用户名: 密码: 验证码:
中高渗砂岩油藏水驱油效率及波及规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注水开发是世界主要产油国开发油田的主要方式,也是迄今为止最经济有效的提高采收率的方法。而水驱波及系数和驱油效率是油田开发中必不可少的参数,但是近年来密闭取心井资料反映出,油层纵向驱油效率及波及系数存在很大差异,目前已有的驱油效率计算方法均无法描述这种差异,因此有必要开展深入的研究。
     论文通过采用大量试验数据统计分析与论证试验相结合的的方法,以室内实验为主要研究手段,以实验数据为基础,研究内容为建立了中高渗砂岩油藏的渗透率、油水粘度比、岩石表面性质、孔隙结构、注入倍数与水驱油效率之间的关系;综合考虑单因素的影响建立了驱油效率预测模型;并应用大尺寸物理模型进行了动态波及系数的研究。
     研究结果表明,不同油水粘度比条件下储层渗透率和孔隙度与驱油效率呈现正相关关系;中性润湿较亲水样品驱油效率高1.63%,亲水样品较亲油样品驱油效率高2.47%;特征结构系数与驱油效率呈现正相关关系;不同油水粘度比下的注入倍数的对数与驱油效率呈现正相关关系。对建立的驱油效率预测数学模型进行试算,试算结果与试验结果的误差值为1.8~5.1%,相对误差为2~9%。应用参数可控性高、物理化学稳定性好的大尺寸人造物理模型开展的波及规律研究,建立了均质模型与非均质模型动态波及系数的描述方法。
     随着中高渗砂岩油藏高含水期开发力度及难度的逐渐增加,对剩余油分布的认识及机理研究日趋紧迫,该成果为重新评价胜利水驱油藏的潜力及剩余油挖潜提供理论根据。
Waterflooding is not only a dominant producing method in the world oil industry, but also the most economical and efficient method to enhance oil recovery so far. Waterflooding sweep factor and displacement efficiency are indispensable parameters and final determinative factors in field development process. In recent years, sealed coring well data has demonstrated that there are great differences between vertical displacement efficiency and sweep factor in the reservoir. Because such differences can’t be described by current method computing displacement efficiency, it is necessary to make in depth study.
     By means of statistical and analysis method for extensive test data companied with demonstration testing, using laboratory experiment as main study means , the correlations between different single factor including permeability , viscosity ratio of oil and water, rock surface properties, pore structure , total injection volume and displacement efficiency were developed respectively based on experiment data. Considering comprehensively the effect of single factor, the forecasting model for displacement efficiency was developed. Using large scale physical model, dynamic conformance factor was also studied.
     The studying results show that the positive correlation exists between permeability or porosity and displacement efficiency for varied oil/water viscosity ratio, the displacement efficiency of intermediately wet core is 1.63% higher than of water wet core and the displacement efficiency of water wet core is 2.47% higher than of oil wet core, the positive correlation presents between pore character parameters and displacement efficiency, the positive correlation exists between total injection volume and displacement efficiency or total injection volume for varied oil/water viscosity ratio. Trial calculation of developed mathematical model for displacement efficiency indicates that the error value between calculated result and tested results is 1.8% to 5.1%, and the relative error is 2% to 9%. By means of large scale physical model with well parameter controllability and physicochemical stability, sweep feature was studied and a method used to describing dynamic sweep factor for homogeneous and nonhomogeneous model was developed.
     With gradually increasing development intensities and difficulties in high water cut stage sandstone reservoir with medium or high permeability, determining the residual oil distribution is becoming more and more urgent , so all the research results can supply theoretical references for re-evaluating waterflooding reservoir’s potential reserves and producing more residual oil.
引文
[1] Donaldson E C, Thomas R D. Microscopic Observations of Oil Displacement in Water Wet and Oil Wet Systems. SPE3555, 1971
    [2] Anderson W G. Wettability Literature Survey - Part 6: The Effect of Wettability on Waterflooding. JPT ,Dec ,1987:1605-1622
    [3] Jadhunandan P P, Morrow N R. Effect of Wettability on Waterflood Recovery for Crude Oil/ Brine/ Rock Systems. SPE Reservoir Engineering , Feb , 1995:40-46
    [4]周显民,马启贵,徐盛家.油藏润湿性对水驱油效率的影响[J].大庆石油地质与开发,1994,13(1):70-71
    [5] Morrow N R. Wettability and Its Effect on Oil Recovery,JPT, Dec, 1990: 1476-1484
    [6]鄢捷年.油藏岩石润湿性对注水过程中驱油效率的影响[J].石油大学学报(自然科学版),1998,22(3):43-46
    [7]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:226-230
    [8] Gao Yaming,et, al. A Study of Structure by Image Processing Method and Its Application.SPE 14872
    [9] T.M.Okasha, et al. Evaluation of Residual Oil Saturation and Recovery Efficiency of Two Distinct Arabian Carbonate Reservior.SPE 93376
    [10]杨普华译.影响混合润湿性储层岩石非稳态相对渗透率的因素[A].杨普华,倪方天.岩心分析译文集[C].北京:石油工业出版社,1998:175-197
    [11]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,(1):23-25
    [12]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000:51-61
    [13]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-47
    [14]刘柏林.苏北盆地陈堡油田微观水驱油机理及水驱油效率影响因素研究[J].石油实验地质,2003,25(2):178-181
    [15]张绍东.孤岛油田储层微观结构特征及其对驱油效率的影响[J].石油大学学报(自然科学报),2002,26(3):47-54
    [16]熊敏.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42-44
    [17]何秋轩,高永利.沈阳油田储层微观驱油效率研究[J].西南石油学院学报,1996,18(2):20-24
    [18]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998:58-79
    [19]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:66-87
    [20]田乃林,张丽华.高凝油驱油效率的室内实验研究[J].大庆石油地质与开发,1997,16(3):53-55
    [21]俞启泰,赵明,林志芳.水驱砂岩驱油效率和波及系数研究(一)[J].石油勘探开发,1989,16(2):48-52
    [22]芦文生.绥中36-1油田储层驱替特征研究[J].中国海上油气地质,2003,17(3):181-184
    [23]张人雄.驱替条件对砂砾岩油藏水驱油效率的影响[J].河南石油,1995,9(4):32-37
    [24]高永利.辽河油田冷43砾岩稠油油藏微观驱油效率研究[J].西安石油学院学报, 1996,11(4):35-36,34
    [25]邵创国,高永利,林光荣,等.特低渗透储层提高水驱油效率实验研究[J].西安石油大学学报(自然科学版),2004,19(3):23-25,28
    [26]孙卫,付晓燕.姬塬延安组储层水驱油效率及影响因素[J].石油与天然气地质,1999,20(1):26-29
    [27]任晓娟,曲志浩,史承恩,等.西峰油田特低渗弱亲油储层微观水驱油特征[J].西北大学学报(自然科学版),2005,35(6):766-769
    [28]朱玉双,曲志浩,孔令荣,等.靖安油田长6、长2油层驱油效率影响因素[J].石油与天然气地质,1999,20(4):333-335
    [29] Wang Demin.The Influence of Multi-pore Volume Water Flooding on Pore Structure and Recovery of Lacustrine Deposit Mixed Wettability Cores. SPE77873
    [30]黄学斌,鲁国甫,张人雄.预测水驱砂岩油田驱油效率的方法[J].河南石油,1997,11(4):15-16
    [31]何贤科,陈程.用动态资料预测注水开发油田驱油效率[J].新疆石油地质,2005,26(3):296-297
    [32] R. J. WYGAL .Construction of Models that Simulate Oil Reservoirs. SPE 534
    [33] Rapoport, L. A..Scaling Laws for Use in Design and Operation of Water-Oil Flow Models.Trans. AIME (1955),204:143-150
    [34] Geertsma, J., Croes, G. A., and Schwarz, N.:“Theory of Dimensionally Scaled Models of Petroleum Reservoirs”, Trans. AIME (1956),207:118-127
    [35] Craig, F. F., Jr., Sanderlin, J. L., Moore, D. W. and Geffen, T. M.:“A Laboratory Study of Gravity Segregation in Frontal Drives”, Trans.,AIME (1957), 210:275-282.
    [36] Gaucher D. H., Lindley D. C.“Waterflood Performance in a Stratified, Five-Spot Reservoir——A Scaled-Model Study”, Trans.,AIME (1960),219:208-215.
    [37] F. M. Perkins, JR, R.E. Collins,”Scaling Laws for Laboratory Flow Models of Oil Reservoirs”Trans.,AIME (1960),219:383-385
    [38] R W.S.Foulser.高毛管束条件下两相及三相相对渗透率的研究[A].杨普华,倪方天.岩心分析译文集[C].北京:石油工业出版社,1998:321-334
    [39] A.H.Sufi,张贤松译.交替注蒸汽和注水法开采重质油. SPE/DOE20246
    [40] M.R.Islam,张冬玉译.底水重质油油藏的开采技术.SPE油藏工程,1992:181-189
    [41] P. F. Ahner,任力成译.水平井蒸汽驱物理模型研究.SPE/DOE20246
    [42]沈平平,胡芝芸.胜坨油田二区沙二段83层水驱油规律实验总结[A].胜利油田勘探开发研究报告集[C].第三分册.东营:胜利油田地质科学研究院,1978:195-220
    [43]唐仁骐.胜坨油田二区34层注水速度室内实验研究[A].胜利油田勘探开发研究报告集[C].第三分册.东营:胜利油田地质科学研究院,1978:177-194
    [44]沈平平.厚油层层内油水运动二维相似理论研究[A].胜利油田勘探开发研究报告集[C].第三分册.东营:胜利油田地质科学研究院,1978:237-246
    [45]宗习武,胡芝芸.底水油藏动态模拟[A].胜利油田勘探开发研究报告集[C].第三分册.东营:胜利油田地质科学研究院,1978:221-236
    [46]江如意,王家禄.高温高压三维水平井物理模拟系统[J].石油勘探与开发,1999,26(6):99-101
    [47]王家禄,江如意.侧钻水平井开采剩余油的三维物理模拟研究[J].石油学报,2000,21(6):51-56
    [48]曾溅辉,金之钧.油气二次运移和聚集物理模拟[M].北京:石油工业出版,2000:25-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700