用户名: 密码: 验证码:
特低渗油藏水驱油规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国低渗透油田中,特低渗油藏或超低渗油藏占低渗透储量的一半以上。特低渗油藏由于渗透率较低,存在启动压力梯度,给油田开发带来很大困难,同时,特低渗油藏的储层在开发过程中,要发生部分或全部的不可逆变形,会明显地影响油田的动态特征。因此,特低渗油藏渗流机理的研究具有非常重要的意义。
     本文推导了不可逆变形情况下,渗透率随着地层压力变化的数学表达式。考虑启动压力梯度,建立了不可逆变形条件下特低渗油藏单相非线性稳定渗流数学模型,并进行了数值求解。计算结果表明:在内边界定压条件下,渗透率下降变化系数越大,地层压力下降越缓慢,产量也随之下降,极限供油半径越小;在内边界定产量条件下,随着渗透率下降变化系数的增加,地层压力下降越快。在此基础上,建立了不可逆变形条件下特低渗油藏单相非线性不稳定渗流数学模型,并进行了数值求解。计算结果表明:在内边界定产量条件下,随着渗透率下降变化系数的增加,地层压力下降越快,井底流压越来越低,极限供油半径越大。
     利用特低渗油藏单相启动压力实验的结果,得到油水两相渗流启动压力梯度的数学表达式。建立了考虑启动压力梯度的一维油水两相驱替数学模型,进行了数值求解。计算结果表明:启动压力梯度的存在造成了平均含水饱和度的降低和地层压力的升高;平面非均质性的存在导致地层平均含水饱和度和地层压力降低;在平面非均质性大小分别确定的情况下,按渗透率线性增加型和先增后降型的分布方式进行驱替时,驱替效果较好。
     考虑特低渗油藏的储层变形特征及启动压力梯度的影响,建立一维油水两相流固耦合数学模型,进行了数值求解。计算结果表明:考虑耦合情况下,随着水驱油的不断进行,地层的渗透率和孔隙度是不断增加的;水相压力、含水饱和度和启动压力梯度相对于非耦合模型较低;地层的应变和有效应力逐渐增加。
In low permeability oil field of our country, extra-low or ultra-low permeability reservoirs account for more the half, the threshold pressure gradient occurs in extra-low permeability reservoirs and brings difficulties to the oilfield development, at the same time, with the variation of the formation pressure, the formation deformation is usually non-reversible in extra-low permeability reservoirs, It will obviously affect the dynamic characteristics of oilfield. So the flow mechanism research of extra-low permeability reservoir is very important.
     By developing the connection that permeability varies with the pressure drop in this paper, the non-linear steady flow model is established accounting for non-reversible deformation, and which is sovled with numerical method. Under the condition of constant pressure , the results show that the formation pressure decreases more and more slowly with the permeability drop variation coefficient increasing, the oil production and limit control radius decreases; when the oil production is constant, the formation pressure decreases more and more quickly with the permeability drop variation coefficient increasing; on this basis, the non-linear nonsteady flow model is established accounting for non-reversible deformation, and which is sovled with numerical method, when the oil production is constant, the results show that the formation pressure decreases more and more quickly with the permeability drop variation coefficient increasing, the bottom hole flowing pressure decreases, and limit control radius increases.
     Based on the treshold pressure gradient study of single phase on extra-low permeability reservoir, we can obtain oil-water two-phase treshold pressure gradient. One-dimension water-oil displacement mathematics model considering threshold pressure gradient is established. By means of numerical solution, computational solution indicates that threshold pressure gradient causes average water saturation rising and formation pressure decreasing; permeability areal heterogeneity causes average water saturation and formation pressure decreasing; on the base of areal heterogeneity dimension is confirmed, when displacing by linear rising mode and firstly rising then decreasing mode, displacement efficiency is better.
     The one-dimension water-oil displacement and fluid-structure coupling mathematics model is established accounting for deformation characteristic and treshold pressure gradient, and which is sovled with numerical method. Computational solution indicates that porosity and permeability increases under fluid-structure coupling conditions; with respect to non-coupling model, water phase pressure, water saturation and treshold pressure gradient are lower; the formation strain and effective stress increases continuously.
引文
[1]李道品.开发低渗透油田莫失良机[J].中国石油企业,2004,12:44-45
    [2]秦同洛.关于低渗透油田的开发问题[J].断块油气田,1994,1(3)
    [3]李道品.低渗透油田开发概论[J].大庆石油地质与开发,1997,16(3)
    [4]冯文光.非线性低速渗流的研究现状与进展[J].石油勘探与开发,1986,13(2)
    [5] Von Englehardt,W. and Tunn W.L.M. The flow of fluids though sandstones[J]. Cire.Ill.state.Geol.surv.1955,194:1-17
    [6] Lutz J F,Kemper W D Intrinsic permeability of clay as affected by clay-water interaction[J].Soil Sci.1959,88(2):83-90
    [7] Hansbo S. Consolidation of clay,with special reference to influence of vertical sand drains[J].Swedish Geotech.Inst.Proc.1960,18:41-159
    [8] Mitchell J K, Younger J S.Abnormalities in hydraulic flow through fine-grained soils[J].ASTM Spech.1967,417:106-141
    [9] Miller R J,Low P E. Threshold gradient for water flow in clay systems[J].Soil Sci.Soc.Am.Proc.1963.27(6):605-609
    [10] Alvaro Prada,Faruk Civan. Modification of Darcy’s law for the threshold pressure gradient[J].Journal of Petroleum Science and Engineering,1999,22(4): 237-240
    [11]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1998.21(2)
    [12]李道品.低渗透油田开发[M].北京:石油工业出版社,1999.25-30
    [13] Bear J.著.李竟生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.97
    [14]王允诚等编著.致密性油气储集层[M].地质出版社,1992.
    [15]白矛、刘天泉等编著.孔隙裂缝弹性理论及应用导论[M].北京:石油工业出版社,1999.
    [16]黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,1(4):9-14
    [17]阮敏,何秋轩.低渗透非达西渗流临界点及临界参数判别法[J].西安石油学院学报.1999,14(3):9-10
    [18]邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用[J].石油学报,2001,22(4)
    [19] Meinzer O E. Compressibility and elasticity of artesian aquifers[J].Econ. Geol, 1928,(23):263-271
    [20]邓英尔等.高等渗流理论与方法[M].北京:科学出版社,2004.
    [21] Lewis R W, Sukirman Y. Finite element modeling of three-phase flow in deforming saturated oil reservoirs[J].Int. J. Num. Anal. Methods Geomech.1993,17: 577-598
    [22] Lewis R W.Finite element modeling of two-phase heat and fluit flow in deforming porous media[J].Trans Porous Media.1989,4:319-334
    [23] Settari A,Kry p R.and Yee C T. Coupling of fluid flow and soil behabiour to model injection into uncemented oil sands[J]. JCPT.1989,28(1): 81-92
    [24] Settari A. Physics and modeling of thermal flow and soil mechanics in unconsolidated porous media[J]. SPE Production Engineering. February, 1992: 47-55
    [25] Fung L S K. A Coupled geomechanical multiphase flow flow model for analysis of in situ revovery in cohesionless oil sands[J].JCPT.1992,31(6): 56-67
    [26] Fung L S K. Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs[J].JCPT. 1994, 33(4): 22-28
    [27] Chen H Y,Teufel L W and lee R L.Coupled fluid flow and geomechanics in reservoir study-1.theory and governing equations[J].SPE 30752
    [28] Jose G Osorio,et al.Numerical simulation of the impact of flow-induced geomechanical response on the production of stress-sensitive reservoirs[J]. SPE 51920
    [29]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报.1999,16(1):24-31
    [30]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报.1998,19(1):64-70
    [31]范学平,李秀生,张士诚,等.低渗透变形介质油气藏渗流流固耦合研究[J].新疆石油地质.2001,22(1):76-78
    [32]范学平,李秀生,张士诚,等.低渗透气藏整体压裂流固耦合数学模拟[J].石油勘探与开发.2000,27(1):76-79,83
    [33]刘建军,刘先贵.煤储层流固耦合渗流的数学模型[J].焦作工学院学报.1999,18(6):397-401
    [34]刘建军,天然气流固耦合渗流计算的有限元方法[J].新疆石油地质.2000,21(6):487-490
    [35]刘建军,耿万东.地下水渗流的固液耦合理论及数值方法[J].勘察科学技术.2000年第4期:7-9
    [36] Meinzer O E. Compressibility and elasticity of artesian aquifers[J].Econ. Geol, 1928,(23):263-271
    [37]尹洪军,何应付.变性介质油藏渗流规律和压力特征分析[J].水动力学研究与进展,2002,17(5):538-546
    [38]傅春华,葛家理.低渗透油藏的非线性渗流理论探讨[J].新疆石油地质,2002,23(4):317-320
    [39]宋付权,刘慈群.变形介质油藏压力产量分析方法[J].石油勘探与开发,2000,27(1):57-59
    [40] Davies J P, Holditch S A. Stress dependent permeability in low permeability gas reservoirs[J]. SPE 39917,1983.
    [41]戈尔布诺夫A T.异常油田开发[M].北京:石油工业出版社,1987.
    [42]苏玉亮,杨建,张鸣远,薛海晖.变形介质中粘弹性稠油驱替特征[J].西安石油学院学报(自然科学版),2002,7(1):35—38
    [43]路士华,牛乐琴,苏玉亮,李东霞.变形介质中宾汉稠油驱替特征[J].新疆石油学院学报,2003,15(1):51-54
    [44]刘慈群.有起始比降固结问题的近似解[J].岩土工程学报,1982,4(3):107-109
    [45]宋付权,刘慈群.含启动压力梯度油藏的两相渗流分析[J].石油大学学报(自然科学版),1999,23(3):47-50,56
    [46]姜汉桥,姚军,姜瑞忠.油藏工程原来与方法[M].东营:石油大学出版社,2003.
    [47]陈金铺.偏微分方程数值解法[M].北京:清华大学出版社,1999.
    [48]苏玉亮,栾志安,张永高.变形介质油藏开发特征[J].石油学报,2000,21(2):68-72
    [49]时佃海.低渗透砂岩油藏平面径向渗流流态分布[J].石油勘探与开发,2006,33(4):491-494
    [50]李忠兴,韩洪宝等.特低渗油藏启动压力梯度新的求解方法及应用[J].石油勘探与开发,2004,31(3):107-109
    [51]韩洪宝,程林松等.特低渗油藏考虑启动压力梯度的物理模拟及数值模拟方法[J].石油大学学报(自然科学版),2004,28(6):49-53
    [52]林玉保,刘春林等.特低渗透储层油水渗流特征研究[J].大庆石油地质与开发,2005,24(6):42-44
    [53]杨少春.储层非均质性定量研究的新方法[J].石油大学学报:自然科学版,2000,24(1):53-56
    [54]董桂玉,何幼斌,徐徽等.储层宏观非均质性的几种表征方法[J].石油天然气学报.2005,27(4):590-591
    [55]赵艳艳,李留仁,吴晓东.一种定量描述油藏渗透率水平非均质性的新方法[J].西安石油大学学报:自然科学版,2006,21(5):62-64
    [56]王胜利,盖东玲,魏荷花.文25东块储层非均质性模式研究[J].断块油气田,2000,7(6):39-41
    [57]邓瑞键.储层平面非均质性对水驱油效果影响的实验研究[J].大庆石油地质与开发,2000,21(4):15-19
    [58]许宁.储层平面非均质性对气藏开发动态的影响[J].天然气工业,2001,21(3):62-66.
    [59]张建国,雷光伦,张艳玉.油气层渗流力学[M].北京:石油大学出版社,1998.
    [60] Terzaghi K.Theoretical soil mechanics[M].Tiho Wiley,New York,1943.
    [61] Skempton A W.Effective stress in soils,concrete and rocks.In pore pressure and suction in soils[M].Butterworth london,1961.
    [62]冉启全.流固耦合油藏数值模拟理论与方法研究[J].南充:西南石油学院,1996.
    [63]董平川.油气储层流固耦合理论、数值模拟及应用[J].沈阳:东北大学,1998.
    [64]薛世峰.非混相饱和两相渗流与变形孔隙介质耦合作用的理论研究及其在石油工程中的应用[J].北京:中国地震局地质研究所,2000.
    [65]屈志炯.土的塑性力学[M].成都:成都科技大学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700