish the model of ITRF2005VEL and ITRF2008VELrespectively. Overall the two models and the scale of millions years of geographical modelNNR-NUVEL1A have a better consistency and the two models have a higher model accuracythan the previous ITRF sequences, which are inseparable with the more reasonable distributionof the base stations, and the higher station coordinates and velocity field solver accuracy in the two reference frames. But there exist some differences between them and NNR-NUVEL1A,which is related to the less and the uneven distribution of the corresponding plate's stations or theinsufficient constraints to plate because of the shortage of observation time. Finally it discussesthe size of the total angular momentum of the tectonic plates, and the result shows that the totalangular momentum of the13plates are not zero, indicating that ITRF2005and ITRF2008framework may not meet the requirements of no-net-rotation, or may be due to the differentchoice of stations that make the plate's angular momentum be not zero. In fact, the ITRFWorking Group on this question also has no consistent opinions.
     3. Establishing and refining the global horizontal crustal motion reference datum, puttingforward the method of building the Medial-HotSpot (MHS) Reference Datum and itsconstraining criterion. The horizontal crustal motion reference datum includes two methods, eg.No-net-rotation (NNR) reference datum and Hot-spot (HS) reference datum. Using the latestspace observation data of ITRF2005and ITRF2008, NNR-ITRF2005and NNR-ITRF2008model were established and refined based on the ITRF framework. According to the present platemotion status and relative motions of hotspots, the constraint criterion for MHS ReferenceDatum is put forward, and by using the criterion to constrain the hotspot’s data to achieve theestablishment of the datum, that is, with the geological model NNR-NUVEL1A and geodeticmodel ITRF2005VEL as the foundation, this paper establishes the absolute plate motion modelMHS-NUVEL1A and MHS-ITRF2005VEL based on the Medial-Hotspot reference frame, andcompares and analyzes with other absolute plate motion model based on hotspots.
     4. Discussing the overall rotation of the lithosphere, and providing a more accuratequantitative estimation about lithosphere’s overall rotation (drift) relative to the lower mantle.The result shows that the overall rotation of the lithosphere based on the reference datum of thehotspots and the overall rotation of the lithosphere calculated by geophysicists based onlithosphere plate force model are basically the same in magnitude and direction, which showsthat MHS Reference Datum may be more consistent with the actual situation. Reference datumbased on the hotspots can be more truly to reflect the actual situation of mantle convection, andthe Geophysicists that study the mantle convection and the motion of the plates prefer to use HSreference datum, but geodetic scientists tend to use NNR reference datum.
     5. Putting forward and establishing the optimal global vertical crust motion reference datum.This paper discusses the main factors that affect the global vertical motion detailed, includingpost-glacial rebound, ground subsidence, and various tidal changes and so on. After discussingthe necessity of studying vertical datum, this paper puts forward four kinds of schemes toestablish vertical crust motion reference datum, that is SLR vertical motion datum, ICE-5Gmodel datum, the datum that vertical velocity constraint is zero near the equator and crustal isostatic adjustment datum, and makes the corresponding derivation and validation respectively.Comparing those four kinds of vertical datum, the result shows that for SLR vertical motionreference datum, its geophysical significance is clear, and it's easy to implement and use, whichis the optimal reference datum of the global vertical crustal motion. So it is recommended thatthe vertical datum achieved by SLR technology under the ITRF2008framework is suitable as areference datum of the global vertical crustal motion.
     6. Putting forward the method of regional horizontal crustal motion reference datum andregional vertical crustal motion reference datum respectively by using the crustal motion inChina as an example, and using the geodetic data to establish the horizontal crustal deformationmodel in China region. For the horizontal crustal motion of the region, the stable main body ofthe plate which the deformation area is attached to can be the reference datum of studying thehorizontal crustal deformation in this region. For the vertical crustal motion of this region, theregional crustal vertical motion data can be imputed unified to the optimal reference datum of theglobal crustal vertical motion, namely SLR vertical motion reference datum to establish avertical crustal motion velocity field of this area, which is consistent with the global crustalvertical motion datum.
     7. Discussing and using the geodetic data to detect the change trend of the solid earth, andputting forward to attribute the global vertical motion to the established SLR vertical datum. Thispaper systematically discusses the earth's unsymmetrical phenomenon, and expounds thedoctrine of the earth's expansion and compression. After a detailed analysis of the status ofglobal change phenomena research, this paper puts forward to unify the global vertical velocityto the optimal global crustal vertical motion reference datum established by this paper, and thenuses the ITRF2008data to study the Earth's unsymmetrical change phenomenon. The resultshows that the earth radius's change rate is similar to (-0.1±0.2)mm/a, which shows that theradius of the earth cannot be considered changed in the range of one time mean error.
引文
[1]赖锡安,黄立人,徐菊生等.中国大陆现今地壳运动[M].北京:地震出版社,2004.
    [2]柴洪洲.地壳运动背景场及其监测网数据处理理论与方法研究[D].信息工程大学测绘学院,2006.
    [3]胡明城,鲁福.现代大地测量学·下册[M].北京:测绘出版社,1995.
    [4]陈新.地壳运动研究中的哲学思考[J].石油知识,2004,(6):48-49.
    [5]许才军,申文斌,晁定波.地球物理大地测量学原理与方法[M].武汉大学出版社,2006.
    [6]宁津生.现代大地测量参考系统[J].测绘学报,2002,31(增刊):7-11.
    [7]孙付平.基于空间技术的现代地壳运动研究[D].上海:中国科学院上海天文台,1994.
    [8]张西光.地球参考框架的理论与方法[D].信息工程大学测绘学院,2009.
    [9]魏子卿,刘光明,吴富梅.2000中国大地坐标系:中国大陆速度场[J].测绘学报,2011,40(4):403-410.
    [10]马高峰. VLBI2010与GNSS联合数据分析理论及方法研究[D].信息工程大学测绘学院,2011.
    [11] Drewes H. Reference Systems, Reference Frames, and the Geodetic Datum-BasicConsiderations [J]. Springer, IAG Symposia,2009, Vol.133,3-9.
    [12] Altamimi, Z., P. Sillard, C. Boucher: ITRF2000. A new release of the InternationalTerrestrial Reference Frame for Earth science applications [J]. J. Geophys. Res.2002(107)B10,2214,19pp, doi:10.1029/2001JB000561.
    [13] Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, C. Boucher. ITRF2005: A new releaseof the International Terrestrial Reference Frame based on time series of station positionsand Earth Orientation Parameters [J]. J. Geophys. Res.,2007,112, B09401,19pp, doi:10.1029/2007JB004949.
    [14] Altamimi Z, Collilieux X, Metivier L. ITRF2008: an improved solution of theinternational terrestrial reference frame [J]. J Geod,2011,85:457-473, Doi:10.1007/s00190-011-0444-4.
    [15]成英燕. ITRF2008框架简介[J].大地测量与地球动力学,2012,32(1):47-50.
    [16]金双根. GPS监测全球板块构造运动的研究[D].上海,中国科学院上海天文台,2003.
    [17]陈俊勇.中国现代大地基准—中国大地坐标系统2000(CGCS2000)及其框架[J].测绘学报,2008,37(3):269-271.
    [18]朱新慧.空间地球动力学若干问题研究[D].郑州:信息工程大学测绘学院,2005.
    [19]秦小军,周硕愚,吴云.现今板块、块体运动定量模型的发展[J].地壳形变与地震,1999,19(2):90-97.
    [20] DeMets C. Effect of recent revisions to the geomagnetic reversal time scale on estimates ofcurrent plate motions [J]. Geophys. Res. Lett.,1994,21:2191-2194.
    [21] Gripp, A.E., Gordon, R.G. Current plate velocities relative to the hotspots incorporating theNUVEL-1global plate motion model [J]. Geophys. Res. Lett.,1990,17(8):1109–1112.
    [22] Gripp, A.E., Gordon, R.G. Young tracks of hotspots and current plate velocities [J].Geophysical Journal International,2002,150(2):321–361.
    [23]朱文耀,韩继龙,马文章.基于ITRF96和ITRF97板块运动模型[J].天文学报,2000,41(3):312-319.
    [24]朱文耀,熊福文,宋淑丽.基于ITRF2000的全球板块运动模型[J].中国科学院上海天文台年刊,2002(23):28-33.
    [25] Sillard p, Altamimi Z, Boucher C. The ITRF96realization and its associated velocity field[J]. Geophgs. Res. Lett,1998,25,3223-3226.
    [26] Zhang Q, Zhu W G, Xiong Y Q. Global plate motion models, incorporating the velocityfield of ITRF96[J]. Glophys kes. Lett,1999,26(18):2813-3226.
    [27] Zhu W, Wang X, Duan W, Wu X, Jiao W. Present-day crustal deformation in China relativeto ITRF97kinematic plate model [J]. Journal of Geodesy,2002,76:216-225.
    [28] Ciovanni F S, Timoth H D, Ailin M. REVEL: A model for recent plate velocities fromspace geodesy [J]. J. Geophys. Res,2002,107, B4,10.102912000JB00033.
    [29] Zhu W Y, Fu Y, Li Y, et al. NNR constraint in ITRF2000and the new global plate motionmodel NNR-ITRF2000VEL [J]. SCIENCE IN CHINA (Series D),2003,33(Supp):1-12.
    [30] Linette P, Yehuda B, Cecil H, et al. Instantaneous global plate motion model from12yearsof continuous GPS observations [J]. Journal of geophysical research,2004, Vol109,B08405, doi:10.1029/2003JB002944.
    [31]明锋,柴洪洲.利用半参数模型求解板块运动参数[J].大地测量与地球动力学,2008,28(2):1-5.
    [32]朱文耀,熊福文,宋淑丽. ITRF2005简介和评析[J].天文学进展,2008,26(1):1-14.
    [33]朱新慧,孙付平.用甚长基线干涉测量数据检测冰期后地壳回弹[J].地球物理学报,2005,48(2):308-313.
    [34]孙付平,朱新慧,王刃等.用GPS和VLBI数据检测固体地球的体积和形状变化[J].地球物理学报,2006,49(4):1015-1021.
    [35]朱新慧,孙付平,秦勇.组合GPS和VLBI数据建立板块运动模型[J].武汉大学学报信息·科学版,2005,30(7):604-608.
    [36]金双根,朱文耀.关于全球板块运动模型ITRF2000VEL若干问题探讨[J].地球物理学进展,2002,17(3):430-436.
    [37]朱新慧,孙付平,王刃.基于ITRF2005的全球板块运动模型[J].地球物理学进展,2009,24(3):859-865.
    [38]李延兴,张静华,何建坤等.菲律宾海板块的整体旋转线性应变模型与板内形变-应变场[J].地球物理学报,2006,49(5):1339-1346.
    [39]李延兴,张静华,何建坤等.由空间大地测量得到的太平洋板块现今构造运动与板内形变应变场[J].地球物理学报,2007,50(2):437-447.
    [40]李延兴,李金岭,张静华等.弹性板块运动模型研究进展[J].地球物理学进展,2007,22(4):1201-1208.
    [41] Argus D F, Gordon R G. No-Net-Rotation Model of Current Plate Velocities IncorporateMotion Model NUVEL-1[J]. Geophys. Res. Lett.,1991,18(11):2039-2042.
    [42]张西光,吕志平,赵冬青. NNR条件、ITRF和全球板块运动模型[J].大地测量与地球动力学,2007,27(3):39-43.
    [43] Minster J B, Jordan T H. Present-day plate motions[J]. J. Geophys. Res.,1978,83:5331–5354.
    [44]朱新慧,孙付平,王刃.基于NNR参考架的绝对板块运动模型的建立和比较[J].武汉大学学报信息科学版,2012,37(3):282-285.
    [45] Solomon S C, Sleep N H. Some simple physical models for absolute plate motions [J].J.Geophys.Res.,1974,79:2557-2567.
    [46] http://itrf.ensg.ign.fr/ITRF_solutions/2005/ITRF2005.php [OL].
    [47] McCarthy D D. IERS Standards (1989), IERS Technical Note3,1989.
    [48] McCarthy D D. IERS Standards (1992), IERS Technical Note13,1992.
    [49] Dennis D, McCarthy D D. IERS Conventions (1996), IERS Technical Note21,1996.
    [50] Harper, J.F. Mantle flow and plate motions [J]. J. R. astron. Soc.,1986,87(1):155-171.
    [51] Wilson J T. A possible origin of the Hawaiian Islands [J]. Canadian Journal of Physics,1963,41:863-870.
    [52]廖永岩.地球科学原理[M].北京:海洋出版社,2007,13-14.
    [53] Morgan W J. Deep Mantle Convection Plumes and Plate Motions [J]. The AmericanAssociation of Petroleum Geologists Bulletin,1972,56:203-213.
    [54] B. Steinberger. Motion of Hotspots and Changes of the Earth Rotation Axis Caused by aConvecting Mantle [D]. Harvard University,1996.
    [55]赵俐红,高金耀等.热点研究进展[J].海洋学研究,2007,25(3):84-92.
    [56] Clouard V, Bonneville A. How many Pacific hotspots are fed by deep-mantle plumes [J].Geology,2001,21:695-698.
    [57] Minster J B, Jordan T H, Molnar P, Haines E. Numerical modeling of instantaneous platetectonics. Royal Astronomical Society Geophysical Journal [J].1974,36:541–576.
    [58] Wessel P, Kroenke L. Relocating Pacific hotspots and refining absolute plate motions usinga new geometric technique[J], Nature,1997,387,365–369.
    [59] Wang S M, Liu M. Moving hotspots or reorganized plates [J]. Geology,2006,34(6):465–468.
    [60]金双根,朱文耀.3种板块绝对运动模型的建立及其比较[J].中国科学院上海天文台年刊,2002,23:21-27.
    [61]魏子卿.现今绝对板块运动[J].地球科学与环境学报,2009,31(4):331-343.
    [62] Molnar P, Stock J. Relative motions of hotspots in the Pacific, Atlantic and Indian Oceanssince late Cretaceous time [J]. Nature,1987,327(6123):587-591.
    [63] Vic Divenere, Dennis V Kent. Are the Pacific and Indo-Atlantic hotspots fixed? Testing theplate circuit through Antarctica [J]. Earth and Planetary Science Letters,1999,170:105-117.
    [64] Tarduno J A, Ducan R A, Scholl D W, et al. The Emperor Seamounts: Southward motion ofthe Hawaiian hotspot plume in Earth’s mantle [J]. Science,2003,301:1064-1069.
    [65]朱新慧,孙付平,王刃.基于两种不同参考架的绝对板块运动研究[C],信息工程大学测绘学院第五届博士生学术论坛论文集,2010:85-89.
    [66] Richard Y, Doglioni C, Sbedini R. Differential rotation between lithosphere and mantle: aconsequence of lateral mantle viscosity variations [J]. J.Geophys.Res,1991,96:8407-8415.
    [67] Wang S M, Wang R. Current plate velocities relative to hotspots: Implications for hotspotmotion, mantle viscosity and global referenceframe [J]. Earth and Planetary ScienceLetters,2001, v.189, p.33–140, doi:10.1016/S0012-821X (01)00351-X.
    [68] Gordon R G, Jurdy D M. Cenozoic global plate motions [J]. Journal of GeophysicalResearch,1986, v.91, p.12389–12406.
    [69]徐明芝.热点移动或板块重组[J].海洋地质动态,2007,23(7):19-21.
    [70]王建,叶正仁.地幔对流对全球岩石圈应力产生与分布的作用[J].地球物理学报,2005,48(3):584-590.
    [71] Drewes H., Angermann D., Gerstl M., et al. Analysis and Refined Computations of theInternational Terrestrial Reference Frame. In: J. Flury, R. Rummel, C. Reigber, M.Rothacher, G. Boedecker, U. Schreiber (Eds.): Observation of the Earth System from Space,343-356, Springer,2006.
    [72] Drewes H.: IAG Commission1"Reference Frames" Report for the period2003-2007. IAGCommission1, Bulletin No.20,7-12, München,2007.
    [73] Drewes H. Reference Systems, Reference Frames, and the Geodetic Datum-BasicConsiderations. In: Sideris, M.G.(Ed.): Observing our Changing Earth, IAG Symposia,Springer, Vol.133,3-9,2009.
    [74] Niell, A., A. Whitney, W. Petrachenko, W. Schlüter, N.Vandenberg, H. Hase, Y. Koyama, C.Ma, H. Schuh, G.Tuccari. VLBI2010: Current and Future Requirements for Geodetic VLBISystems, IVS. WG3Report,2005.
    [75]刘经南,姚宜斌,施闯等.中国大陆现今垂直形变特征的初步探讨[J].大地测量与地球动力学,2002,22(3):1-5.
    [76]顾国华. GPS观测得到的中国大陆地壳垂直运动[J],地震,2005,25(3):1-8.
    [77]张诗玉,钟敏.地表流体变化对我国地壳垂直形变的影响[J].武汉大学学报·信息科学版,2007,32(5):458-461.
    [78]张诗玉,钟敏,唐诗华.我国GPS基准站地壳垂直形变的大气负荷效应[J].武汉大学学报·信息科学版,2006,31(12):1090-1093.
    [79] Stacey F D. Physics of the Earth (Ed.3). Brisbane: Brookfiel Press,1992.
    [80] Gudmundsson A. Postglacial Crustal Doming Stresses and Fracture Formation withApplication to Norway. Tectonophysics,1999,307:407-419.
    [81] Tushingham A M, Peltier W R. ICE-3G: A New Global Model of Late PleistoceneDeglaciation Based upon Geophysical Predictions of Post-glacial Relative Sea LevelChange [J]. J. Geophys. Res.,1991,96,4497-4523.
    [82] Peltier W R. VLBI Baseline Variations from the ICE-4G Model of Postglacial Rebound [J].Geophys. Res. Lett,1995,22:465-468.
    [83] Peltier W R. Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G(VM2) Model and Grace [J]. Ann. Rev. Earth. Planet. Sci.,2004,32,111-149.
    [84] Ray J R, C. Ma, et al. Comparison of VLBI and SLR Geocentric Site Coordinates [J].Geophys. Res. Lett.,1991,18(2),231-234.
    [85] James T S, Lambert A. A Comparison of VLBI Data with the ICE-3G Glacial ReboundModel [J]. Geophys. Res. Lett.,20(9),871-874,1993.
    [86] Sun F. P, Ning J. S etc. Space Geodetic Detection of Postglacial Rebound [J]. Study on theGlobal Background of the Crustal Motion of China Continent,2001.
    [87]陈淑青,霍吉亮.卫星测量在沉降监测中的应用[J].山西建筑,2008,34(15):357-358.
    [88]董克刚,易长荣,许才军等.利用GPS监测天津市地面沉降的可行性研究[J].大地测量与地球动力学,2008,28(4):68-71.
    [89]杨成生,侯建国等. D-InSAR技术用于西安地区地面沉降监测的研究[J].测绘工程,2008,17(3):34-36.
    [90]缪德都,李本贤. Leica电子水准仪在地面沉降监测中的应用[J].勘察科学技术,2008(4):56-58.
    [91]潘华志,卫建东,夏治国等.动态灰色模型在变形预测中的应用[J].测绘科学,2007,32(4):121-123.
    [92]郑良飞,折学森.地面沉降的GM(2,1)模型预测研究[J].中国地质灾害与防治学报,2007,18(4):66-69.
    [93]马光思,白燕.基于灰色理论和神经网络建立预测模型的研究与应用[J].微电子学与计算机,2008,25(1):153-155.
    [94]邵传青,郭家伟等.地面沉降预测的灰色-马尔柯夫模型[J].中国地质灾害与防治学报,2008,19(3):69-72.
    [95] Dennis D. McCarthy, Gerard Petit (eds.). IERS Conventions (2003), IERS Technical NoteNo.32
    [96] Gerard Petit, Brian Luzum (eds.). IERS Conventions (2010), IERS Technical Note No.36
    [97]严奉轩,郭唐永,王培源等. SLR应用展望-伽利略计划和非合作目标跟踪[J].大地测量与地球动力学,2006,26(3):118-121.
    [98]郝金明,吕志伟.卫星定位理论与方法[M].信息工程大学,“2110工程”建设系列教材,2007.
    [99]秦宽,魏二虎,严韦.流动卫星激光测距技术在中国的发展[J].测绘科学,2007,32(2):169-171.
    [100]胡明城.现代大地测量学的理论及其应用[M].测绘出版社,2003.
    [101]周旭华,吴斌,彭碧波等.全球水储量变化的GRACE卫星检测[J].地球物理学报,2006,49(6):1644-1650.
    [102]马宗晋,陈强.全球地震构造系统与地球的非对称性[J].中国科学(B辑),1988,(10):1092-1099.
    [103]马宗晋,高祥林,任金卫.现今全球构造特征及其动力学解释[J].第四纪研究,1992(4):293-305.
    [104]孙付平,赵铭,宁津生等.用空间大地测量实测数据检测地球的非对称性全球构造变化[J].科学通报,1999,(20):2225-2229.
    [105]马宗晋,宋晓东,杜品仁等.地球南北半球的非对称性[J].地球物理学报,2002,45(1):26-33.
    [106]张勤,范一中.地壳垂直运动的均衡理论及其分析模型[J].测绘学报,2001,30(3):233-237.
    [107]范一中,张勤.基于通量均衡基准的地壳垂直运动模型[J].地壳形变与地震,2001,21(1):
    [108]张勤,范一中,赵超英.基于地壳均衡基准的地壳垂直形变场分析模型[J].武汉大学学报信息科学版,2004,29(3):231-234.
    [109]方剑.中国及邻区均衡重力异常及其地球动力学特征[D].中国地震局地质研究所博士后研究报告,2006.
    [110]陈志耕.地球膨胀说提出、发展及其主要事实依据[J].河北地质学院学报,1992,15(6):586-594.
    [111]陈志耕.地球有限膨胀演化模型[J].科学通报,1999,44(9):912-920.
    [112]陈志耕.膨胀地球基本参数的初值及其平均变化率[J].地球物理学报,1990,33(8):611-618
    [113]陈志耕.类地行星的地质和物理比较与地球有限膨胀演化[J].科学通报,2001,15(6):
    [114]孙付平.空间大地测量数据在地球动力学研究中的应用[博士后研究报告].武汉测绘科技大学,1998.
    [115]孙付平.空间地球动力学若干问题研究[博士后研究报告].信息工程大学测绘学院,2004.
    [116]黄立人,马宗晋,朱建新.地球非对称性变形的最新观测证据[J].地震学报,2002,24(2):196-199.
    [117]金双根,朱文耀.南半球减速膨胀的定量分析[J].地球物理学报,2003,46(6):760-766.
    [118]马宗晋,张培震,任金卫等.从GPS水平矢量场对中国及全球地壳运动的新认识[J].地球科学进展,2003,18(1):4-11.
    [119]孙付平,朱新慧,乔书波.用空间大地测量数据检测地球的非对称性全球构造变化[J],武汉大学学报·信息科学版,2004,29:3-5.
    [120]申文斌,陈巍,李进.由时变重力场证实地球膨胀效应,中国地球物理2007[M].青岛:海洋大学出版社,2007.
    [121]申文斌,张振国.利用空间大地测量数据探测地球膨胀效应[J],测绘科学,2008,33(3):5-6.
    [122]申文斌,陈巍,韩建成等.内核晃动对地球主惯性矩的时变性影响[J].测绘科学,2009,4(3):7-10.
    [123] http://it.sohu.com/20070227/n24.
    [124] http://news.sohu.com/20070709.
    [125] Wu, X., X.Collilieux, Z.Altamimi, B.L.A.Vermeersen, R. S. Gross, and I. Fukumori.Accuracy of the International Terrestrial Reference Frame origin and Earth expansion [J].Geophys. Res. Lett., VOL.38, L13304, doi:10.1029/2011GL047450,2011.
    [126]马宗晋,杜品仁,洪汉净.地球构造与动力学[M].广州:广东科技出版社,2003,1-130.
    [127]金双根. GPS监测全球板块构造运动的研究[D].中国科学院上海天文台,2003.
    [128]孙付平,黄维彬.空间网与地面网联合平差中的地壳形变问题,联合平差论文集(2)[M],解放军出版社,1996年.
    [129]孙付平.中国地区高精度地球参考架的定义和实现[J].郑州测绘学院学报,1997,14(4):241-245.
    [130]胡新康,王倩,马青等.区域无整体旋转基准的研究和应用.福建地震网,2005年.
    [131]顾国华,申旭辉,王敏等.中国大陆现今地壳水平运动基本特征[J].地震学报,2001,23(4):362-369.
    [132]孙付平,黄维彬.空间网与地面网联合平差中的地壳形变问题,联合平差论文集(1)[M].解放军出版社,1995年.
    [133]朱新慧,王刃,孟键.中国地区水平地壳形变模型的建立[J].测绘科学,2010,35(1):13-15.
    [134]叶叔华.运动的地球[M].湖南科学技术出版社,1997.
    [135]王小亚,朱文耀,符养等. GPS监测的中国及其周边现时地壳形变[J].地球物理学报,2002,45(2):198-209.
    [136]顾国华,牛红叶,孟国杰等.中国地壳运动观测网络GPS数据处理进展[J].全球定位系统,2001,26(1):5-13.
    [137]王琪.用GPS监测中国大陆现今地壳运动变形速度场与构造解释[D].武汉:武汉大学,2004.
    [138]朱文耀,王小亚,符养等.基于ITRF2000的全球板块运动模型和中国的地壳形变[J].地球物理学报,2002,45(增刊):197-204.
    [139]顾国华,张晶,王武星.中国地壳运动观测网络GPS观测得到的地壳运动结果[J].测绘通报,2005(7):1-7.
    [140]宋成骅,许才军,刘经南等.青藏高原块体相对运动模型的GPS方法确定与分析[J].武汉测绘科技大学学报,1998,23(1):21-25.
    [141]帅平,吴云,周硕愚.利用GPS测量数据模拟中国大陆现今地壳水平速度场及应变场[J].地壳形变与地震,1999,19(2):1-8.
    [142]朱文耀,黄立人.:利用GPS技术监测青藏高原地壳运动的初步结果[J].中国科学(D辑),1997,27(5):385-389.
    [143]张强,朱文耀.中国地壳各构造块体运动模型的初建[J].科学通报,2000,45(9):967-974.
    [144]孙付平,易维勇,乔书波等. GPS、VLBI和SLR测定地壳运动的相互比较研究[J].《测绘技术与数字地球》论文集,哈尔滨地图出版社,2002年.
    [145]杨国华,李延兴,韩月萍等.由GPS观测结果推导中国大陆现今水平应变场[J].地震学报,2002,24(4):337-347.
    [146]牛之俊,王敏,孙汉荣等.中国大陆现今地壳运动速度场的最新观测结果[J].科学通报,2005,50(8):839-840.
    [147]康四林,李语强,熊耀恒.川滇地块地壳运动GPS监测[J].天文研究与技术:国家天文台台刊,2011,8(1):36-41.
    [148]段虎荣,张永志,徐海军等. GRACE数据反演中国西部地壳垂直运动速率[J].地球物理学进展,2011,26(4):1201-1205.
    [149]顾国华,王武星.区域网GPS观测得到的汶川大地震前后的地壳垂直运动[J].地震,2011,31(3);1-8.
    [150]郭海荣.建立高程基准的理论与方法的研究[D].信息工程大学测绘学院,2003.
    [151]孙付平.空间地球动力学若干问题研究[M].信息工程大学测绘学院博士后研究工作报告,2004.
    [152]荣敏.地壳垂直运动参考基准研究[D].信息工程大学测绘学院,2008.
    [153] Courtillot V, Davaille A, Besse J, et al. Three distinct types of hotspots in the Earth’smantle [J]. Earth and Planetary Science Letters,2003,205:295-308.
    [154]板块运动.百度百科,2012.
    [155] Marco Cuffaro, Carlo Doglioni. Global kinematics in deep versus shallow hotspotreference frame [J]. Geological Society of America Special Paoer,2007,(430):359-374.
    [156] Bird P. An updated digital model of plate boundaries [J]. G3: Geochemistry, Geophysics,Geosystems,2003(4), No.3,1027,52pp.
    [157] Drewes H. The Actual Plate Kinematic and Crustal Deformation Model APKIM2005asBasis for a Non-Rotating ITRF [J]. Geodetic Reference Frames, International Associationof Geodesy Symposia134,2009, p95-99, DOI10.1007/978-3-642-00860-3_15.
    [158]汪汉胜,贾路路, Wu Patrick等.冰川均衡调整对东亚重力和海平面变化的影响[J].地球物理学报,2010,53(11):2590-2602.
    [159]贾路路,汪汉胜,相龙伟等.冰川均衡调整对南极冰质量平衡监测的影响及其不确定性.地球物理学报,2011,54(6):1466-1477.
    [160]江敏,钟敏,冯伟,许厚泽.联合卫星测高和卫星重力数据研究热容海平面变化[J].海洋测绘,2011,31(6):5-7.
    [161]孙付平,吴斌,易维勇.地球质心运动的研究进展[M].中国测绘学会第七次全国会员代表大会论文集,135-143,2001年5月.
    [162]郭金运,常晓涛,韩延本等.由SLR观测的地心周期性运动(1993-2006年)[J].测绘学报,2009,38(4):311-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700