用户名: 密码: 验证码:
锥形永磁同步风力发电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步发电机具有结构简单、重量轻、可靠性好、效率高等优点,因而在中小型风力发电场合占据了主要地位。然而永磁同步发电机本身固有的齿槽转矩与风力发电机所希望的低速起动特性相矛盾,并且永磁同步发电机励磁调节困难等影响其实际应用的诸多关键技术问题,都需要进一步研究解决。本文提出一种锥形永磁同步风力发电机,通过锥形永磁转子在轴向移动,直接改变气隙长度以调节气隙磁场,从而可以有效地减小齿槽转矩以及实现输出外特性的调节。论文对这种发电机的结构特点、数学模型、磁场分布及其分析方法、性能参数及其影响因素等进行深入研究,为锥形永磁同步风力发电机的设计和应用提供基础。
     锥形永磁同步发电机与普通永磁同步发电机结构上的不同之处在于其转子呈锥形,并且锥形永磁转子可以在轴向移动。本文首先阐述了锥形永磁同步发电机的总体结构和工作原理,详细介绍了锥形永磁转子在轴上的运动过程,分析了机械调节器的作用,并对转子铁心结构和永磁体布置方式的选择依据进行了研究。建立了锥形永磁同步发电机的等效磁网络模型和数学模型,探讨了等效磁网络模型中各部分磁导的计算以及数学模型中如永磁体耦合磁链和电感的特点。
     其次,本文对比研究了分段二维有限元方法和三维有限元方法对锥形永磁同步发电机磁场分析的适用性,研究计算了梯形截面和平行四边形截面两种永磁体形状下电机的磁场分布。在得到磁场分布的基础上,研究发电机结构参数如锥角、转子的轴向位移等对空载漏磁系数的影响。之后通过实验,研究了转子轴向位移不同时发电机的外特性,并与电机常数接近的圆柱形转子永磁发电机进行了对比分析。通过实验,验证了分析计算结论的正确性。
     鉴于交直轴电感参数直接影响锥形永磁同步发电机的工作特性,本文紧接着对锥形永磁同步发电机的交直轴电感参数从计算和实测两个方面进行了研究。首先定性分析了锥形永磁同步发电机的交直轴电感参数及其影响因素,之后基于磁链法计算分析了气隙长度、锥角、转子的轴向位移以及永磁体形状等结构参数对交直轴电感的影响。不考虑交直轴磁路之间的耦合效应时,采用电压积分法,在正弦电压激励下测试了转子轴向位移不同时样机的交直轴电感参数;考虑到交直轴磁路之间的耦合效应时,以含有直流偏移的方波电压激励,在转子轴向位移不同时,测试了存在交(直)轴电流时样机的直(交)轴电感。实测值表明,正弦波激励下的计算值与测试值吻合较好,由于转子振动的影响,方波激励下计算值与测试结果误差稍大。
     针对锥形永磁同步发电机转子可以在轴向移动,从而改变气隙磁场的特点,本文最后研究了电机的齿槽转矩与电磁转矩,以及作用于转子的轴向磁拉力。结合具体样机定量分析计算了锥形永磁同步发电机中的转矩和轴向磁拉力与锥角、转子的轴向位移等结构参数以及交直轴电流之间的关系,并对齿槽转矩和电磁转矩进行了实验研究,验证了计算分析结果的正确性。
As permanent magnet synchronous generator (PMSG) has advantages of simplestructure, high reliability and high efficiency for wind power generation, permanentmagnet generator has a dominant position in small and medium sized wind powergeneration applications. However, the inherent cogging torque of PMSG hasdisadvantageous influence on low speed and starting perfomance of wind turbine, and itis difficult to adjust the excitation of PMSG. All these key tequnonlogy problemsaffecting practical application of PMSG need to be further studied. In this paper,permanent magnet synchronous generator with conical rotor for wind power applicationwas proposed, in which the conical rotor could move in axial direction and the air gaplength would be changed to adjust air gap magnetic field, thus the reduction of coggingtorque and regulation of output characteristics could be accomplished effectively. Thestructure feature, mathematics model, calculation method for magnetic field,performance parameters and these influence factors were discussed to provide afoundation for the design and application of permanent magnet wind generator withconical rotor.
     The rotor of conical shape which could move in axial direction is the structuredifferentia between PMSG with conical rotor and the nomal PMSG. In this paper, theglobal structure and operation mechanism of PMSG with conical were proposed firstly.The movement of conical PM rotor in axial direction was elaborated, and the action ofmechanical actuator which is installed in the back end of generator was analyzed.Thechoice of rotor structure and arrangement of permanent magnet was also illuminated. Theequivalent magnetic network model and mathematical model of permanent magnetsynchronous generator with conical rotor were set up, and the calculation of permeabilityof the equilalent magnetic network was investigated. The feature of parameters of themathematical model, such as inductaces and magnetic flux linkage of permanent magnet,was also discussed.
     Then, the appropriateness of segmental2dimensional finite element method and thethree dimensional finite element method for the magnetic field analysis of PMSG withcoanical rotor were contrast studied. In this paper, the flux distribution of permanentmagnet synchronous generator with conical rotor was studied for two types of permanentmagnet, ie. trapezoidal shape and parallelogram shape. And the influence of the structuralparameters of the generator such as the conical angle, the rotor axial displacement onthe no load magnetic flux leakage coefficient was analyzed. Then the externalcharacteristic of the generator with different axial displacement of rotor was experimental studied, which was compared to the external characteristic of nomal PMSG withcylindrical rotor in the meaning of a near electric machine constant. The analysis resultswere verified by experiment.
     For the d and q axis inductance parameters affected the operating characteristics ofthe generator directly, the d and q axis inductance parameters of permanent magnetsynchronous generator with conical rotor were researched through calculation andexperiment subsequently in this paper. Firstly, the d and q axisinductance parameters and their influence factor for permanent magnet synchronousgenerator with conical rotor were analyzed qualitatively, and then the influence of theair gap length, the conical angle, the axial displacement of rotor and the magnet shape ond and q axis inductance was analyzed quantitatively base on flux linkage calculationmethod. Using voltage integral method, the d and q axis inductances with different axialdisplacements of rotor were tested under the sinusoidal voltage excitation of theprototype without regard to the coupling effect between the d and q axis magneticcircuits. Taking into account the coupling effect between the d and q axis magneticcircuits, when the rotor is at different axial locations, the d axis (q axis) inductances weremeasured with q axis (d axis) current under square wave voltage excitation with DCoffset. It is shown that the test results deviation was slightly larger under the square wavevoltage excitation because of the rotor vibration, but the calculated and tested valuesunder sinusoidal voltage excitation agreed well.
     For the specific feature of PMSG with conical rotor that the air gap magnetica fieldwill be changed along with the movement of rotor in axial direction, the cogging torque,the electromagnetical torque and the axial magnetic force on the conical rotor werestudied lastly in this paper. Integrated with phrototype of permanent magnet synchronousgenerator with conical rotor, the relationship between torque as well as axial magneticforce, and conical angle, the axial displacement of rotor, the d and q axis current wasanalyzed, and the coggong torque and electrical torque for the prototype of permanentmagnet synchronous generator with conical rotor were measured to verify the calculationresults.
引文
1刘细平,林鹤云.风力发电机及风力发电控制技术综述.大电机技术.2007(03):17~20
    2董丹丹,赵黛青,廖翠萍.我国的风电技术和风电发展.可再生能源.2007,25(3):72~75
    3Milivojevic, N., Stamenkovic, I., Schofield, N. Power and Energy Analysis ofCommercial Small Wind Turbine Systems. IEEE International Conference onIndustrial Technology,2010:17391744
    4L. H. Hansen, P. H. Madsen, F. Blaabjerg, et al. Generators and Power ElectronicsTechnology for Wind Turbines. The27th Annual Conference of the IEEE inIndustrial Electronics Society,2001(2003):2000~2005
    5将超奇,严强.水平轴与垂直轴风力发电机的比较研究.上海电力.2007(2):163~165
    6温田町.主动失速型风力发电机典型调节控制策略研究.大连理工大学硕士学位论文.2005:7~8
    7马小亮.变速风力发电机组动力驱动系统方案比较.变频器世界.2007(04):42~45
    8高超,于晓慧.风力发电机组驱动系统方案对比.防爆电机.2009,44(6):18~20
    9李德孚.2010年我国中小型风力发电行业发展报告.风能.2011(7):30~35
    10杜尚斌.中小型风力发电及风光互补新能源产业发展历程.电源技术应用.2009(3):52~53
    11P. Lampola. Directly Driven, Low Speed Permanent Magnet Generators for WindPower Applications. Finland, Helsinki University of Technology. Dissertation for theDegree Doctor.2000:34~35
    12A. Grauers. Efficiency of Three Wind Energy Generator Systems. IEEE Transactionon Energy Conversion.1996,11(3):650~657
    13E. Spooner, A. Williamson. Modular, Permanent Magnet Wind Turbine Generators.IEEE Thirty First Industry Annual Meeting.1996:497~502
    14Li, Z. Chen. Optimal Direct Drive Permanent Magnet Wind Generator Systems forDifferent Rated Wind Speeds. European Conference on Power Electronics andApplications.2007:1~10
    15L. Hui, C. Zhe. Design Optimization and Comparison of Large Direct DrivePermanent Magnet Wind Generator Systems. International Conference on ElectricalMachines and Systems.2007:685~690
    16J. Y. Chen, C. V. Nayar, L. Y. Xu. Design and Finite Element Analysis of anOuter Rotor Permanent Magnet Generator for Directly Coupled Wind Turbines.IEEE Transactions on Magnetics.2000,36(5):3802~3809
    17Y. Chen, P. Pillay, A. Khan. PM Wind Generator Comparison of DifferentTopologies. IEEE Industry Applications Conference.2004(3):1405~1412
    18D. Vizireanu, S. Brisset, P. Brochet. Design and Optimization of a9phaseAxial Flux PM Synchronous Generator with Concentrated Winding for Direct DriveWind Turbine. IEEE Industry Applications Conference.2006:1912~1918
    19M. A. Khan, P. Pillay, N. R. Batane, et al. Prototyping a Composite SMC/steelAxial Flux PM Wind Generator. IEEE Industry Applications Conference.2006:2374~2381
    20M. Aydin, S. Huang, T. A. Lipo. Design and3D ElectroMagnetic Field Analysis ofNon Slotted and Slotted TORUS Type Axial Flux Surface Mounted PermanentMagnet Disc Machines. IEEE International Electric Machines and DrivesConference.2001:645~651
    21J. Azzouzi, G. Barakat, B. Dakyo. Analytical Modeling of an Axial flux PermanentMagnet Synchronous Generator for Wind Energy Application. IEEE InternationalConference on Electric Machines and Drives.2005:1255~1260
    22T. F. Chan, S. Xie, L. L. Lai. Analysis of Magnetic Field In an Axial fluxPermanent Magnet Synchronous Generator Using an Analytical Method.12thBiennial IEEE Conference on Electromagnetic Field Computation,2006:146
    23夏冰,金孟加,沈建新.利用分段式二维有限元法设计盘式永磁电机.微特电机.2011(4):1~3
    24Dmitry Svechkarenko, Juliette Sadarangani, Chandur Sadarangani. A NovelTransverse Flux Generator in Direct Driven Wind Turbines. InternationalConference on Electrical Machines and Systems,2006
    25J. F. Gieras. Performance Characteristics of a Permanent Magnet Transverse fluxGenerator. IEEE International Conference on Electric Machines and Drives.2005:1293~1299
    26包广清,江建中,施进浩.多相聚磁式横磁通永磁电机的自定位力矩研究.中国电机工程学报.2006(15):139~143
    27刘哲民,陈谢杰,陈丽香,等.基于3D FEM的新型横向磁通永磁电机的研究.电工技术学报.2006,21(05):19~23
    28K. T. Chau, Y. B. Li, J. Z. Jiang, et al. Design and Control of a PM Brushless HybridGenerator for Wind Power Application. IEEE Transactions on Magnetics.2006,42(10):3497~3499
    29秦海鸿.混合励磁双凸极电机基本性能研究.南京航空航天大学博士学位论文,2006:154~155
    30T. Tsuda, T. Fukami, Y. Kanamaru, et al. Performance Analysis of thePermanent Magnet Induction Generator Under Unbalanced Grid Voltages. ElectricalEngineering in Japan.2007,161(4):60~69
    31Clive Lewis, Jens Miller. A Direct Drive Wind Turbine HTS Generator. IEEE PowerEngineering Society General Meeting.2007:1~8
    32Lu Yongping, LI Yong. Tooth slot Cogging Torque and Noise Analysis of PermanentMagnet Motors. Proceedings of the Fifth International Conference on ElectricalMachines and Systems.2001:860~862
    33王秀和.永磁电机.中国电力出版社.2007:80~100
    34Z.Q.Zhu, David Howe. Analytical Prediction of the Cogging Torque in Radial fieldPermanent Magnet Brushless Motors. IEEE Transactions on Magnetics.1992,28(2):1371~1374
    35Gyu Hong Kang, Jin Hur. Analytical Prediction and Reduction of the CoggingTorque in Interior Permanent Magnet Motor. IEEE International Conference onElectric Machines and Drives.2005:1620~1624
    36王兴华,励庆孚,王曙鸿.永磁无刷直流电机磁阻转矩的解析计算方法.中国电机工程学报.2002,22(10):104~108
    37L.J.Wu, Z.Q.Zhu, D.Staton, et al. Comparison of Analytical Models for PredictingCogging Torque in Surface Mounted PM Machines. International Conference onElectrical Machines.2010:1~6
    38张岳,王凤祥,周浩,等.极槽匹配对直驱式永磁风力发电机性能的影响.电工技术学报.2006,24(6):12~16
    39周晓燕,史贺男,王金平,等.低速永磁风力发电机起动阻力矩的分析计算.中小型电机.2005,32(2):15~17
    40Dong Hun Kim, II Han Park, Joon Ho Lee, et al. Optimal Shape Design of IronCore to Reduce Cogging Torque of IPM Motor. IEEE Transactions on Magnetics.2003,39(3):1456~1459
    41Sung Il Kim, Ji Young Lee, Young Kyoun Kim. Optimization for reduction oftorque ripple in interior permanent magnet motor by using the Taguchi method.IEEE Trans. on Magnetics.2005,41(5):1796~1799
    42Kioumarsi, A, Moallem, M, Fahimi, B. Mitigation of Torque Ripple in InteriorPermanent Magnet Motors by Optimal Shape Design. IEEE Trans. on. Magnetics.2006,42(11):3706~3711
    43Liang Yi Hsu, Mi Ching Tsai. Tooth shape optimization of brushless permanentmagnet motors for reducing torque ripples. Journal of Magnetism and MagneticMaterials.2004,282(5):193~197
    44A.Kiyoumarsi, M.Moallem. Optimal Shape Design of Interior Permanent MagnetSynchronous Motor. IEEE International Conference on Electric Machines andDrives,2005:642~648
    45Z.Q.Zhu, David Howe. Influence of Design Parameters on Cogging Torque inPermanent Magnet Machine. IEEE Transactions on Energy Conversion.2000,15(4):407~412
    46柴凤,李小鹏,程树康.永磁电动机齿槽转矩的抑制方法.微电机.2001,34(6):52~54
    47Mohammad S. Islam, Sayeed Mir, Tomy Sebastian. Issues in Reducing the CoggingTorque of Mass Produced Permanent Magnet Brushless DC Motor. IEEETransactions on Industry Applications.2004,40(3):813~820
    48Nicola Bianchi, Silverio Bolognani. Design techniques for reducing the coggingtorque in surface mounted PM motors. IEEE Transactions on Industry Applications.2002,38(5):179~185
    49Thomas M. Jahns, Wen L. Soong. Pulsating Torque Minimization Techniques forPermanent Magnet AC Motor Drives a Review. IEEE Transactions on Industrialelectronics.1996,43(2):321~330
    50Sang Moon Hwang, Jae Boo Eom, Yoong Ho Jung, et al. Various DesignTechniques to reduce Cogging Torque by Controlling Energy Variation in PermanentMagnet Motors. IEEE Transactions on Magnetics.2001,37(4):2806~2809
    51Touzhu Li, Gordon Slemon. Reduction of cogging torque in permanent magnetmotors. IEEE Transactions on Magnetics.1988,24(6):2901~2903
    52Takeo Ishikawa, G.ordon Slemon. A Method to Reduce Ripple Torque in PermanentMagnet Motors without Skewing. IEEE Transactions on Magnetics.1993,29(2):2028~2031
    53W.Fei, P.C.K.Luk. A New Technique of Cogging Torque Suppression in Direct DrivePermanent Magnet Brushless Machines. IEEE Transactions on Industry Applications.2010,46(4):1332~1340
    54C. Breton, J. Bartolome, J. A. Benito. et al. Influence of Machine Symmetry onReduction of Cogging Torque in Permanent Magnet Brushless Motors. IEEETransactions on Magnetics.2000,36(5):3819~3823
    55Luke Dosiek, Pragasen Pillay. Cogging Torque Reduction in Permanent MagnetMachines. IEEE Transactions on Industry Applications.2007,43(6):1565~1571
    56Dongyun Lu, Kar, N.C. A Review of Flux Weakening Control in Permanent MagnetSynchronous Machines. Vehicle Power and Propulsion Conference,2010:1~6
    57李春艳,寇宝泉,程树康.永磁同步电动机弱磁扩速概况.微特电机.2008(01):58~60
    58尹华杰,主轴永磁同步电机电磁结构及“弱磁”问题的研究.华中理工大学博士论文,1994:64,83~85
    59B.J.Chalmers, R.Akmese and L.Musaba. Design and Field Weakening Performanceof Permanent Magnet/Reluctance Two part Rotor. IEE Proceedings of ElectricPower Applications,1998,145(2):133~139
    60F Rahman, R.Dutta. A New Rotor Design of Interior Permanent Magnet MachineSuitable for Wide Speed Range. Proceedings of Industrial Electronics Conference.2003:699~704
    61Qin Feng, He Yi Kang, Jia HongPing. Investigation of the Sensorless Control forPMSM Based on a Hybrid Rotor Position Self Sensing Approach. Proceedings ofthe Chinese Sociey of Electrical Engineering.2007,27(3):12~17
    62Nicola Bianchi, Silverio Bolognani, Brian J.Chalmers. Design Considerations for aPM Synchronous Motor with Rotor Saliency for High Speed Drives. IEEE IndustryApplications Conference.1999:117~124
    63严岚,贺益康,杨德荣.一种复合转子永磁天刷直流电机恒功率弱磁的研究方法.中国电机工程学报.2003,23(11):155~159
    64Longya Xu, Lurong Ye, Li Zhen et al. A New Design Concept of Permanent MagnetMachine for Flux Weakening Operation. IEEE Transactions on Industry Applications.1995,31(2):373~378
    65尹华杰,蒋豪贤,谢云祥,汪凯.一种永磁同步电动机弱磁新方案.设计与研究.1999(2):13~15
    66Bojan Stumberger, Anton Hamler, Mladen Trlep, et al. Analysis of InteriorPermanent Magnet Synchronous Motor Designed for Flux Weakening Operation.IEEE Transactions on Magnetics.2001,37(5):3644~3647
    67李春艳.基于变磁阻磁场调节机理的永磁同步电机研究.哈尔滨工业大学博士论文.2010:18~19
    68Lei Ma, Masayuki Sanada, Shigeo Morimoto, et al. Advantage of IPMSM withAdjustable PM Armature Flux Linkage in Efficiency Improvement and OperatingRange Extension. IEEE Power Conversion Conference.2002:136~141
    69H.Woehl Bruhn, W. R.Canders, N.Domann. Classification of Field WeakeningSolutions and Novel PM Machine with Adjustable Excitation. InternationalConference on Electrical Machines.2010:1~6
    70Lei Ma, Masayuki Sanada, Shigeo Morimoto, et al. High Efficiency AdjustableSpeed Control of IPMSM with Variable Permanent Magnet Flux Linkage. IEEEIndustry Applications Conference.1999:881~887
    71Lawrence P. Zepp, Jerry W. Medlin. Brushless Permanent Magnet Motor orAlternator with Variable Axial Rotor/Stator Alignment to Increase Speed Capability.United States Patent. Patent No.:US655941B1.2003
    72Lawrence P. Zepp, Jerry W. Medlin. Brushless Permanent Magnet Wheel Motor withVariable Axial Rotor/Stator Alignment. United States Patent. Patent No.:US6943478B2.2005
    73Lawrence P. Zepp, Jerry W. Medlin. Brushless Permanent Magnet Wheel Motor withVariable Axial Rotor/Stator Alignment. United States Patent. Patent No.:US7042128B2.2006
    74Kim Houng Joong, Kazuo Tahara, Kou Ajima, et al. Hybrid Car andDynamo Electric Machine. United States Patent. Patent No.:US6577022B2.2003
    75Masahiro Masuzawa, Noriyoshi Hirao, Takashi Sasaki, et al. Brushless MotorHaving Permanent Magnets. United States Patent. Patent No.:US5821710.1998
    76冯信华.锥形异步电动机.华中科技大学出版社.1996:18~21,29~34
    77http://www.demagcranes.us (Demag Cranes&Components GmbH)
    78胡虔生.锥形转子电机轴向磁拉力的分析和计算.电机与控制应用.1990(4):20~21
    79黄德中.磁悬浮轴承研究的现状与发展.机床与液压.2003(6):19~21
    80黄德中,戈素贞,曹蒙生.锥形混合磁悬浮轴承的研究.机床与液压.2004(3):132~134.
    81汤双清,胡欢.磁悬浮轴承的应用现状与展望.机床与液压.2009,37(12):209~211
    82杨静,虞烈.圆锥电磁轴承耦合特性的研究.西安理工大学学报.2008,24(4):401~406
    83李计亮,高琳,娄建勇,等.圆锥形磁悬浮轴承的三维有限元分析.武汉理工大学学报.2010,32(1):58~61
    84杨静,谢敬,虞烈.基于轴向/径向力解耦的圆锥电磁轴承设计方法.机械科学与技术.2005,24(11):1337~1339
    85A.Hamler, V.Gorican, B.Stumberger. Passive Magnetic Bearing. Journal ofMagnetism and Magnetic Materials.2004(272):2379~2380
    86John Watkins, Gray Brown, Ken Blumenstock. Control of Integrated Radial andAxial Magnetic Bearings. Proceedings of the33rd Southeastern Symposium onSystem Theory.2001:1~5
    87John Watkins, Ken Lee, Carlos Hernandez, et al. Adaptive Auto Balancing Controlof Magnetic Bearings for an Optical Chopper. Proceedings of the American ControlConference.2001:1298~1303
    88高景毅.混合式磁悬浮轴承及其控制系统的研究.哈尔滨工业大学硕士论文.2009:15
    89朱煌秋,邓智泉,袁寿其,等.永磁偏置径向轴向磁悬浮轴承工作原理和参数设计.中国电机工程学报.2002,22(9):54~58
    90朱煌秋,张仲,邬清海.一种锥形定转子交直流磁轴承建模与耦合特性研究.机械科学与技术.2008,27(12):1609~1614
    91Constantin Ghita, Ion Trifu. Aeolian Synchronous Generator with Conical Rotor.The7th International Symposium on Advanced Topics in Electrical Engineering.2011
    92Constantin Ghita, Ion Trifu. Linearization of Aeolian Synchronous Generator withConical Rotor. The7th International Symposium on aAdvanced Topics in ElectricalEngineering.2011
    93Peter E.Kascak, Ralph H.Jansen, Timothy P.Dever. Conical BearinglessMotor/Generator. United States Patent Application Publication. Pub.No.:US2005/0264118A1.2005
    94Peter E.Kascak. Fully levitated Rotor Magnetically Suspended by Two Pole PairSeparated Conical Motors. Doctor Thesis. Case Western Reserve University.2010:115~118
    95Peter Kascak. Ralph Jansen, Timothy Dever, et al. Motoring Performance of aConical Pole Pair Separated Bearingless Electric Machine. IEEE EnergyTech.2011:1~6
    96Peter Kascak, Ralph Jansen, Timothy Dever, et al. Bearingless Five Axis RotorLevitation with Two Pole Pair Separated Conical Motors. IEEE IndustryApplications Society Annual Meeting.2009:1~9
    97Peter Kascak, Ralph Jansen, Timothy Dever, et al. Levitation Performance of TwoOpposed Permanent Magnet Pole Pair Separated Conical Motors. IEEE EnergyConversion Congress and Exposition.2011:1649~1656
    98Robin M.Miller. Self Adjusting Airgap Motor/Generator for Flywheel System.United States Patent. Patent No.:5627419.1997
    99Bernard Raad, Leon Kasdan. Regulated Permanent Magnet Generator. United patent.Patent No.:US6445975B1.2002
    100白贺斌,肖兴华,彭评选.锥形气隙调隙式发电机.实用新型专利.授权公告号:CN2482763Y.2002
    101T.J.阿尔费尔曼, A.L.小麦格曼, A.M.埃尔安塔布利.具有圆锥形定子的永磁电机.发明专利.申请公布号: CN101867274A.2010
    102Edward A.Fisher, Eike Richter. Conical Rotor for Switched Reluctance Machine.United States Patent. Patent No.:5233254.1993
    103Helnz Lutz, Volker Zimmermann, Rainer Zuehlke. Rotor Stator Assembly for a LowInertia Stepping Motor. United States Patent. Patent No.:4045696.1977
    104Kiaus Albrecht, Helmut Hans, Johann, et al. Motor Having Rotor Capable of BothStepped Rotary and Axial Shift Motions. United States Patent. Patent No.:4920292.1990
    105成大光等.机械设计手册(单行本)轴承.化学工业出版社.2004:187~194
    106唐任远.现代永磁电机理论与设计.机械工业出版社.1997:45~49,171~173,424~427
    107江建中,傅为农.异步电机电磁场计算的有限元模型综述.电工技术杂志.1998(1):1~6
    108Konrad. A. Electrom agnetic Devices and the Application of ComputationalTechniques in Their Design. IEEE Transactions on Magnetics.1985,21(6):2382~2387
    109乔鸣忠,张晓锋,李槐树.考虑定子斜槽及转子运动永磁推进电机反电势及定位力矩的数值计算.武汉理工大学学报(交通科学与工程版).2004,28(5):643~648
    110江建中,傅为农.斜槽异步电动机的多截面有限元法分析.电工技术学报.1997,12(5):11~16
    111诸嘉慧,邱阿瑞,陶果.转子偏心及定子斜槽凸极同步发电机支路的感应电动势.清华大学学报(自然科学版).2008,48(4):453~456
    112Eastham, J.F., Ionel, D.M., Balchin, M.J., et al. Finite Element Analysis of anInterior Magnet Brushless D.C. Machine, with a Step Skewed Rotor. IEEETransactions on Magnetics.1997,33(2):2117~2119
    113陈丕章,严烈通,姚若萍.电机电磁场理论与计算.北京:科学出版社,1986:260~261
    114M.Faizul Momen, Susanta Datta. Analysis of Flux Leakage in a Segmented CoreBrushless Permanent Magnet Motor. IEEE Transactions on Energy Conversion.2009,24(1):77~81
    115M.Sadeghierad, H.Lesani, H.Monsef, et al. Leakage Flux Consideration in Modelingof High Speed Axial Flux PM Generator. IEEE International Conference onIndustrial Technology.2008:1~6
    116陈世坤.电机设计.机械工业出版社.2000:9~10
    117韩光鲜,王宗培,程智,等.混合式步进电动机非线性仿真模型的精确化.中国电机工程学报.2002,22(5):116120
    118李鲲鹏,胡虔生,黄允凯.计及绕组电感的永磁无刷直流电动机电路模型及其分析.中国电机工程学报.2004,24(1):7780
    119R. Dutta, M. F. Rahman. A Comparative Analysis of Two Test Methods ofMeasuring d and q axes Inductances of Interior Permanent Magnet Machine. IEEETransactions on Magnetics,2006,42(11):3712~3718
    120D. Wentzloff. Experimental Characterization of an Integrated Starter/Generator.Master Thesis for Massachusetts Institute of Technology.2002:48~53
    121程树康,于艳君,柴凤,高宏伟,刘伟.内置式永磁同步电机电感参数的研究(英文).中国电机工程学报.2009,29(18):94~99
    122Bojan Stumberger, Gorazd Stumberger, Drago Dolinar, et al. Evaluation ofSaturation and Cross Magnetization Effects in Interior Permanent MagnetSynchronous Motor. IEEE Transactions on Industry Applications.2003,39(5):1264~1271
    123Junnosuke Nakatsugawa, Yasuo Notohara, Dongsheng Li, et al. InductanceMeasurement Method for Permanent Magnet Synchronous Motors Using Ac with DcBias. Proceedings of the2008International Conference on Electrical Machines.2008:1~4
    124Meessen K.J, Thelin P. Soulard J.Lomonova Ea. Inductance Calculations ofPermanent Magnet Synchronous Machines Including Flux Change and Self andCross Saturations. IEEE Transactions on Magnetics.2008,44(10):2321~2331
    125汤蕴璆.电机内的电磁场.科学出版社.1998:358~367
    126Tian Lu Lin,Yang Xiao ping,Li Yan,Tian Qi,Li Hui,Zhang Xin Wei.AnalyticalMagnetic Force Model For Permanent Magnetic Guide Way and PermanentMagnetic Bearings.Mocaxue Xuebao.2008,28(1):73~77
    127Z.Q.Zhu, Dabaman Ishak, David howe, et al. Unbalanced Magnetic Forces inPermanent Magnet Brushless Machines With Diametrically Asymmetric PhaseWindings. IEEE Transactions on Industry Applications.2007,43(6):1544~1553
    128A.Tenhunen, T.Benedetti, T.P.Holopainen, et al. Electromagnetic Forces in CageInduction Motors with Rotor Eccentricity. IEEE International Electrical Machinesand Drives Conference.2003:1616~1622
    129David G. Dorrell. Sources and Characteristics of Unbalanced Magnetic Pull inThree Phase Cage Induction Motors with Axial Varying Rotor Eccentricity. IEEETransactions on Industry Applications.2011,47(1):12~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700