用户名: 密码: 验证码:
金属复合材料表面的古斯—汉欣效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古斯-汉欣效应(Goos-Hanchen Effect)是指当一束光波入射到两种介质界面上时,实际的反射波相对于几何光学中的反射波发生位移的现象。因为F. Goos与H. Hanchen最先在实验中观测到了这个效应,所以它是以这两位科学家的名字而命名。古斯-汉欣效应由于其深刻的物理内涵以及它的潜在应用,自发现以来,受到了物理学界的广泛关注。特别是随着近年来一些具有特异物理性质的人工功能材料的发现,对古斯-汉欣效应的研究也得到了长足的发展。
     本文分别对具有各向同性和各向异性的金属复合材料表面反射波的古斯-汉欣效应进行了研究。文章主要内容如下:
     一、金属-电介质纳米颗粒复合材料界面温度可调的古斯-汉欣位移
     我们利用稳态相位法研究了金属-电介质纳米颗粒复合材料界面上反射波的古斯-汉欣位移。我们选用Drude模型来描述金属颗粒的介电函数,并且考虑到金属颗粒的等离子频率和碰撞频率对温度的依赖,进而应用Bruggeman有效媒质理论(Effective Medium Theory)给出了金属-电介质复合材料介电常数εe(T)与环境温度的关系。最后研究了古斯-汉欣位移随入射角与温度的变化关系。研究结果表明:对于介电性的纳米颗粒复合材料,在布儒斯特角附近的古斯-汉欣位移的温度效应是最显著的;而对于金属性的纳米颗粒复合材料,这种情况发生在掠射角附近。而且,对于介电性颗粒复合材料,反射波的古斯-汉欣位移可以为正位移也可以为负位移;在不同的条件下,随着温度的升高古斯-汉欣位移可能变大也可能变小,甚至有的古斯-汉欣位移的单调性也会发生改变。因此,通过对温度的适度调节,可以实现古斯-汉欣正负位移之间的转换。我们进一步利用高斯波数值模拟和COMSOL多体物理软件模拟,发现理论研究结果与数值模拟结果在高斯波宽足够大的条件下非常符合。
     二、单轴各向异性金属-电介质复合材料表面的古斯-汉欣效应
     我们研究了半无限大单轴各向异性复合材料表面反射波的古斯-汉欣位移。结果发现,在不同的金属体积分数情况下,各向异性复合材料表面的古斯-汉欣位移可以表现为正位移或是负位移。并且,当介质的吸收很强时,不论此时材料为正折射材料或是负折射材料,其表面反射波的古斯-汉欣位移均为负位移。而当介质的吸收较弱时,正折射材料表面的古斯-汉欣位移才会出现正位移。另一方面,负折射材料表面的古斯-汉欣位移可能为正也可能为负:假如此时复合材料的负折射性不强,那么材料表面的古斯-汉欣位移依然为正位移;仅当材料的负折射性达到一定程度时,古斯-汉欣位移才会变为负位移。为了证实结论的有效性,我们应用高斯波数值模拟与COMSOL软件分别对我们的理论结果进行了拟合。
Goos-Hanchen Effect (GHE) is a phenomenon that when a light beam incident on the interface between two different media, there will be a displacement of the reflected beam if compared to the geometric reflection. F. Goos and H. Hanchen first found this effect in an ingenious experiment, so it is named in the two scientists'last name. Since it was discovered, GHE have received much attention in physics world for its profound physical meaning and potential applications. Especially with the recent exploration of various kinds of artificial functional materials, GHE has attracted much interest.
     In this paper, we study the GHE on the surface of metal composites. The thesis is organized as follows:
     Ⅰ. Temperature-dependent Goos-Hanchen shift on the interface of metal/dielectric nanogranular composites
     With the stationary-phase method, we study the Goos-Hanchen shift (GHS) of the reflected electromagnetic wave on the surface of metal/dielectric nanogranular composites. We choose the Drude model to describe the dielectric function of the metal component, and introduce the temperature dependence of the plasma and collision frequencies of the metal. Then we make use of Bruggeman effective medium theory (EMT) to derive the temperature-dependent effective permittivityεe(T) of the metal-dielectric composites. In the end, we study the Goos-Hanchen shift as a function of the incident angle and temperature. The result shows that, for dielectric composites, the effect of the temperature on GHS is significant near the Brewster angle; but for the metal composites, this happens at the grazing angle. Moreover, the lateral shift can be negative as well as positive for dielectric composites. And GHS may become more negative, more positive, and nonmonotonic variation with increasing the temperature under different conditions. In addition, through the suitable adjustment of the temperature, we may realize the reversal of the sign of the GHS. We take one step forward to provide numerical simulations for Gaussian incident beams based on the momentum method and COMSOL Multiphysics software, and one can find reasonable agreement between the theoretical results and numerical simulations when the width of the Gaussian beams is sufficiently large.
     Ⅱ. Goos-Hanchen Effect on the surface of uniaxially anisotropic metal/dielectric composites
     We study the GHS of the reflected light on the surface of uniaxially anisotropic metal/dielectric composites. We find that the lateral shift can be negative or positive for different volume fractions of metal particles. However, when the absorption is strong, the GHS on the surface of the composites is always negative independent of the positive or negative refraction. When the absorption is weak, the lateral shift for the composites with positive refraction will exhibit a positive displacement. On the other hand, the GHS of the negative refractive material can be positive as well as negative. That is, when the negative refraction of the composites is weak the lateral shift is still positive; while the GHS will be negative when the negative refraction becomes strong enough. To confirm the validity of our conclusions, we use both Gaussian beams and COMSOL Multiphysics software to simulate our theoretical results.
引文
[1]F. Goos and H. Hanchen, Ann. Phys.436,333 (1947).
    [2]K. Artmann, Ann. Phys.437,87(1948).
    [3]A. Renard, J. Opt. Soc. Am.54,1190 (1964).
    [4]K. Chiu and J. Quinn, Am. J. Phys.40,1847 (1972).
    [5]L. Brekhovskikh, Waves in Layered Media (Academic, New York, 1960), pp.100-122.
    [6]M. McGuirk and C. Carniglia, J. Opt. Soc. Am.67,103 (1977).
    [7]J. L. Agudin, Phys. Rev.171,1385 (1968).
    [8]F. Goos and H. Hanchen, Ann. Physik 5,251 (1949).
    [9]B. R. Horowitz and T. Tamir, J. Opt. Soc. Am.61,586 (1971).
    [10]H. M. Lai, F. C. Cheng, and W. K. Tang, J. Opt. Soc. Am. A 3,550 (1986).
    [11]K. Yasumoto and Y. Oishi, J. Appl. Phys.54,2170 (1983).
    [12]J. B. Pendry, Phys. Rev. E 85,3966 (2000).
    [13]P. R. Berman, Phys. Rev. E 66,067603 (2002).
    [14]I. V. Sadrivov, A. A. Zharov, and Y. S. Kivshar, Appl. Phys. Lett.83, 2713 (2003).
    [15]W. T. Dong, L. Gao, and C. W. Qiu, Progress In Electromagnetics Research, PIER 104,255 (2009).
    [16]F. Lima, T. Dumelow, E. L. Albuquerque, and J. A. da Costa, Phys. Rev. B 79,155124(2009).
    [17]H. X. Da, C. Xu, and Z. Y. Li, Phys. Rev. E 71,066612 (2005).
    [18]F.Schreier, M. Schmitz, and O. Bryngdahl, Opt. Lett.23,576 (1998).
    [19]C. F. Li, T. Duan, and X. Y. Yang, J. Appl. Phys.101,013103 (2007).
    [20]L. G. Wang, Chin. Phys. Lett.23,113 (2006).
    [21]T. Tamir and H. L. Bertoni, J. Opt. Soc. Am.61,1397 (1971).
    [22]P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, Phys. Rev. A 75, 045802 (2007).
    [23]W. J. Wild and C. L. Giles, Phys. Rev. A 25,2099 (1982).
    [24]H. M. Lai and S. W. Chan, Opt. Lett.27,680 (2002).
    [25]T. Sakata, H. Togo, and F. Shimokawa, Appl. Phys. Lett.76,2841 (2000).
    [26]C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, Appl. Opt.46,5347 (2007).
    [27]J. C. Maxwell Garnett, Phil. Trans. R. Soc. Lond. A 203,385 (1904).
    [28]P. M. Hui and D. Stroud, Phys. Rev. B 33,2163 (1986).
    [29]M. F. MacMillan and R. P. Devaty, Phys. Rev. B 43,13838 (1991).
    [30]J. C. Garland and D. B. Tanner, Electrical Transport and Optical Properties of Inhomogeneous Media, AIP Conf. Proc. No.40 (A. I. P., New York,1978).
    [31]Q. Cheng and T. J. Cui, J. Appl. Phys.99,066114 (2006).
    [32]D. R. Smith and D. Schurig, Phys. Rev. Lett.90,077405 (2003).
    [33]D. R. Smith, P. Kolinko, and D. Schurig, J. Opt. Soc. Am. B 21,1032 (2004).
    [34]Q. Cheng and T. J. Cui, Appl. Phys. Lett.87,174102 (2005).
    [35]Y. Zhong, L. X. Ran, X. X. Cheng, and J. A. Kong, Opt. Express 14, 1161(2006).
    [36]M. Cheng, R. Chen, and S. Feng, Eur. Phys. J. D 50,81 (2008).
    [37]B. Wood and J. B. Pendry, Phys. Rev. B 74,115116 (2006).
    [38]Y. J. Huang, W. T. Lu, and S. Sridhar, Phys. Rev. A 77,063836 (2008).
    [39]W. T. Lu and S. Sridhar, Phys. Rev. B 77,233101 (2008).
    [40]S. Berthier, J. Phys. I. France 4,303 (1994).
    [41]Z. P. Wang, C. Wang, and Z. H. Zhang, Opt. Commun.281,3019 (2008).
    [1]F. Goos and H. Hanchen, Ann. Phys.436,333 (1947).
    [2]F. Goos and H. Hanchen, Ann. Phys.440,251 (1949).
    [3]K. Artmann, Ann. Phys.437,87(1948).
    [4]H. K. V. Lotsch, Optik 32,116 (1970).
    [5]T. Sakata, H. Togo, and F. Shimokawa, Appl. Phys. Lett.76,2841 (2000).
    [6]C. W. Chen, W. C. Lin, L. S. Liao, Z. H. Lin, H. P. Chiang, P. T. Leung, E. Sijercic, and W. S. Tse, Appl. Opt.46,5347 (2007).
    [7]W. J. Wild and C. L. Giles, Phys. Rev. A 25,2099 (1982).
    [8]H. M. Lai and S. W. Chan, Opt. Lett.27,680 (2002).
    [9]H. M. Lai, S. W. Chan, and W. H. Wong, J. Opt. Soc. Am. A 23,3208 (2006).
    [10]L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, Opt. Lett.31,1124 (2006).
    [11]C. F. Li, Phys. Rev. Lett.91,133903 (2003).
    [12]Y. Yan, X. Chen, and C. F. Li, Phys. Lett. A 361,178 (2007).
    [13]H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, Progress In Electromagnetics Research, PIER 82,247 (2008).
    [14]P. T. Leung, C. W. Chen, and H. P. Chiang, Opt. Commun.276,206 (2007).
    [15]M. Merano, A. Aiello, G. W.'t Hooft, M. P. van Exter, E.R. Eliel, and J. P. Woerdman, Opt. Express 15,15928 (2007).
    [16]D. J. Hoppe and Y. R. Samii, J. Electromagn. Waves Appl.6,603 (1992).
    [17]R. A. Depine and N. E. Bonomo, Optik 103,37 (1996).
    [18]F. Wang and A. Lakhtakia, Opt. Commun.235,107 (2004).
    [19]W. T. Dong, L. Gao, and C.W. Qiu, Progress In Electromagnetics Research, PIER 104,255 (2009).
    [20]E. Pfleghaar, A. Marseille, and A. Weis, Phys. Rev. Lett.70,2281 (1993).
    [21]T. Tamir and H. L. Bertoni, J. Opt. Soc. Am.61,1397 (1971).
    [22]D. Felbacq, A. Moreau, and R. Smaali, Opt. Lett.28,1633 (2003).
    [23]P. R. Berman, Phys. Rev. E 66,067603 (2002).
    [24]A. Lakhtakia, Electromagnetics 23,71 (2003).
    [25]I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, Appl. Phys. Lett.83, 2713 (2003).
    [26]N. H. Shen, J. Chen, Q. Y. Wu, T. Lan, Y. Z. Fan, and H. T. Wang, Opt. Express 14,10574(2006).
    [27]P. Hou, Y. Y. Chen, X. Chen, J. L. Shi, and Q. Wang, Phys. Rev. A 75, 045802 (2007).
    [28]L. G. Wang, M. Ikram, and M. S. Zubairy, Phys. Rev. A 77,023811 (2008).
    [29]Y. Wang, Z. Q. Cao, H. G. Li, J. Hao, T. Y. Yu, and Q. S. Shen, Appl. Phys. Lett.93,091103 (2008).
    [30]H. P. Chiang, P. T. Leung, and W. S. Tse, J. Phys. Chem. B 104,2348 (2000).
    [31]L. H. Shi, L. Gao, S. L. He, and B. W. Li, Phys. Rev. B 76,045116 (2007).
    [32]J. B. Gotte, A. Aiello, and J. P. Woerdman, Opt. Express 16,3961 (2008).
    [33]L. Gao and Z. Y. Li, J. Appl. Phys.91,2045 (2002).
    [34]L. H. Shi and L. Gao, Phys. Rev. B 77,195121 (2008).
    [35]C. F. Li and Q. Wang, Phys. Rev. E 69,055601 (2004).
    [36]X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu, Phys. Rev. E 73,056617(2006).
    [37]C. F. Li, Phys. Rev. A 76,013811 (2007).
    [38]A. Aiello and J. P. Woerdman, Opt. Lett.33,1437 (2008).
    [1]J. H. Erdmann, S. Zumer, and J. W. Doane, Phys. Rev. Lett.64,1907 (1990).
    [2]V. L. Sukhorukov, G. Meetdt, M. Kurschener, and U. Zimmermann, J. Electrostat.50,191 (2001).
    [3]D. Stroud, Phys. Rev. B 54,3295 (1996).
    [4]G. W. Lu, B. L. Cheng, H. Shen, Y. J. Chen, T. H. Wang, Z. H. Chen, H. B. Lu, K. J. Jin, Y. L. Zhou, and G. Z. Yang, Chem. Phys. Lett.407,397 (2005).
    [5]L. B. Hu and S. T. Chui, Phys. Rev. B 66,085108 (2002).
    [6]D. R. Smith and D. Schurig, Phys. Rev. Lett.90,077405 (2003).
    [7]D. Schurig and D. R. Smith, Appl. Phys. Lett.82,2215 (2003).
    [8]A. A. Stahlhofen, Phys. Rev. A 62,012112 (2000).
    [9]L. G. Wang, M. Ikram, and M. S. Zubairy, Phys. Rev. A 77,023811 (2008).
    [10]X. Chen and C. F. Li, Phys. Rev. E 69,066617 (2004).
    [11]L. G. Wang, H. Chen, N. H. Liu, and S. Y. Zhu, Opt. Lett.31,1124 (2006).
    [12]Y. Yan, X. Chen, and C. F. Li, Phys. Lett. A 361,178 (2007).
    [13]H. Huang, Y. Fan, F. M. Kong, B. I. Wu, and J. A. Kong, Progress In Electromagnetics Research, PIER 82,137 (2008).
    [14]P. T. Leung, C. W. Chen, and H. P. Chiang, Opt. Commun.276,206 (2007), Opt. Commun.281,1312 (2008).
    [15]M. Merano, A. Aiello, G. W.'t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, Opt. Express 15,15928 (2007).
    [16]F. Wang and A. Lakhtakia, Opt. Commun.235,107 (2004).
    [17]W. T. Dong, L. Gao, and C. W. Qiu, Progress In Electromagnetics Research, PIER 104,255 (2009).
    [18]D. Felbacq, A. Moreau, and R. Smaali, Opt. Lett.28,1633 (2003).
    [19]L. G. Wang and S. Y. Zhu, Opt. Lett.31,101 (2006).
    [20]X. L. Hu, Y. D. Huang, and W. Zhang, Opt. Lett.30,899 (2005).
    [21]I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, Appl. Phys. Lett.83, 2713 (2003).
    [22]M. Cheng, Y. W. Zhou, Y. L. Li, and X. M. Li, J. Opt. Soc. Am. B 25, 773 (2008).
    [23]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett.84,4184 (2000).
    [24]W. T. Lu and S. Sridhar, Phys. Rev. B 77,233101 (2008).
    [25]B. Wood, J. B. Pendry, and D. P. Tsai, Phys. Rev. B 74,115116 (2006).
    [26]V. A. Podolskiy and E. E. Narimanov, Phys. Rev. B 71,201101 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700