用户名: 密码: 验证码:
保护性耕作条件下土壤水分运动规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护性耕作技术是相对于传统耕作的一种新型耕作技术,起源于19世纪末的美国,通过对农田实行少耕、免耕技术,尽可能用农作物秸秆、残茬覆盖地表,以减少土壤水蚀、风蚀,从而提高土壤肥力和抗旱能力的先进耕作技术。目前广泛应用于各国旱作区农业生产,由于地域特征、气候因素及经济水平等方面存在不少差异,其适用规模和方式受到影响。因此,为进一步推广和应用保护性耕作技术,亟需研究其蓄水保墒增产机理。
     本论文针对东北地区旱作区农业用水不足的现状,结合辽宁省教育厅高等学校科学技术研究项目“保护性耕作条件下土壤水分运动规律的研究”(2004D207),研究保护性耕作技术的理论与应用问题。通过田间试验与理论分析相结合,分析不同覆盖措施抑蒸保水机理,研究玉米增产节水模式,建立适合免耕全覆盖、残茬覆盖及浅松覆盖等保护性耕作条件下的二维土壤水分运动模型,并在此基础上进一步分析各种覆盖方式对土壤水分动态变化过程的影响。研究成果能够对保护性耕作技术在东北地区应用和推广提供理论指导和决策依据。
     论文的主要研究内容与成果:
     (1)分析免耕全覆盖、残茬覆盖及浅松覆盖等保护性耕作模式对土壤蒸发影响,建立适应各自特点的表土相对蒸发强度与表层水分含量关系公式,R~2均大于0.75,可以作为保护性耕作条件下土壤水分运动数值模拟的上边界条件。
     (2)通过对不同覆盖措施土壤剖面水分的研究得出覆盖措施对提高地表以下0~10 cm土层水分效果显著,对深层影响不显著,且侧向补给优于裸土的结论。
     (3)运用土壤水动力学运动方程反求根系吸水率,同时分析玉米剖面取根资料,建立有效根密度分布函数,以此为依据结合土壤剖面水分分布建立了适合不同处理的二维根系吸水率模型。
     (4)建立保护性耕作条件下的二维土壤水分运动模型,该模型可适用于免耕全覆盖、残茬覆盖及浅松覆盖等耕作模式。采用交替方向隐式差分法进行数值求解,相对误差均在10%以内,达到理想效果,可用于保护性耕作条件下土壤水分运动规律的研究和土壤墒情的预测。
     (5)通过对土壤降雨入渗和雨后水分再分布过程的数值模拟再现田间土壤水分动态变化过程,分析表明:土壤水分发生显著变化的区域主要集中在0~40cm。降雨强度与耕作方式均对土壤水分运动有不同影响,揭示了不同覆盖处理土壤水分运动规律。
     (6)通过对不同覆盖措施下土壤墒情、土壤肥力、作物生长发育、产量以及水分生产效率等方面的对比研究,进一步明确适宜东北地区采用的保护性耕作模式。研究表明与传统耕作相比覆盖措施可提高春播期耕层水分6.69%~15.23%;生育期耕层水分1.51%~20.93%;水分利用效率6.36%~14.10%;当年产量4.23%~11.37%,两年产量9.46%~24.04%。休闲期覆盖可提高有机质、碱解氮和速效钾含量,但对速效磷与PH值有降低作用;生育期覆盖各养分指标均下降,但总体覆盖措施保持土壤肥力方面优于裸土。其中免耕全覆盖保水效果最佳,浅松覆盖保肥增产效果综合效益最优适宜东北旱作区推广。
     (7)针对东北地区区域特点,初步提出了适合东北旱作区的保护性耕作模式。
     本文研究创新点归纳如下:
     1)建立免耕全覆盖、残茬覆盖及浅松覆盖耕作模式下二维根系吸水速率模型。
     2)建立适用于免耕全覆盖、残茬覆盖及浅松覆盖耕作模式下二维土壤水分运动模型,可用于分析田间土壤水分动态变化过程。
     3)基于田间试验与理论分析,提出了适合东北地区应用和推广的保护性耕作措施。
Conservation tillage technology originates from United States in the end of 19th century.It is advanced farming technology which through the implementation of reduced tillage, no-tillage technology, using crop stalks stubble ground cover to reduce soil water erosion, wind erosion, so as to enhance the capacity of soil fertility and drought-resistance .Function and role of conservation tillage technology have been proved by practice. Nevertheless, due to geographical characteristics, climatic factors and economic level there are many differences in the size and manner of its application be affected. Therefore, in order to further promote the wider use and application of straw mulch technology, the mechanism on moisture conservation ,distribution characteristics of fertility and the impact on crop yield an urgent need to study.
     In this paper,according to insufficient water for agricultural use of dry area for the Northeast ,and combined with the Liaoning Provincial Office of Education research project on "Conservation Tillage of soil water movement under the conditions " (2004D207), research on theory and application of conservation tillage technology. Combined with field experiments and theoretical analysis, analysis of restraint evaporation and water retaining mechanism, water-saving model of maize production,and establishment the two-dimensional model of soil water movement of no-tillage with full mulch,stubble mulch and surface tillage with mulch. On the basis of this ,further analysis of the coverage of soil moisture on the impact of the process of dynamic change.Results to the conservation tillage technology in the Northeast to promote the application and provide a theoretical basis for guidance and decision-making.
     The main contents and achievements are as follows:
     (1) Analysis of the effects on soil evaporation of conservation tillage such as no-tillage with mulch,stubble mulch and surface tillage with mulch ,and establishment the formula about surface soil moisture content and evaporation. the formula coefficient of determination are greater than 0.75, it can be used as conservation tillage conditions soil water movement under the numerical simulation of the up boundary conditions.
     (2) It is obvious that coverage of different measures have significant impact on the soil moisture of underground 0~10 cm, no significant effect on deep soil, and lateral recharge is superior to bare soil.
     (3) Based on the Equation of soil water dynamics in reverse calculation root water absorption, the same time analysis of corn root profile information , establishment of an effective root density distribution function,combined with the soil profile water content distribution establishment the two-dimensional model of root water absorption for different treatments.
     (4) Establishment the two-dimensional model of soil water movement of conservation tillage , the model could be applied to no-tillage with mulch,stubble mulch and surface tillage with mulch, Its partial derivative equation is solved by alternating direction implicit algorithm. The relative error of prediction value and actual value is less than±10%. The two-dimensional model of soil water movement can be used movement of soil moisture and soil moisture in the forecast for conservation tillage.
     (5) Appeared the dynamic changes of soil moisture of field process by the numerical simulation on rainfall infiltration through the soil and rain water redistribution.Analysis showed that, significant soil moisture changes occur mainly in the region 0~40cm.Rainfall intensity and tillage practices on soil water movement were different, reveals the movement of soil moisture effects of different cover.
     (6) Comparative study on different cover mode about soil moisture, soil fertility, crop growth, yield and water efficiency in the production, and further clarifying the appropriate the pattern of conservation tillage use for the northeastern region.Study shows that compared with traditional fanning ,the measures increase the coverage period of topsoil moisture in spring 6.69%~15.23%; reproductive period of topsoil moisture 1.51%~20.93%; water use efficiency of 6.36%~14.1%;year yield 4.23%~11.37%;two-year yield 9.46%~24.04%.Fallow periods can improve the coverage of organic matter, nitrogen and potassium content, but reduce the available phosphorus and PH value,reproductive period covered by the nutrient indicators are declining, but the overall coverage of measures to maintain soil fertility better than bare soil.No-tillage with mulch is the best measures of water saving, and surface tillage with mulch superiors to other on overall efficiency of fertilizer production security.So surface tillage with mulch is suitable for dry areas of Northeast.
     (7) According to characteristics for the Northeast region,suitable for dry areas of Northeast conservation tillage modeis also is proposed.
     The main innovation points of this paper are as followed:
     (1) Establishment the two-dimensional model of root water absorption for no-tillage with mulch、stubble mulch and surface tillage with mulch.
     (2) Eestablishment the two-dimensional model of soil water movement of no-tillage with mulch、stubble mulch and surface tillage with mulch,which can be applied to analysis of the process of soil moisture dynamic change in a field.
     (3) Experimental research and theoretical analysis,which kind of conservation tillage is suitable for application and extensive popularization for Northeast China is put forward.
引文
1.曹巧红,龚元石.应用Hydrus_1D模型模拟分析冬小麦农田水分氮素运移特征.植物营养与肥料学报,2003,9(2):139-145.
    2.曹巧红.随机降雨/天气变化条件下冬小麦夏玉米农田氮淋失特征模拟分析[D].北京:中国农业大学,2002.
    3.陈凤,蔡焕杰.秸秆覆盖条件下玉米需水量及作物系数的试验研究[J].灌溉排水学报,2004,23(1):41-43.
    4.陈乐梅.免耕全覆盖对春小麦生理和产量及品质的影响研究[D].新疆农业大学,2006.
    5.陈研等.求解土壤溶质运移方程的广义迎风差分法[J].农业工程学报,2005,21(4):16-19.
    6.杜新艳,杨路华.秸秆覆盖对夏玉米农田水分状况、土壤温度及生长发育的影响[A];农业工程科技创新与建设现代农业--2005年中国农业工程学会学术年会论文集第二分册[C],2005.
    7.冯绍元等.温室滴灌线源土壤水分运动数值模拟[J].水利学报,2001(2):59-62,68.
    8.付琳.滴灌是时的土壤浸润状况[J].灌溉排水,1983,2(3):36-45.
    9.高焕文.我国保护性耕作的发展形式与问题探讨[J].山东农机化,2006(10):9-10.
    10.高建勇,陈艳霞.一维非饱和土壤水分运动的数值模拟[J]安徽农业科学2008,36(10):4189-4269.
    11.高鹏程等.土壤水分蒸发与吸风的关系[J].西北林学院学报,2004,19(3):89-91.
    12.郭瑞,冯起.土壤水盐运移模型研究进展[J].冰川冻土 2008(3):527-535.
    13.郭维东等.温室内节点渗灌条件下土壤水分运动规律的试验研究[J].节水灌溉,2003(6):1-3,45.
    14.郭志利等.旱地春大豆地膜覆盖增产节水效果研究[J].作物杂志,2005(5):24-26.
    15.洪晓强,赵二龙.秸秆覆盖对农田土壤水分及玉米生长的影响[J].中国农学通报,2005,21(8):177-179.
    16.胡生会.免耕与耕作栽培蚕豆对稻田土壤水分和养分的影响[J].安徽农业科学,2008(15):6410-6411.
    17.胡实,谢小立.秸秆覆盖对夏玉米田棵间蒸发和近地层气象要素的影响[J].中国农业气象,2008(2):170-173.
    18.虎胆·吐马尔白,木拉提.沟底膜孔灌水条件下土壤水入渗规律的数值模拟[J].水科学进展,2002,13(1):69-73.
    19.虎胆·吐马尔拜.非饱和土壤水一维流动的数值模拟[J].新疆农业大学学报,1994,17(1):50-56.
    20.虎胆·吐马尔拜.秸杆覆盖条件下土壤水分运动的实验研究[J].灌溉排水,1998,17(2):1-6.
    21.华孟,王坚.土壤物理学[M].北京:北京农业大学出版社,1993,214-242.
    22.康绍忠,蔡焕杰.农业水管理学[M].中国农业出版社,1996,43-58.
    23.康绍忠等.冬小麦根系吸水模式的研究[J].西北农业大学学报,1992,20(2):5-12。
    24.康绍忠等.作物覆盖条件下田间水热运移的模拟研究[J].水利学报,1993(3):11-17,27。
    25.雷志栋等.土壤水动力学[M].北京:清华大学出版社,1988,25-57,220-304.
    26.雷志栋等.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    27.李保国等.农田土壤水的动态模型及应用[M].北京:科学出版社,2000,9-10.
    28.李成华,马成林.有机物覆盖地面对土壤物理因素影响的研究(Ⅰ)-有机物覆盖对土壤孔隙度的影响[J].农业工程学报,1997,13(2):82-85.
    29.李成华,马成林.有机物覆盖地面对土壤物理因素影响的研究(Ⅰ)-有机物覆盖层下土壤湿度的变化[J].农业工程学报,1997,13(1):107-111.
    30.李道西等.地下滴灌土壤水分运动室内试验研究[J].灌溉排水学报,2004,23(4):26-28.
    31.李恩羊.渗灌条件下土壤水分运动的数学模拟[J].水利学报,1982,(4):1-10.
    32.李富宽,姜慧新.秸秆覆盖的作用与机理[J].当代畜牧;2003(6):38-40.
    33.李光永等.地埋点源非饱和土壤水运动的数值模拟[J].水利学报,1996,(11):47-51.
    34.李洪文,高焕文.保护性耕作土壤水分模型[J].中国农业大学学报,1996,1(2):25-30.
    35.李华.栽培模式对冬小麦产量形成和养分利用的影响[D].西北农林科技大学,2006.
    36.李玲玲,黄高宝.不同保护性耕作措施对旱作农田土壤水分的影响[J].生态学报,2005,25(9):2326-2333.
    37.李玲玲,黄高宝.免耕秸秆覆盖对旱作农田土壤水分的影响[J].水土保持学报,2005,19(5):94-96.
    38.李全起.秸秆覆盖节水效应研究[D].山东农业大学,2004.
    39.廖允成,温晓霞.黄土台原旱地小麦覆盖保水技术效果研究[J].中国农业科学,2003,36(5):548-552.
    40.林成谷.土壤学[M].北京:农业出版社,1998,212-217.
    41.刘超,汪有科.秸秆覆盖量对农田土面蒸发的影响[J].中国农学通报,2008,24(5):448-451.
    42.刘超等.秸秆覆盖对农田土面蒸发的影响[J].中国农业通报(农业工程科学),2008,24(5):448-451.
    43.刘亶仁,路京选.沟灌二维入渗条件下累计入渗量变化规律的研究[J].水利学报,1989(4):11-21.
    44.刘洪禄等.波涌灌间歇供水表面密实层特性的实验研究[J].灌溉排水,1997,16(4):6-11.
    45.刘洪禄等.不同田间工程措施条件下降水入渗规律的数值模拟[J].农业工程学报,1998,14(2):143-148.
    46.刘万侠,刘旭拢.华南农作物覆盖区土壤水分ENVISAT-ASAR与MODIS数据联合反演算法研究[J].干旱地区农业研究,2008(3):66-54.
    47.刘文乾,杨富位.半干旱山区冬小麦秸秆覆盖栽培条件下土壤水分及增产效果研究[J].甘肃农业,2004(2):30-31.
    48.刘武仁等.东北黑土区发展保护性耕作可行性分析[J].吉林农业科学,2008,33(3):3-4.
    49.刘晓英等.滴灌条件下土壤水分运动规律的研究[J].水利学报,1990(1):11-22.
    50.刘毓中.对地膜覆盖棉田增温、保墒、提墒和地面水入渗补给作用机理的探讨[J],灌溉排水,1989,8(3):10-17.
    51.陆垂裕,裴源生.适应复杂上表面边界条件的一维土壤水运动数值模拟[J].水利学报,2007,38(2):136-142.
    52.吕军杰等.不同耕作方式对坡耕地土壤水分及养分生产效率的影响[J].农业气象,2003,34(1):74-76.
    53.吕某超,仵峰等.地下和地表滴灌土壤水分运动的室内试验研究[J].灌溉排水,1996,15(1):42-44.
    54.吕雯,汪有科.不同秸秆还田模式冬麦田土壤水分特征比较[J].干旱地区农业研究,2006,24(3):68-71.
    55.罗振东等.非饱和水流问题的混合元法及其数值模拟[J].计算数学,2003,25(1):113-128.
    56.马孝义等.果树地下滴灌灌水技术田间试验研究[J].西北农业大学学报[J],2000,28(1):57-61.
    57.木拉提·胡塞因,虎胆·吐马尔拜.土壤水分运动数学模型的建立及应用[J].新疆农业大学学报,2002,25(1):60-62.
    58.裴步祥,邹耀芳.利用小型蒸发器观测水面蒸发的几个问题[J].气象,1989,15(6):48-51,45.
    59.任理.有限解析法在求解非饱和土壤水流问题中的应用[J].水利学报,1990(10):55-61.
    60.邵爱军.土壤水盐运移数值模拟[M].北京:地质出版社,2007.
    61.邵明安等.植物根系吸收土壤水分的数学模型[J].土壤学报,1987,24(4):295-305.
    62.沈荣开,D.B.Jaynes.间歇入渗情况下土壤水运动滞后作用的影响[J].水利学报,1988(10):11-20.
    63.沈荣开等.夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟[J].水利学报,1997(2):14-21.
    64.沈文华,王中华.缓解我国水资源危机的若干对策[J].北京农学院学报,2000,15(4):63-68.
    65.石元春等.节水农业应用基础研究进展[M].北京:中国农业出版社,1995,7-19
    66.司徒松等.“一管两用”灌排系统土壤水分运动规律的研究.农业工程学报,1988(4):16-21.
    67.宋孝玉,李亚娟.非饱和土壤水分运动参数的空间特征是科学认识大尺度土壤水分动态变化的基础和先决条件[J].地球科学进展,2008,(6):15-17
    68.苏金明,阮沈勇.Matlab 6.1实用指南(下册)[M].北京:电子工业出版社,2002,93-97,394-404.
    69.隋红建等.不同覆盖条件下对土壤水热分布影响的计算机模拟Ⅱ-有限元分析及应用[J].地理学报,1992,47(2):181-187.
    70.隋红建等.不同覆盖条件下对土壤水热分布影响的计算机模拟Ⅰ-数学模型[J].地理学报,1992,47(1):74-79.
    71.孙景生,康绍忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报,2000,16(2):1-4.
    72.孙西欢等.沟灌入渗参数影响因素的试验研究[J].西北农业大学学报,1994,22(4):102-106.
    73.孙耀邦.土壤耕作技术与应用[M].北京:中国农业出版社,1996,72-74.
    74.唐涛等.人工降雨条件下秸秆覆盖减少水土流失的效应研究[J].水土保持研究,2007(4):1-3.
    75.唐涛等.人工降雨条件下秸秆覆盖减少水土流失的效应研究[J].水土保持研究,2008,15(1):9-11,40.
    76.田霄鸿.不同土壤层次供应水分和养分对玉米幼苗生长和吸收养分的影响[J].土壤通报,2002,33(4):263-267.
    77.脱云飞,费良军.秸秆覆盖对夏玉米农田土壤水分与热量影响的模拟研究[J].农业工程学报,2007,23(6):27-33.
    78.脱云飞.河北省夏玉米秸秆覆盖水热传输模型与高效用水技术研究[D].河北农业大学,2006.
    79.汪志荣等.波涌畦灌入渗规律及数值模拟[J].水利学报,1995(1):76-80.
    80.王桂芬.地膜覆盖条件下土壤及溶质运移规律的室内试验研究[J].水利水电技术,1996(3):43-47.
    81.王国梁等.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持学报,2001,22(1):1-5.
    82.王金生等.包气带土壤水分滞留特征研究[J].水利学报,2000,(2):1-6.
    83.王丽学.秸秆覆盖条件下耕层土壤水分运动规律的研究[D].沈阳农业大学,2003.
    84.王丽学等.秸秆覆盖对玉米播种临界含水率影响的试验研究[J].灌溉排水学报,2004,23(5):50-52.
    85.王琪,马树庆.地膜覆盖下玉米田土壤水热生态效应试验研究[J].中国农业气象.2006,27(3):249-251.
    86.王千等.雨后土壤结壳试验与分析[J].北京农业工程大学学报,1994,14(4):29-33.
    87.王韶华等.隔畦灌溉土壤水运动模拟[J].节水灌溉,2008(1):48-50.
    88.王生菊,陈娟娟.旱地覆膜方式对土壤水热效应及玉米的影响[J].甘肃农业科技,2008(6)::20-24.
    89.王伟等.棉花苗期滴灌水盐运移数值模拟及试验验证[J].灌溉排水学报,2009(2):32-36.
    90.王文焰等.波涌灌溉条件下土壤致密层的形成及其对入渗特性的影响[J].水利学报,1996(7):75-81.
    91.王晓燕等.保护性耕作的不同因素对降雨入渗的影响[J].中国农业大学学报,2001,6(6):42-47.
    92.王智才.总结经验拓展思路努力开创保护性耕作示范推广新局面-农业部农机化司王智才司长在全国保护性耕作工作会议上的讲话[J].农村牧区机械化,2005(3):6-10.
    93.巫一清等.地下灌溉中土壤水分运动及其影响的试验研究.水利学报,1984(7):39-43.
    94.吴红丹等.中美两国保护性耕作的管理与应用对比分析[J].干旱地区农业研究.2007,25(2):40-45.
    95.仵峰,彭贵芳等.地下滴灌条件下土壤水分运动模型[J].灌溉排水,1996,15(3):24-29.
    96.夏卫生等.土壤水动力学参数研究与评价[J].灌溉排水,2002,21(1):72-75.
    97.谢森传等.土壤水分运动对渗灌技术的影响研究[J].灌溉排水,2002,21(1):1-5.
    98.徐福利等.秸杆覆盖与少耕的土壤环境及玉米产量效应[A];循环农业与新农村建设--2006年中国农学会学术年会论文集[C],2006.
    99.徐绍辉,张佳宝.求土壤水力特征的一种迭代方法[J].土壤学报,2000,7(3):271-274.
    100.徐士良.FORTRAN常用算法程序集(第二版).北京:清华大学出版社,1997,408-414.
    101.许迪等.间歇供水条件下考虑土壤水滞后作用的水分入渗数值模拟[J].灌溉排水,1996,15(2):8-13.
    102.许迪等.田间节水灌溉新技术应用研究[J].节水灌溉,2001,(4):7-11.
    103.杨金凤,郑秀清.地表覆盖条件下冻融土壤水热动态变化规律研究[J].太原理工大学学报,2008,39(3):303-306.
    104.杨金忠.二维饱和与非饱和水分运动的理论及实验研究[J].水利学报,1989,(4):55-61.
    105.杨诗秀等.水平土柱入渗法测定土壤导水率[J].水利学报,1991,(5):1-7.
    106.杨诗秀等.匀质土壤一维非饱和流动通用程序[J].土壤学报,1985(1):24-34.
    107.杨玉建,杨劲松.土壤水盐运动的时空模式化研究[J].土壤(soil),2004,36(3):283-288.
    108.姚建文.作物生长条件下土壤含水量预测的数学模型[J].水利学报,1989(09):32-38.
    109.姚宇卿等.保持耕作麦田水分动态及水土流失的研究[J].土壤肥料,2002(2):8-10.
    110.姚宇卿等.保持性耕作技术对旱区坡耕地水土流失的影响[J].西北农业学报,2003,12(2):41-43.
    111.姚宇卿等.保护耕作对豫西早地冬小麦产量及效益的影响[J].干旱区农业研究,2002,20(4):42-44.
    112.尹大凯.引黄灌区水资源联合调度与地下水可再生利用[D].北京:清华大学,2002.
    113.员学锋等.秸秆覆盖保墒的农田生态效应及“保墒灌溉”技术[A];农业工程科技创新与建设现代农业--2005年中国农业工程学会学术年会论文集第二分册[C],2005.
    114.张德奇,廖允成.宁南旱区谷子地膜覆盖的土壤水温效应[J].中国农业科学,2005,38(10):2069-2075.
    115.张海林,秦耀东.覆盖免耕夏玉米耗水特性的研究.农业工程学报 2002,18(2):36-40.
    116.张建君等.滴灌施肥灌溉条件下土壤水氮运移的研究进展[J].灌溉排水,2002,21(2):75-79.
    117.张金霞.黑河流域秸秆覆盖免耕储水灌节水效应研究[D].甘肃农业大学,2006.
    118.张思聪.地下滴灌(渗灌)的非饱和土壤水二维流的探讨[J].土壤学报,1985,(3):209-222.
    119.张素琴.棉花地膜覆盖高产栽培技术[J]河北农业科技,2008(9):6-7.
    120.张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996,218-226,319-326.
    121.张耀峰,张德生.一维非饱和土壤水分运动的数值模拟.纺织高校基础科学学报,200417(2):123-126.
    122.郑华平.保护性耕作措施的综合效应研究及其生态与经济效益评价[D].甘肃农业大学,2004.
    123.中华人民共和国水利部.中国水资源公报[J],2004.
    124.周少平,谭广洋.保护性耕作下陇东春玉米-冬小麦-夏大豆轮作系统土壤水分动态及水分利用效率[J].草业科学,2008(7):69-77.
    125.周文智.提高全社会的水危机意识和节水意识大力发展节水灌溉--水利部周文智副部长在“国家节水灌溉北京工程技术研究中心”组建大会上的讲话(摘录)[J].中国农业科技导报,2000(5):1-2.
    126.周云成.地下滴灌土壤水分运动过程的数值解析与模拟[D].沈阳农业大学,2005.
    127.朱安宁等.封丘地区土壤传递函数的研究[J].土壤学报,2003,40(1):53-57.
    128.朱学愚等.非饱和流动问题的SUPG有限元素数值法[J].水利学报,1994(6):37-42.
    129.左强.求解对流弥散方程的改进交替方向有限元法[J].水利学报,1993(3):1-10.
    130.Adamsen F J.Irrigation method and water quality effect on corn yield in the Mid-Atlantic Coastal Plain.Agron J,1992,41(5):837-843.
    131.Ben-Asher J,Charach C,Zemel A.Infiltration and water extraction from trickle irrigation sources:The effective hemisphere model.Soil Sci.Soc.Am.J,1986(50):882-887.
    132.Bosch D J,Powell N L,Wright F S.An economic comparison of subsurface micro irrigation with center pivot sprinkler irrigation.J of Prod Agric,1992,5(4):431-437.
    133.BrandtA,Bresler E,DinerN,et al.Infiltration from a trickle source:I.Mathematical models.Soil Sci Amer Proc,1971.(35):675-682.
    134.Bresler E,.Two-dimensional transport of solutes during non-steady infiltration from a trickle source.Soil Sci Amer Proc,1972.(39):604-613.
    135.Buah SSJ.Polito TA,Killom R.No-tillage soybean response to banded and broadcast and direct and residual fertilizer phosphorus and potassium application,Agronomy.Joural,2000,92:657-662.
    136.Bucks D A.et al.Subsurface trickle irrigation management with multiple cropping.Trans of ASAE,1981,24(6):1482-1489.
    137.Caldwell D S,Spurgeon W E,Manges H LFrequency of irrigation for subsurface drip irrigated corn.Trans of the ASAE,1994,37(6):1099-1103.
    138.Cashion J,Lakshmi V,Bosch D,et al.Microwave remote sensing of soil moisture:evaluation of the TRMM microwave imager(TMI) satellite for the Little River Watershed Tifton,Georgia[J].Journal of Hydrology,2005,(307):242-253.
    139.Conservation Technology Information Center (CTIC).Conservation tillage and other tillage types in theUnitedStates—1990-2004[EB/OL].http://www2.ctic.purdue.edu/ctic/CRM2004/1990-2004data.pd f,2006
    140.DeTar W R.et al.Real-time irrigation scheduling of potatoes with sprinkler and subsurface drip systems.Proc Int Conf on Evapotran-spiration and Irrigation Scheduling,1996,812-894.
    141.Dirksen C.Transient and steady flow from subsurface line sources at constant hydraulic head in anisotropic soil.Trans of the ASAE,1978,21(5):913-919.
    142.El-Gindy A M,El-Araby A M.Vegetable crop responses to surface and subsurface drip under calcareous soil.Proc Int Conf on Evapotranspiration and Irrigation Scheduling,1996,1021-1028.
    143.Fangmeier D D.et al.Cotton water stress under trickle irrigation.Trans of the ASAE,1989,32(6):1955-1959.
    144.Gustafson A.Fleischer S.Joelsson A.A catchments-oriented and cost-effective policy for water protection.Ecological Engineering,2000,14(4):419-427.
    145.Henggeler J C.A history of drip irrigated cotton in Texas.Proc.5th Int'l Micro-irrigation Congress,1995,669-674.
    146.Hirsave P P,Narayanan P M.Soil moisture estimation models using SIR- C SAR data:a case study in New Hampshire,USA[J].Remote Sensing of Environment,2001,(75) :385-396.
    147.Howell T A.Subsurface and surface micro irrigation of corn-Southern High Plain.Trans of ASAE,1997.,40(3):635-641.
    148.Lamm f R.et al.Water requirement of subsurface drip-irrigated corn in northwest Kansas.Trans of the ASAE,1995,38(2):441-448.
    149.Lockington D,parlange J,Surin A.Optimal Prediction of saturation and wetting fronts during trickle irrigation.Soil Sci.Am.J,1984 (48):488-494.
    150.Majdoub R,Gallichand J,Caron J.Modeling of field drainage using the numerical method of lines.Canadian Agricultural Engineering.2000,42(2):65-74.
    151.Martin E C,Slack D C,Pegelow E J.Crop coefficients for vegetables in Central Arizona.Int Conf on Evapotranspiration and Irrigation Scheduling,1996,381-386.
    152.Mikkelsen R L.Phosphorous fertilization through drip irrigation.J Prod Agric,1989,2(3):279-286.
    153.Miller E.A low-head irrigation system for smallholdings.Agricultural Water Management,1997 (17):37-47.
    154.Mitchell W H.Subsurface irrigation and fertilization of field corn.Agron J,1981,73(6):913-916.
    155.Moran M S,Hymer D C,Qi J,et al.Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions[J].Remote Sensing of Environment,2002,(79):243-252.
    156.Nancy F G,James R C.The use of geostatistics in relating soil moisture to RADARSAT - 1 SAR data obtained over the Great Basin,Nevada,USA[J].Computers & Geosciences,2003,(29):577-586.
    157.Phene C J,Beale O W.High-frequency irrigation for water nutrient management in humid regions.Soil Sci Soc Am J,1976,40(3):430-436.
    158.Plaut Z,Rom M,Meiri A.Cotton response to subsurface trickle irrigation.Proc 3rd Int Drip/Trickle Irrigation Congress,1985,916-920.
    159.Powell N L,Wright F S.Grain yield of subsurface micro irrigated corn as affected by irrigation line spacing.Agron J,1993,86(6):1164-1169.
    160.Rubeiz I G,Oebker N F,Stroehlein J L.Subsurface drip irrigation and urea phosphate fertigation for vegetables on cavernous soils.J Plant Nutrition,1989,12(12):1457-1465.
    161.Rubeiz I G,Stroehlein J L,Oebker N F.Effect of irrigation methods on urea phosphate reactions in calcareous soils.Common Soil Sci Plant Anal,1991,22(5,6):431-435.
    162.Simunek J,Van Genuchten MT.Estimating unsaturated soil hydraulic properties from multiple tension disc infiltrometer data.Soil Science,1997,162(6):383-398.
    163.Solomon K H.Subsurface drip irrigation.Grounds Maintenance,1992,27(10):24-26.
    164.Urso G D,Minacapilli M.A semi-empirical approach for surface soil water content estimation from radar data without a - priori information on surface roughness [J].Journal of Hydrology,2006,321:297-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700