用户名: 密码: 验证码:
透平机械中密封气流激振及泄漏的故障自愈调控方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的迅猛发展,透平机械的节能与安全问题越来越受到人们的重视。设备振动超标、叶片断裂、密封泄漏等故障是影响机组安全、长周期运行的关键因素。密封气流激振是造成转子振动大和叶片断裂的重要原因之一,密封失效则通常导致泄漏事故发生。研究透平机械中密封气流激振及泄漏的故障自愈调控方法具有理论和工程应用价值。本论文的主要工作如下:
     1、提出了一种计算直通型蜂窝密封动力特性系数的方法。该方法借助单控制体模型得到控制方程,将扰动变量引入控制方程得到零阶和一阶方程,最终由压力分布表达式推导出动力特性系数。通过简化一阶方程解的表达式、引入拉式变换和泰勒展开等数学手段极大地简化了计算,提高了计算速度。使用本方法计算的动力特性系数结果与测量值量级相同。在分析体现蜂窝密封对转子稳定性总体影响的有效阻尼时,采用本方法得到的计算结果与测量值非常接近。计算实例表明,应用本文所述方法所得计算结果可以用于定量地说明蜂窝密封的减振效果。采用本方法计算的蜂窝密封动力特性参数,可以用于分析蜂窝密封的刚度、阻尼系数对转子稳定性的影响,对调控密封气流激振和泄漏具有重要意义。
     2、针对叶片疲劳断裂问题,实验研究了蜂窝密封调控叶片密封气流激振的特性。将叶项密封分别采用光滑密封和蜂窝密封,测量不同密封间隙下的叶片振幅。实验结果表明采用蜂窝密封能够明显抑制叶片密封气流激振,叶片振幅随密封间隙的增大而减小。与光滑密封相比,蜂窝密封最佳可减小实验中无冠叶片测量点振幅的25%。采用烟线法显示了叶尖密封尾流场,同时绘制了流场的速度分布图。对蜂窝密封调控密封气流激振的机理进行了分析,蜂窝密封能够降低密封腔内流体速度、耗散流体能量,从而流体对叶片的密封气流激振力减弱、叶片振动得到有效的调控。蜂窝密封是一种调控密封气流激振的有效方法,可以从叶片振动产生的根源上实现叶片断裂故障自愈调控。
     3、提出采用蜂窝密封和反旋流组合调控叶片密封气流激振,并实验研究了其特性。在不同密封间隙、不同带冠叶片条件下,分别采用蜂窝密封和光滑密封,沿与主气流相反的方向向叶片顶部密封间隙内喷射气流。实验结果显示采用光滑密封时施加反旋流最佳能够使实验中叶片测量点的振动减小17%,而采用蜂窝密封时施加反旋流最佳能够使实验中叶片测量点的振动减小14%。与光滑密封相比,采用蜂窝密封和反旋流组合最佳能够使实验中叶片测量点的振动减小37%。因此采用结构合理的蜂窝密封和增加适量的反旋流是调控密封气流激振的有效方法,对预防和消除叶片断裂、实现叶片断裂故障的自愈调控具有重要意义。
     4、提出用抽取气流的方法来调控叶片密封气流激振并进行了实验研究。从叶片顶部抽取适量气流能减小实验中叶片测量点的振幅10%以上;对于无冠叶片,当抽气口采用正倾角时抽取气流抑制叶片振动的能力比采用负倾角时大;对于带冠叶片,抽取气流抑制叶片振动效果更好,最佳减振能力可达23%,且叶冠宽度较大时减振效果更稳定。本文还系统地研究了不同喷射角度的射流调控叶片密封气流激振的特性,分析了利用喷射气流方法调控叶片密封气流激振的规律。当倾角小于30°时,在叶片顶部喷射气流加剧叶片振动;当倾角大于40°时,叶片振动随喷气压力的增大而减小,实验中叶片测量点的最小振幅仅为初始振幅的81%。
     5、研究了汽轮机密封泄漏及水蚀故障的自愈调控方法,设计了适用于汽轮机的新型蜂窝密封结构。通过在叶顶蜂窝密封底板上增设环形去湿输水槽,排出了汽轮机低压缸中的小水滴,实现了叶片水蚀故障的自愈。设计了新型蜂窝密封结构,结合了蜂窝密封和梳齿密封的特点,消除了轴端密封泄漏故障产生的原因,成功地解决了小型汽轮机轴端密封泄漏问题。同时,新型轴端蜂窝密封结构还可以推广应用到烟机的烟气密封、蒸汽密封和轴承箱密封。
     6、研究了大型电机油封泄漏故障的自愈调控方法,设计了可调式自动跟踪和蜂窝复合油封。电机润滑油向内部泄漏的主要原因是风叶转动引起电机内部形成的负压和密封失效。为了隔离负压,采用了蜂窝密封和接触式密封的组合形式,并且在两者之间通入一定的氮气。采用压力平衡方法和蜂窝密封消除了导致油封泄漏的根本原因。用可调式自动跟踪密封替代传统的毛毡密封,更耐磨损、更耐老化。在设计阶段就消除了密封泄漏故障产生的原因,且可调式自动跟踪密封在较长时间内具有自修复功能。工程应用表明,可调式自动跟踪和蜂窝复合油封成功解决了油封泄漏问题。
With the rapid development of modern industries, Energy saving and Security for turbomachine has been paid more and more attention. There are many factors that determine the safety, stability and long term operation, such as vibration beyond standard limit, blades rupture, seal leakage and so on. Seal gas exciting is one of the main reasons for blade rupture and vibration beyond standard limit. Seal failure always induces seal leakage. So, it is much valuable for both theory and application to develop the fault self-recovery regulation methods for seal gas exciting and leakage in turbomachine.
     A special method to calculate the straight honeycomb seals' dynamic coefficients is presented. The perturbation variables are taken into the governing equations obtained by a single-control-volume model. That forms the zeroth-order and first-order equations. The dynamic coefficients are induced through the expression of the pressure distribution in the end. The calculation is simplified and improved through the introduction of Laplace transform, Taylor expansion and simplification of the first-order equations. It is shown that the calculation results of the dynamic coefficients of honeycomb seal and its experimental data have the same order of magnitude. While the effective damping coefficient which presents the overall influence of the honeycomb seals on the rotor stability is analyzed, its calculation results are quite approximate to its experimental data. It approves the feasibility of this method .And the calculation results can be a quantitative measure for the vibration reduction of the honeycomb seals. Furthermore, the influence of the rigidity and damping variables of the honey seal on rotor stability can also be analyzed, through the calculated dynamic coefficients. It is especially significant for the regulating on the seal gas exciting and the seal leakage.
     The characteristics of blade's seal gas exciting regulating by honeycomb seal has been investigated to solve the problem of blade fatigue fracture. The blade vibration (amplitude) under different seal clearances has been surveyed while the blade-tip seal adopting smooth seal or honeycomb seal, respectively. The amplitude decreases while the seal clearance increasing, is reduced apparently with honeycomb seal instead of smooth seal. Compared to smooth seal, honeycomb seal leads to the amplitude decrease nearly 25% at the best state for common blades at the measuring point in the experiment. The wake field of blade tip seal has been visualized with smoke wire technique, and the velocity distribution has been drawn. The mechanism of regulating blade-tip seal gas exciting by honeycomb seal has been discussed in this section. The fluid velocity in the cavity can be reduced and energy can be dissipated by adopting honeycomb seals. Accordingly, the gas exciting and the blade vibration can be weakened. In a word, the honeycomb seal is an effective method to regulate seal gas exciting, and fault self-recovery regulation is realized from the generation source of blade vibration.
     The characteristics of blade's seal gas exciting regulating by the combination of honeycomb seal and shunt injection has been studied experimentally and discussed. Honeycomb seals, as well as smooth seals are tested under the different conditions (different seals' clearances and shrouded blades), with the gas spraying on the blade tip clearance in the reverse direction of the main flow. It indicates in the experiment that shunt injection has the damping effect on blade vibration, and the blade vibration magnitude at the measuring point can be reduced by 17% and 14% at the best state, respectively, under the conditions of smooth seal and honeycomb seal. Nearly 37% of the blade vibration at the measuring point in the experiment can be reduced at the best state by adopting honeycomb seal and shunt injection simultaneously. Consequently, proper honeycomb seal and suitable shunt injection are very useful to regulate seal gas exciting. It is meaningful for avoiding blade rupture, improving the rotor stability and realizing the fault self-recovery.
     Air pumping is proposed to regulate blade's seal gas exciting. With air pumping in the top seal, more than 10% of the blade vibration at the measuring point in the experiment can be reduced. For unshrouded blade, the vibration reduction of air pumping with positive nozzle angle is better than with negative angle. For shrouded blade, the vibration reduction of air pumping is even better—up to 23% of the initial vibration can be reduced at the measuring point in the experiment. Furthermore, the vibration reduction is better with wider shroud. The characteristics of seal gas exciting regulating by tip air pumping have been systematically studied in this section. The blade vibration is aggravated by the injection flow while the nozzle angle is less than 30°. By contrast, the blade vibration is gradually reduced with the increasing of injection pressure while the angle exceeds 40°, and the best effect can even reach to 81% of the initial vibration at the measuring point in the experiment.
     The fault self-recovery regulation methods for seal leakage and water erosion in steam turbine have been discussed, and new structures of honeycomb seal suitable for steam turbine have been presented and designed. Water droplets in turbine low pressure cylinder are collected and drained through annular flumes which are designed in the bottom plate of blade-tip honeycomb seal. So the self-recovery for blade fault caused by the water erosion is done. To solve shaft seal leakage, new structures of honeycomb seal, which are the combination of the traditional honeycomb seal and labyrinth seal, are presented and designed. The hidden threats that caused shaft seal leakage are eliminated, so that the shaft seal leakage can be prevented. The new structures of shaft honeycomb seal are suitable for flue gas seal, steam seal and bearing box seal of flue gas turbine as well.
     The fault self-recovery regulation method for oil seal leakage in large motor has been discussed, and a compound oil seal combined adjustable automatic tracking technology with honeycomb seal has been designed. The main reason for oil leaking into rotor's interior is the negative pressure in rotor's interior caused by fan rotation and seal failure. A structure combined honeycomb seal with the contact seal, while charged with nitrogen between them, is designed to isolate negative pressure. Oil seal leakage is rooted out by pressure equilibrium and honeycomb seal. The wear resistance gets better with longevity through the adjustable automatic tracking seal instead of traditional felt seal. The threats leaded to seal failure are eliminated at the beginning. Moreover, the adjustable automatic tracking seal provides self-repairing in a relatively long time. Applications in industries indicate that oil seal leakage has been solved successfully by the compound oil seal combined adjustable automatic tracking technology with honeycomb seal.
引文
[1]周光垧.史前与当今的流体力学问题[M].北京:北京大学出版社,2002.77-82
    [2]Ziegler,Hernrich.Measuring turbine blade vibration[J].ABB Review,1994,(9):31-34
    [3]Rao J S.Turbomachine Blade Vibrations[J].Wiley Eastern Limited,1991,(6):56-62
    [4]张建勋,朱景春.振动信号处理技术在旋转机械振动监视与诊断中的应用和动向[J].昆明理工大学学报,2000,25(1):77-79
    [5]楼建忠.大型旋转机械振动监测系统的研究[D].浙江:浙江大学,2005
    [6]邢海燕,王文江,王日新.50MW汽轮机断裂叶片及断口的磁记忆研究[J].中国电机工程学报,2006,26(7):72-76
    [7]Adams M L.Rotating machinery vibration:From analysis to trouble shooting[M].New York:Marcel Dekker,2001,3:100-113
    [8]Kaufman P,Kershisnik M.Case history a high speed turbine wheel[J].Mechanical Engineering,1984,(7):38-45
    [9]Mehri-Homji C B.Blading vibration and failures in gas turbines,Part C:Detection and troubleshooting[J].The International Gas Turbine and Aeroengine Congress and Exposition,1995,(6):5-8
    [10]高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48
    [11]高金吉,王维民,江志农.高速透平机械轴位移故障自愈调控系统研究[J].机械科学与技术,2005,24(11):1261-1264
    [12]马波,马日红,江志农,等.卧螺离心机实时监测与故障自愈系统研究[J].北京化工大学学报,2005,2(3):92-94
    [13]朱光宇,俞茂铮.汽轮机末级动叶片大负攻角工况下的气流激振分析[J].汽轮机技术,2001,43(5):280-284
    [14]刘显惠,林锦堂,范华.湛江电厂1#汽轮机通流叶片点蚀现象的研究[J].东方电气评论,2000,14(4):205-214
    [15]杨智峰.华阳发电有限责任公司300MW汽轮机汽封改造[J].热力发电,2005(3):45-48
    [16]林柏,李东辉,胡光.高中压合缸汽轮机组高、中压缸间蒸汽泄漏量的测定[J].黑龙江电力,2004,26(2):116-118
    [17]赵长存,王建,姜丽涛.小汽轮机真空泄漏对机组真空状况的影响[J].河北电力技术,2004,23(6):47-48
    [18]全浩荣.湛江发电厂锅炉给水泵汽轮机轴端漏气分析及处理[J].热力发电,2002,31(5):93
    [19]沈庆根.化工机器故障诊断技术[M].浙江:浙江大学出版社,1994
    [20]岳峰杰,安靖红,程勇.离心压缩机典型故障诊断案例(二)[J].风机技术,2004,(6):57-58
    [21]何立东.离心压缩机迷宫密封中的气流激振[J].热能动力工程,1996,11(67):17-19
    [22]熊雪立.离心式压缩机叶轮故障原因及处理措施[J].转动机械,2003,(4):23-24
    [23]潘德胜,李荣良.大型离心压缩机组的故障与处理[J].中氮肥,2005,(6):49-50
    [24]Rosenberg C.Investigating aerodynamics transverse force in labyrinth seals in cases involving rotor eccentricity[J].Translated from Energnmashinostrojohic,1974,(8):15-17
    [25]丁学俊.汽轮机中的间隙激振[J].热力发电,1995,(3):21-29
    [26]Alford J S.Protecting turbomachinery from self-excited rotor whirl[J].Journal of Engineering for Power,1965,87(4):189-198
    [27]Vance J M,Murphy B T.Labyrinth seal effects on rotor whirl stability[C].Inst.of Mechanical Engineer,1980:369-373
    [28]Black H F.Effects of hydraulic forces in annular pressure seals on the vibration of centrifugal pump rotors[J].Journal of Mech.Eng.Science,1969,11(2):206-213
    [29]Childs D W.Dynamic analysis of turbulent annular seals based on hirs[J].Journal of Lubrication Technology,1983,105(3):429-43
    [30]Nordmann R,Dietzen F J.Calculating rotordynamic coefficients of seals by finite-difference techniques[C].The 4th Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery,Taxas A&M University,1986:77-98
    [31]Bently D E,Muszynska A.Role of circumferential flow in the stability of fluid-handling machine rotors[C].The 5th Workshop on Rotordynamic Instability Problems in High Performance Turbomachinery,Taxas A&M University,1988:1-15
    [32]Zirkelback N.Qualitative characterization of anti-swirl gas dampers[J].Journal of Engineering for Gas Turbines and Power,1999,121:342-348
    [33]Kanki H,Kaneko Y.Prevention of low-frequency vibration of high-capacity steam turbine units by squeeze-film damper[J].Journal of Engineering for Gas Turbines and Power,1998,120:391-395
    [34]Fujikawa T A.Theoretical approach to labyrinth seal forces[R].NASA Cp2338,1984:173-186
    [35]Scharrer J K.The effects of fixed rotor tilt on the rotordynamic coefficients of incompressible flow annular seals[J].Journal of Tribology,1993,115:336-341
    [36]Iwatsubo T.The effects of elastic deformation on seal dynamics[J].Journal of Vibration,Acoustics,Stress,and Reliability in Design,1988,110:59-64
    [37]潘永密,郑水英.迷宫密封气流激振及其动力系数的研究[J].振动工程学报,1990,(2):48-58
    [38]鲁周勋,谢友伯.迷宫密封转子动力学特性分析[J].润滑与密封,1991,(2):10-19
    [39]沈庆根.迷宫密封的两控制体模型与动力特性研究[J].振动工程学报,1996,9(1):24-30
    [40]荆建平,孟光,赵玫,等.超超临界汽轮机汽流激振研究现状与展望[J].汽轮机技术,2004,46(6):405-407
    [41]张学延,王延博,张卫军.超临界汽轮机蒸汽激振问题分析及对策[J].中国电力,2002,35(12):1-6
    [42]鲁启蓉.离心压缩机亚异步振动故障的诊断[J].中国科技信息,2005,(24):121
    [43]闻邦椿,顾家柳,夏松波,等.高等转子动力学[M].北京:机械工业出版社,1998.155-165
    [44]柴山,张耀明,曲庆文,等.汽轮机间隙气流激振力分析[J].中国工程科学,2001,3(4):68-72
    [45]陈佐一.流体激振[M].北京:清华大学出版社,1998.264-310
    [46]鲁周勋,谢友柏.迷宫密封中流场的有限差分模拟[J].应用力学学报,1992,9(3):87-92
    [47]杨建刚,朱天云,高伟.汽流激振对轴系稳定性的影响分析[J].中国电机工程学报,1998,18(1):35-42
    [48]魏统胜,郝点,于海明,等.迷宫密封气流激振效应对转子振动响应影响的实验研究[J].石油大学学报,2000,24(3):70-75
    [49]李雪松,黄典贵.迷宫气封三维非定常流场及转子动特性数值仿真[J].机械工程学报,2003,39(4):136-140
    [50]丁学俊,王刚,黄树红,等.Alford力中效率系数的一种计算方法[J].华中科技大学学报,2003,31(4):66-68
    [51]程忠宇,吴学忠,李圣怡.基于MEMS的流动主动控制技术及其研究进展[J].力学进展,2005,35(4):577-584
    [52]The mcgraw-hill companies[online].Availabe from http://www.acces-science.com,2002,(11):1-2
    [53]刘佳,苑伟政,邓进军.MEMS微致动器对碟翼飞行器流动控制研究[J].航空精密制造技术,2006,42(4):15-17
    [54]罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展,2005,35(2):221-234
    [55]王卫泽,轩福贞,思玉,等.汽轮机末级叶片的水蚀及防护[C].中国机械工程学会年会暨中国工程院机械与运载工程学部首届年会.2006
    [56]罗剑斌,谭士森,袁立平.大型汽轮机叶片事故原因分析[J].电力安全技术,2008,4(8):11-12
    [57]Stanisa B,Ivusic V.Erosion behaviour and mechanisms for steam turbine rotor blades[J].Wear,1995,395-400
    [58]沈佩华,顾晃,任浩仁.关于引进型300MW汽轮发电机组振动异常问题的研究[J].中国电机工程学报,2004,24(9):267-271
    [59]朱宝田,吴厚鈺.汽轮机叶片激振力特性和计算方法的研究[J].西安交通大学学报,1999,33(11):59-62
    [60]王江洪,齐琰,苏辉,等.电站汽轮机叶片疲劳断裂失效综述[J].汽轮机技术,1999,41(6):330-333
    [61]李劲松,苏辉,胡国平.汽轮机内部的激振源[J].汽轮机技术,2003,45(2):124-125
    [62]李录平,吕振梅,黄文俊.静叶尾迹流引起的气流激振力计算方法与激振力特性研究[J].汽轮机技术,2007,49(5):326-329
    [63]邢海燕,王文江,王日新,等.50MW汽轮机断裂叶片及断口的磁记忆研究[J].中国电机工程学报,2006,26(7):72-76
    [64]谢永慧,张荻.汽轮机阻尼围带长叶片振动特性研究[J].中国电机工程学报,2005,25(18):86-90
    [65]徐大懋,李录平,须根发,等.自带冠叶片碰撞减振研究[J].电力科学与技术学报,2007,22(1):1-6
    [66]刘观伟,王顺森,毛靖儒,等.汽轮机叶片材料抗固粒冲蚀磨损能力的试验研究[J].工程热物理学报,2007,28(4):622-624
    [67]肖刚,王春复.现代汽轮机叶片型面制造技术[J].热力透平,2003,32(4):269-272
    [68]文黎.汽轮机末级叶片镶嵌司太立合金片提高耐蚀性的探讨[J].天津电力技术,2006,(2):38-39
    [69]陆军.300MW汽轮机末级叶片司太立合金片焊接工艺[J].华中电力,2000,(2):28-30
    [70]Lee M K,Kim W W,Rhee C K,et al.Investigation of liquid impact erosion for 12cr steel and stellite[J].Journal of Nuclear Materials,1998,257(2):134-144
    [71]Mann B S,Arya V.Abrasive and erosive wear characteristics of plasma nitriding and hvof coatings:Their application in hydro turbines[J].Wear,2001,249(5-6):354-360
    [72]王志平,董祖珏,霍树斌,等.超音速火焰喷涂涂层特性研究[J].机械工程学报,2001,(11):96-98
    [73]Mann B S,Arya V.Hvof coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades[J].Wear,2003,254(7-8):652-667
    [74]Sidhu T S,Prakash S,Agrawal R D.Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on ni- and fe-based superalloys[J].Surface and Coatings Technology,2006,201(1-2):273-281
    [75]王华仁.沙坡头电厂水轮机叶片超音速喷涂耐泥沙磨蚀技术[J].东方电机,2006,(1):19-24
    [76]李剑钊.船用汽轮机除湿级带冠叶片振动特性及寿命分析[D].哈尔滨:哈尔滨船舶锅炉涡轮机研究所.2005
    [77]汤凤,胡柏安.带冠涡轮叶片的振动特性分析[J].结协强度,2007,29(5):81-83
    [78]金杰.蜂窝式密封在汽轮机上的应用[J].华北电力技术,2007,(3):42-44
    [79]王军光,韩立清,常广冬,等.蜂窝汽封在汽轮发电机组的应用[J].石油化工设备,2007,36(4):80-82
    [80]李军,邓清华,丰镇平.蜂窝汽封和迷宫式汽封流动性能比较的数值研究[J].中国电机工程学报,2005,25(16):108-111
    [81]王旭,张文平,马胜远,等.转子蜂窝密封封严特性的试验研究[J].热能动力工程,2004,19(5):521-525
    [82]何立东,叶小强,刘锦南.蜂窝密封及其应用的研究[J].中国机械工程,2005,16(20):1855-1857
    [83]李雪松,李久华,黄典贵.迷宫气封齿型对转子动力学系数的影响[J].中国电机工程学报, 2002,22(5):130-133
    [84]黄典贵,李雪松.大型旋转机械中汽封间隙流激振力的分析——非定常N-S解[J].中国电机工程学报,2000,20(6):75-78
    [85]Elrod D,Nelson C,Childs D.An entrance region friction factor model applied to annular seal analysis:theory versus experiment for smooth and honeycomb seals[J].Journal of Tribology,1989,111:337-343
    [86]何立东.转子密封系统流体激振的理论和实验研究[D].哈尔滨:哈尔滨工业大学,1999
    [87]Childs D W,Moyer D S.Vibration charactristics of the HPOTP(High-Pressure Oxygen Turbopump) of the SSME(Space Shuttle Main Engine)[J].Transactions of the ASME,1985,107:152-159
    [88]Childs D,Elord D,Hale K.Annular honeycomb seals:Test results for leakage and rotordynamic coefficients;comparisons to labyrinth and smooth configurations[J].ASME Journal of Tribology,1989,111:293-301
    [89]Kaneko S,Ikeda T,Saito T,et al.Experimental study on static and dynamic characteristics of liquid annular convergent-tapered damper seals with honeycomb roughness pattern[J].ASME Journal of Tribology,2003,125:592-599
    [90]Soro E A,Childs D W.Experimental rotordynamic coefficient results for(a) a labyrinth seal with and without shunt injection and(b) a honeycomb seal[J].ASME Journal of Engineering for Gas Turbines and Power,1999,121:153-159
    [91]Sprowl T B,Childs D W.A study of the effects of inlet preswirl on the dynamic coefficients of a straight-bore honeycomb gas damper seal[C].Proceedings of ASME Turbo.Expo.,Austria,2004:619-629
    [92]Weatherwax M,Childs D W.Theory versus experiment for the rotordynamic characteristics of a high pressure honeycomb annular gas seal at eccentric positions[J].ASME Journal of Tribology,2003,125:422-429
    [93]Nelson C C.Rotordynamic coefficients for compressible flow in tapered annular seals[J].ASME Journal of Tribology,1985,107(3):318-325
    [94]Childs D.Turbomachinery rotordynamics:phenomena,modeling,and analysis[M].New York:Wiley,1993.243-248
    [95]Kleynhans G F,Childs D W.The acoustic influence of cell depth on the rotordynamic characteristics of smooth-rotor/honeycomb-stator annular gas seals[J].ASME Journal of Engineering for Gas Turbines and Power,1997,119:949-957
    [96]Childs D W,Kim C H.Analysis of testing for rotordynamic coefficients of turbulent annular seals with different directionally homogeneous surface-roughness treatment for rotor and stator elements[J].Journal of Tribology,1985,107:296-306
    [97]Victor Lucas.Roughness influence of turbulent flow through annular seals[J].Journal of Tribology,1994,116:321-329
    [98]Childs D W.Test results for round-hole pattern damper seals:optimum configurations and dimensions for maximum net dampering[J].Journal of Tribology,1986,108:605-611
    [99]Childs D W.Test results for sawtooth-pattern damper seals:leakage and rotordynamic coefficients[J].Journal of Tribology,1987,109:124-128
    [100]Fleming D P.Experiments on dynamic stiffness and damping of tapered bore seals[J].Journal of Vibration,Acoustics,Stress,and Reliability in Design,1989,111:1-5
    [101]Vance J M,Li J.Test results of a new damper seal for vibration reduction in turbomachinery[J].Journal of Engineering for Gas Turbines and Power,1996,118:843-846
    [102]Beatty R F,Hine M J.Improved rotor response of the uprated high pressure oxygen turbopump for the space shuttle main engine[J].Journal of Vibration,Acoustics,Stress,and Reliability in Design,1989,111:163-169
    [103]Iwatsubo T,Sheng B,Ono M.Experiment of static and dynamic characteristics of spiral grooved seals[R].Rotordynamic Instability Problems in High-Performance Turbomachinery,NASA CP3122:223-234
    [104]Childs D W,Gansle A J.Experimental leakage and rotordynamic results for helically grooved annular gas seals[J].Journal of Engineering for Gas Turbines and Power,1996,118:389-393
    [105]Chupp R E,Holle G F.Generalizing circular brush seal leakage through a randomly distributed brisitle bed[J].Journal of Turbomachinery,1996,118:153-161
    [106]Holle G F,Krishnan M R.Gas turbine engine brush seal applications[J].AIAA Paper,1990,134(3):124-141
    [107]吴大观.航空发动机研制工作论文集[M].北京:航天工业出版社,1999.23-30
    [108]Muszynska A,Franklin W D,Bently D E.Rotor active "anti-swirl" control[J].Journal of Vibration Acoustics Stress and Reliability in Design,1988,110(4):143-150
    [109]沈庆根,李烈荣,潘永密.迷宫密封中的气流激振及其反旋流措施[J].流体机械,1994,22(7):7-12
    [110]沈庆根.迷宫气封中的气流激振及其反旋流措施[J].流体机械,1994,22(7):7-12
    [111]G 托西.离心压缩机转子动力学[J].风机技术,1992,(5):20-22
    [112]Kim C H,Lee Y B.Test results for rotordynamic coefficients of anti-swirl self-injection seals[J].Journal of Tribology,1994,116:508-513
    [113]闻邦椿,武新华,丁千,等.故障旋转机械非线性动力学的理论与试验[M].北京,科学出版社,2004
    [114]陈运西,董德耀.转子振动反旋流主动控制试验研究[J].航空动力学报,1994,9(2):183-185
    [115]何立东.转子密封系统反旋流抑振的数值模拟[J].航空动力学报,1999,14(3):293-296
    [116]耿少娟,朱俊强,戴冀,等.叶尖喷气影响低速离心压气机特性的数值分析[J].工程热物理学报.2006,27(3):411-413
    [117]Savas O,Coles D.Coherence measurements in synthetic turbulent boundary layers[J].Journal of Fluid Mech.,1985,160(4):421-442
    [118]Smith B L,Glezer A.The formation and evolution of synthetic jets[J].Physics of Fluids,1998,10(9):2281-2297
    [119]James R D,Jacobs J W,Glezer A.A round turbulent jet produced by an oscillating diaphragm[J].Physics of Fluids,1996,8(9):2484-2495
    [120]Lebedeva I V.Experimental study of acoustic streaming in the vicinity of orifices[J].Sov.Phys.Acoust,1980,26(8):331-333
    [121]Davidson B J,Riley N.Jets induced by oscillatory motion[J].Journal of Fluid Mech.,1972,53(2):287-303
    [122]罗振兵,夏智勋,方丁酉.合成射流激励器初步实验及实验结果分析[J].宇航学报,2004,25(2):201-204
    [123]杨京南,赵宏,伍耐明,等.主动流动控制实验台及测量系统[J].燃气涡轮试验与研究,2004,17(1):50-53
    [124]赵宏,杨治国,娄慧娟.合成射流流动特性实验研究及在燃烧中的应用探讨[J].航空动力学报,2004,19(4):512-519
    [125]郝礼书,乔志德.合成射流用于翼型分离流动控制的研究[J].西北工业大学学报,2006,24(4):528-531
    [126]王德全,夏智勋,罗振兵,等.合成射流与横向主流作用的流场数值分析[J].空气动力学报,2007,25(1):92-96
    [127]罗振兵,夏智勋.合成射流技术及其在流动控制中应用的进展[J].力学进展,2005,35(2):221-234
    [128]罗振兵,夏智勋,王德全,等.合成射流控制主流矢量的发展过程[J].推进技术,2008,29(2):179-186
    [129]刘艳明,伍耐明,董金钟,等.合成射流作用机理及其对共轴射流掺混的影响[J].北京航空航天大学学报,2007,33(1):5-9
    [130]刘艳明,王保国,刘淑艳.大功率合成射流激励器设计及其流场特性研究[J].推动技术,2008,29(5):552-556
    [131]郑新前,张扬军,周盛.合成射流控制压气机分离流动及工程应用探索[J].中国科技论文在线,2008,3(8):547-552
    [132]Ha T W,Childs D W.Annular honeycomb-stator turbulent gas analysis using a new friction-factor model based on flat plate tests[J].ASME Journal of Tribology,1994,116(2):352-360
    [133]何立东,袁新,尹新.蜂窝密封减振机理的实验研究[J].中国电机工程学报,2001,21(10):24-27
    [134]Deissler R G.Analysis of turbulent heat transfer and flow in the entrance regions of smooth passages[R].Washington,NACA TN3016,1953
    [135]Florjancic S.Annular seals of high energy centrifugal pumps:a new theory and full scale measurement of rotordynamic coefficients and hydranlic friction factors[D].Z(u|¨)rich,Swiss Federal Institute of Technology,1990
    [136]李金波,何立东.蜂窝密封流场旋涡能量耗散的数值研究[J].中国电机工程学报,2007,27(32):67-71
    [137]何立东,叶小强,霍耿磊.叶尖密封流场的细观特性对叶轮机械性能的影响[J].润滑与密封,2006,(4):171-174
    [138]杨策,马朝臣,王延生,等.透平机械叶尖间隙流场研究的进展[J].力学进展,2001,31(1):70-83
    [139]贾希诚,王正明.叶顶间隙对环形叶栅三维粘性流场影响的数值分析[J].工程热物理学报,1999,20(6):707-710
    [140]黄洪雁,韩万金,王仲奇.具有叶顶间隙涡轮转子叶栅流动的拓扑及旋涡结构观测[J].航空学报,1997,18(3):257-261
    [141]吴介之.旋涡——流体运动的肌腱[J].自然杂志,1985,8(7):490-494

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700