用户名: 密码: 验证码:
灌溉施肥一体化对设施番茄产量和水氮利用效率影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对设施蔬菜栽培中肥水资源浪费、污染环境、蔬菜品质下降等问题,以温室番茄为研究对象,采用田间小区试验与室内分析实验研究相结合的方法,研究不同灌溉施肥方式对番茄产量与水肥利用效率的影响及机理,以期为灌溉施肥一体化技术的应用提供一定的理论依据,为设施蔬菜优质高效生产的水肥综合管理提供可借鉴的技术与方法。
     试验在北京市昌平区金六环农业科技园的日光温室中进行,2010年8月-2011年1月进行的秋冬茬试验设计了滴灌和沟灌2种灌溉施肥方式和2个不同灌溉控制下限指标共4个处理,分别为D80%:灌溉下限为80%田间持水量的滴灌灌溉施肥处理;D60%:灌溉下限为60%田间持水量的滴灌灌溉施肥处理;G80%:灌溉下限为80%田间持水量的沟灌灌溉施肥处理;G60%:灌溉下限为60%田间持水量的沟灌灌溉施肥处理。2011年2-7月的冬春茬试验设计了滴灌和沟灌2种灌溉施肥方式以及7d和14d2个灌溉施肥频率,共4个处理,D7:7d滴灌施肥一次;D14:14d滴灌施肥一次;G7:7d沟灌施肥一次和G14:14d沟灌施肥一次。试验比较分析了滴灌和沟灌两种灌溉施肥方式对温室番茄产量、品质、水分和氮肥利用效率的影响,并研究了番茄干物质累积、光合特性等生理过程对不同灌溉施肥处理的响应机制。主要研究结果如下:。
     1.与沟灌施肥一体化相比,滴灌施肥一体化处理显著提高了温室番茄的产量。灌溉控制下限指标为60%FC和80%FC的滴灌施肥一体化处理的番茄产量比相对应的沟灌处理提高了26.3%和31.2%,灌水频率7d和14d的滴灌施肥一体化处理的番茄产量分别比相对应的沟灌处理产量提高了15%和23.1%。采用相同的灌溉施肥方式下,灌溉控制下限指标为80%FC的滴灌施肥一体化处理的产量高于60%FC滴灌施肥处理,灌水频率7d滴灌施肥一体化处理的产量同样高于14d滴灌施肥处理,但差异不显著。这些结果表明不同灌溉施肥方式间的增产效果差异明显,滴灌施肥一体化技术具有显著的增产优势,适宜的灌溉控制指标和灌溉频率可以保障其增产优势的充分发挥。
     2.两茬试验的水分利用效率结果为:滴灌施肥处理D80%、D60%、D7、D14的水分利用效率分别为44kg/m3、40.5kg/m3、55.1kg/m3、48.8kg/m3,相对应的沟灌施肥处理G80%、G60%、G7、G14的水分利用效率分别为21.2kg/m3、21.4kg/m3、24.5kg/m3、26.8kg/m3,可以看出滴灌施肥一体化处理的水分利用效率显著高于沟灌施肥处理,这是滴灌节水效应和增产效应叠加的结果。滴灌施肥处理的不仅耗水量小于沟灌处理,而且由于滴灌施肥一体化处理可以准确控制肥水供给,充分满足作物的水肥需求,促进了作物产量的提高,综合作用结果使水分利用效率显著提高。相同的灌溉施肥方式下,灌溉频率高的滴灌处理的由于水肥供应状况优于灌溉频率低的滴灌处理,使作物产量得到提高,因此在耗水量相差不大的情况下提高了番茄的水分利用效率;而沟灌由于灌溉水量大,不同灌水频率处理间的产量和耗水量差异均不显著,水分利用效率差异也不明显。
     3.滴灌施肥一体化处理的N素利用率显著高于沟灌施肥处理,滴灌施肥一体化处理D80%、D60%、D7、D14的N素利用率分别为20.4%、16.5%、22.3%、21.1%,相对应的沟灌施肥处理G80%、G60%、G7、G14的N素利用率分别为6.5%、6.0%、7.7%、8.4%。试验分析了不同处理的番茄地上部各器官中全N含量,结果显示所有处理的番茄不同器官吸收N素的大小顺序均为果实>叶片>茎秆,且果实中N含量显著高于其他器官,滴灌施肥一体化处理的果实N素吸收量均高于沟灌处理,表明滴灌处理提高了植株的N吸收量和N素营养转化为经济产量的能力。同时在本试验砂性土壤条件下沟灌施肥一体化处理的N素利用率明显降低,表明沟灌不宜用于砂质土壤的全生育期的灌溉施肥一体化,因为沟灌灌水强度大、易产生深层渗漏的缺点,在肥水一体化条件下反而加剧了N素的损失,造成利用率降低。
     4.动态监测了不同处理的土壤水分和硝态氮的分布状况,结果显示:不同灌溉方式条件下土壤水分和硝态氮分布具有明显的不同,滴灌处理土壤根系层土壤含水率高于沟灌处理,而沟灌处理的深层土壤含水率较高,滴灌处理的土壤水分变动层主要60cm以上,且以20cm表层和40cm土层为水分活跃层;沟灌处理的土壤水分变动层已经达到80cm,20cm表层、40cm层和60cm层的土壤含水率均表现出明显的周期性变化,其中40cm层的变化幅度大于20cm层。这种土壤水分布的差异主要是不同灌溉方法的技术特征决定的,滴灌处理方式灌水量和灌溉强度较小,灌溉水通过毛细管作用和重力慢慢从土壤表层逐渐湿润根区土壤,所以水分主要分布在土壤剖面上层;而沟灌是在灌水沟内通过重力和土壤毛细管作用从沟底和沟壁向周围渗透而湿润土壤,在砂壤土条件下沟灌垂直入渗速率大于侧渗速率,所以沟灌处理的表层20cm含水率明显低于滴灌处理,沟灌表层含水率达到与滴灌处理的含水率水平时,其深层的土壤含水率明显高于滴灌处理。
     在灌溉施肥一体化条件下,肥料溶解于灌溉水中随水一起进入土壤,所以N素在土壤中的分布和运移主要受灌溉影响,本研究结果表明,滴灌施肥一体化处理的0-60cm土层的硝态氮含量均高于沟灌处理,而60-90cm土层的硝态氮含量明显低于沟灌处理,主要是由于滴灌处理的水分变化主要集中在土壤剖面上层0-60cm内,而沟灌处理的水分变化集中在土壤剖面40-80cm内,灌溉施肥一体化的“肥随水来,肥随水去”效应使得硝态氮在沟灌条件下随水一起向向土壤深层运移。
     5.通过研究分析灌溉施肥一体化条件下温室番茄的生长发育指标、根系活力与光合作用等生理响应机制,初步揭示了滴灌施肥一体化的增产机理。试验结果显示滴灌施肥处理的番茄植株的株高、茎粗、叶面积指数、果径和地上部干物质量等指标均显著高于沟灌处理;滴灌施肥处理的根长和根干物质量虽然较沟灌处理低,但根系活力显著高于沟灌处理;滴灌施肥处理的日最高Pn和Tr值均比沟灌处理高,整个生育期滴灌处理的平均光合速率和蒸腾速率均显著高于沟灌处理,产量构成因素表现为单株果实数差异不显著,但滴灌水肥处理的单个果实重量显著高于沟灌处理。综合分析以上结果可以推断出,滴灌施肥一体化处理可以精确控制水肥的供给,与沟灌相比,滴灌施肥一体化处理的水肥供给状况与需求符合程度高,根系主要集中在表层,且根系活力高,促进水和N素营养的吸收,从而促进了植株地上部分的生长,地上生物量增加,同时良好的水肥条件使滴灌施肥一体化处理的净光合速率和蒸腾速率维持在较高的水平,促进了营养元素的转化和干物质积累,果实质量增加,最终导致产量提高。
     6.灌溉施肥方式对温室温度的影响差别不大,而灌溉施肥方式对温室的平均空气相对湿度影响显著,不论秋冬茬还是冬春茬,滴灌较沟灌可以降低温室相对湿度9.1%-10.2%。
In China, it became more seriously in water resource waste, environment pollution and the declineof the quality of vegetables. By using block experiment and indoor analysis, the experiment was to studythe tomato yield, quality and water-fertilizer use efficiency among the different fertigation methods. Thepurpose was to provide certain theoretical basis for high quality vegetable and the integratedmanagement of water﹠nitrogen.
     The study was conducted in the greenhouses at ‘Jinliuhuan’ agricultural garden, Changping district,Beijing. During the autumn-winter season (2010.8-2011.1), the study conducted four treatments(included two fertigation methods and two lower irrigation limits) which were D80%, D60%, G80%, andG60%. During the winter-spring season(2011.2-7), we conducted the two different frequencies using dripand furrow irrigation methods, which included drip irrigation weekly treatment (D7), drip irrigationbiweekly treatment (D14), conventional furrow irrigation weekly treatment (G7) and conventional furrowirrigation biweekly treatment (G14).The two season experiments were to compare the drip irrigation andfurrow irrigation from aspects of the tomato yield, quality, water﹠nitrogen use efficiency, and to studythe response mechanism of dry matter accumulation of tomato, photosynthetic characteristics ofphysiological characteristics. The main conclusions are as follows:
     1. Compared with furrow fertigation technology, the drip fertigation treatments could significantlyimprove the tomato yield. The tomato yields of drip fertigation methods with lower irrigation limits of60%FC and80%FC could increase26.3%and31.2%compared with the same lower irrigation limit.And the drip fertigation frequency of7d and14d could increase yield15%and23.1%compared with thesame frequency furrow method. Using the same irrigation method, the tomato yield of drip fertigationmethod with lower irrigation limit of80%FC was higher than60%FC treatment, and the drip fertigationwith irrigation frequency of7d had also higher tomato yield than14d fertigation treatment, but the yieldswere no significant difference. The results showed that different fertigation methods had significantdifference on tomato yield, the drip fertigation technology had significant advantages in yield and theoptimal irrigation parameters could give full play to improve yield.
     2. The results of water use efficiency among the two experiments showed that the drip fertigationwere significantly higher than the furrow fertigation, which were the results of superposition of dripirrigation water use efficiency and yield. The drip fertigation treatments could not only reduce thetomato water consumption, but also improve the tomato yield because of the accurately supply to meetthe water-fertilizer needs of crops, which caused high water use efficiency. The high frequency dripfertigation treatment reduced tomato water consumption, improved water use efficiency and tomato yieldcompared to the low frequency drip fertigation treatment. And the furrow fertigation treatments had nosignificant difference in yield, water consumption and water use efficiency.
     3. The results of nitrogen use efficiency with drip fertigation were significantly higher than thefurrow fertigation. And the results in crop uptake of nitrogen among the different organs were fruits>leaf>stem and the content of nitrogen in fruits were significant higher than other organs. Thecontents of N uptake in fruits among the drip fertigation treatments were higher than the furrowtreatments, which showed that the drip fertigation could improve the ability of N uptake and nutrientsresulting in economic yield. While the nitrogen utility efficiency in furrow fertigation under the sandyland was obviously reduced. The results showed that the furrow fertigation should not be used for thesandy soil because of the furrow fertigation intensity and easy to produce deep infiltration resulting inthe lower utilization of N.
     4. The distributions of soil volumetric water and NO3ˉamong the different irrigation methods wereobvious difference. At the root zone, the soil water content of drip irrigation was higher than the furrowirrigation treatment and the result of furrow irrigation was higher than drip irrigation at the deeper soillayer. The differences in soil water distribution were mainly determined by the technical characteristics.The results showed that the content of0-60cm NO3ˉin the drip treatments was higher than the furrowtreatments and the content of60-90cm NO3ˉin the drip treatments was significantly lower than thefurrow irrigation.
     5. Compared with the furrow treatments, the drip irrigation treatment could significantly improvethe tomato plant height, stem diameter, leaf area index, fruit diameter and above-ground dry matter. Theroot length and root dry biomass in the drip fertigation treatments were lower than in the furrowtreatments, but the root activity was significantly higher than the furrow irrigation treatments. The driptreatments had the high daily maximum Pn and Tr values than the furrow irrigation. During the wholegrowth period, the average rate of photosynthesis and transpiration rate of drip irrigation treatment werehigher than that of furrow irrigation treatment. The yield component showed that the number of fruits perplant had no difference among the treatments, but the fruit weight of drip irrigation treatments wassignificant higher than furrow treatments. The comprehensive analysis of these results could be inferredthat compared with the furrow treatments, the drip fertigation treatments could accurately apply thewater and fertilizer and meet the needs. The roots were mainly in the surface and the root activity topromote nutrition absorption of water and N resulting in increasing the aboveground biomass.Meanwhile, the excellent water and fertilizer supplied conditions made the net photosynthetic rate andtranspiration rate high level and promoted the conversion of nutrient,dry matter accumulation, fruitquality and ultimately lead to increase the yield.
     6. There was no significance difference of greenhouse temperature in different irrigation andfertilization treatments, while existed remarkable difference (9.1%-10.2%) of the greenhouse air relativehumidity between autumn-winter and winter-spring experiments.
引文
1.柏成寿,陆帼一.水分胁迫对番茄幼苗生长影响的研究[J].园艺学报,1991,18(4):340-344.
    2.北京市质量技术监督局.设施农业节水灌溉工程技术规程(DB11/T557-2008)(北京市地方标准).北京市质量技术监督局[M].2008.
    3.曹红霞,康绍忠,何华.田间管理措施对土壤硝态氮迁移影响研究进展[J].灌溉排水学报,2005,(1):72-76.
    4.陈碧华,郜庆炉,杨和连,孙文艺.日光温室内膜下滴灌水肥耦合技术对番茄品质的影响[J].江苏农业学报,2008,(4):476-479.
    5.陈建斌,潘林,王勤礼,等.2006.温室番茄水肥耦合数学模型及其优化方案研究[J].南京农业大学学报,(1):91-95.
    6.陈金平,刘祖贵,段爱旺.温室黄瓜叶面积扩展与光合特性对水分的响应研究[J].2007.中国生态农业学报,(1):91-95.
    7.陈玉民,孙景生,肖俊夫.节水灌溉的土壤水分控制标准问题研究[J].灌溉排水,1997,16(1):24-28.
    8.程智慧,孟焕文,StephenARolfe,JulieDScholes.水分胁迫对番茄叶片气孔传导及光合色素的影响[J].西北农林科技大学学报(自然科学版),2002,12(6):93-95.
    9.丁兆堂,卢育华,徐坤.环境因子对番茄光合特性的影响[J].山东农业大学学报(自然科学版),2003,34(3):356-360.
    10.杜宝华,刘明孝,洪佳华.冬小麦群体光照条件及其光合特征[J].中国农业气象,1990,11(3):27-30
    11.高兵,任涛,李俊良.灌溉策略及氮肥施用对设施番茄产量及氮素利用的影响[J].2008.植物营养与肥料学报,14(6):1104-1109.
    12.高方胜,徐坤.土壤水分对番茄生长发育及产量品质的影响[J].西北农业学报,2005,14(4):69-72.
    13.高素华,毛飞,郭建平.干旱胁迫对冬小麦生理因素的影响[M].1999,78-80.
    14.葛晓光.菜田土壤与施肥[M].中国农业出版社.2002.
    15.郭培国,陈建军,郑燕玲,韩锦峰.不同施氮水平条件下烤烟对氮素的利用研究[J].土壤与环境,1996:5(3):145-148.
    16.韩锦峰,汪耀富,钱晓刚.烟草栽培生理[M].北京:中国农业出版社,2003
    17.韩建会,徐淑贞.日光温室番茄滴灌节水效果及灌溉制度的评价[J].西南农业大学学报,2003,(1):77-79.
    18.韩琳,张玉龙,金烁,王姣,魏岩岩,崔宁,魏巍.灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J].中国农业科学.2010,43(8):1625-1633.
    19.贺超兴,张志斌,刘富中,等.日光温室水钾氮耦合效应对番茄产量的影响[J].中国蔬菜,2001,1:31-33.
    20.候松泽,张书.保护地滴灌黄瓜节子灌溉模式试验研究[J].黑龙江水利科技.2001,(4):11-13.
    21.黄绍敏,宝德俊,皇甫湘荣,张鸿程.小麦-玉米轮作制度下潮土硝态氮的分布及合理施氮肥研究[J].土壤与环境.1999,8(4):271-273.
    22.黄元仿,贾小红.不同施肥条件下菜地土壤无机氮动态及其淋洗污染潜力[J].土壤通报.1997,(4):175-177.
    23.姬景红,张玉龙,张玉玲,虞娜,白玉.不同灌溉方法对保护地土壤有机质及氮素影响的研究[J].土壤通报.2007,38(6):1105-1109.
    24.贾树龙,王泽文,古伯贤,张彦才.灌溉定额对小麦产量、追肥肥效及损失的影响[J].核农学报,1991:5(4):210-214
    25.李俊良,金圣爱,陈清,等.蔬菜灌溉施肥新技术[M].北京:化学工业出版社,2008,10-35.
    26.李俊良,朱建华,张晓晟等.保护地番茄养分利用及土壤氮素淋失[J].应用于环境生物学报,2001,7(2):126-129.
    27.李俊良.2001,保护地番茄养分利用及土壤氮素淋失[J],应用与环境生物学报,7(2):126-129.
    28.李亮,张玉龙,马玲玲,孟庆龙,范庆锋.不同灌溉方法对日光温室番茄生长、品质和产量的影响[J].北方园艺,2007(2):75-78.
    29.李清明,邹志荣,郭晓东,等.不同灌溉上限对温室黄瓜初花期生长动态、产量及品质的影响[J].西北农林科技大学学报,2005,4:47-51.
    30.李祥云,赵明,高峻岭,等.穴盘育苗基质的养分供应对蔬菜幼苗生长的影响[J].2002.山东农业大学学报(自然科学版),33(4):442-447.
    31.李建明,邹志荣,付建峰.温室番茄节水灌溉指标的研究[J].沈阳农业大学学报,2000,31(1):110-112.
    32.李建明,王平,李江.灌溉量对亚低温下温室番茄生理生化与品质的影响[J].农业工程学报,2010,(2):129-134.
    33.李毅,王文焰,门旗.宽地膜覆盖条件下土壤温度场特征[J].农业工程学报,2001,17(3):32-36
    34.梁运江,依艳丽,许广波,等.水肥耦合效应对保护地辣椒肥料氮、磷经济利用效率的影响[J].2007.土壤通报,38(6):1141-1144.
    35.刘租贵,段爱旺,吴海卿,张寄阳,王广兴.水肥调配施用对温室滴灌番茄产量及水分利用效率的影响[J].中国农村水利水电.2003.(1):10-12.
    36.刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,87-111.
    37.刘祖贵,段爱旺.水肥调配施用对温室滴灌番茄产量及水分利用效率的影响[J].中国农村水利水电.2003,(1):10-12.
    38.刘向莉.亏缺灌溉提高番茄果实品质风味的基础研究.硕士论文[D].2005.中国农业大学.
    39.刘明池,陈殿奎.氮肥用量与黄瓜产量和硝酸盐积累的关系[J].中国蔬菜,1996,3:26-28.
    40.刘明池,小岛孝之,陈杭等.亏缺灌溉对草莓果实特性、植株生长和产量形成的影响[J].园艺学报,2001,28(4):307-311.
    41.刘明池,陈殿奎.亏缺灌溉对樱桃番茄产量和品质的影响[J].中国蔬菜,2002,(6):4-6.
    42.刘作新,杜尧东.日光温室渗灌效果研究[J].应用生态学报,2002,(4):409-412.
    43.卢振民.土壤水分含量对冬小麦气孔开启程度的影响[J].植物学报,1998,28(4):419-426.
    44.卢从明,张其德,匡廷云.水分胁迫对光合作用影响的研究进展[J].植物学通报,1994,11(增刊):9-13.
    45.毛学森,李登顺.日光温室黄瓜节水灌溉研究[J].灌溉排水学报.2000,19(2):45-47.
    46.庞云.温室无土栽培黄瓜水肥耦合效应研究初探[J].内蒙古农业科技.2006.(6):49-50.
    47.庞云.樱桃番茄结果期叶片光合速率与水-肥的关系试验[J].2006.内蒙古农业科技,(S1):25-26.
    48.彭世彰,朱成立.作物节水灌溉需水规律研究[J].节水灌溉,2003,(2):5-8.
    49.齐红岩,李天来,曲春秋,等.亏缺灌溉对设施栽培番茄物质分配及果实品质的影响[J].中国蔬菜,2004,(2):10-12
    50.乔立文,陈友,齐红岩,陈克农.温室大棚蔬菜生产中滴灌带灌溉应用效果分析[J].农业工程学报.1996,12(2):34-39.
    51.秦艳青,李春俭,赵正雄,武雪萍,张福锁.不同供氮方式和施氮量对烤烟生长和氮素吸收的影响[J].植物营养与肥料学报,2007:13(3):436-442.
    52.桑艳朋,王祯丽,刘慧英.2005.膜下滴灌量对甜瓜产量和品质的影响[J].中国甜瓜,6:11-13.
    53.施建忠,王天铎.小麦冠层不同层次叶片水分利用效率的研究-光合速率与蒸腾速率之比(P/T)的模拟[M].农田生态试验研究.1996.北京:气象出版社,1-13.
    54.孙文涛,张玉龙,娄春荣,於丽华,王聪翔,宫亮.灌溉方法对温室番茄栽培尿素氮利用影响的研究[J].核农学报.2007,21(3):295-298.
    55.汤丽玲,陈清,张宏彦等.不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响[J].植物营养与肥料学报,2002,8(3):282-287.
    56.田义,张玉龙,虞娜,张辉,邹洪涛.温室地下滴灌灌水控制下限对番茄生长发育、果实品质和产量的印象[J].干旱地区农业研究.2006,24(5):88-92.
    57.王静静,李建明,张艳丽,赵智明,邹志荣.温室温湿度及灌溉量对甜瓜生长发育的影响[J].北方园艺.2011(6):50-56.
    58.王淑红,张玉龙,虞娜,等.保护地渗灌管的埋深对土壤水盐动态及番茄生长的影响[J].中国农业大学,2003,36(12):1508-1514.
    59.王新元,李登顺,张喜英.温室盆栽黄瓜耗水量与水分利用效率的试验研究[J].海河水利,1998,2:12-14.
    60.王兴武,于强,张国梁等.鲁西北平原夏玉米产量与土壤硝态氮淋失[J].地理研究,2005,24(1):140-150.
    61.王熹,郑国生,邹奇.干旱与正常供水条件下小麦光合午休及其机理的研究华北农学报[J].1997,12(4):48-5l.
    62.韦彦,赵景文,张正伟,高丽红.灌溉方式对温室内主要环境因子及黄瓜生长发育的影响[J].内蒙古农业大学学报:自然科学版.2007,(3):204-208.
    63.韦泽秀.水肥对大棚黄瓜和番茄生理特性及土壤环境的影响.西北农林科技大学博士学位论文.
    64.吴海卿,杨传福,孟兆江.应用15N示踪技术研究土壤水分对氮素有效性的影响[J].土壤肥料,2000(1):16-18.
    65.吴夏蕊,彭世彰.设施农业中水分调控与水分利用效率关系研究[J].沈阳农业大学学报.2004.35(5-6):604-606.
    66.吴晓红.温室环境条件与蔬菜高效生长关系分析[J].青海科技.2009(5):22-23.
    67.肖艳,陈清,王敬国,魏荔,曹一平.滴灌施肥对土壤铁、磷有效性及番茄生长的影响.2004,37(9):1322-1327.
    68.肖自添.温室基质栽培番茄水氮耦合效应研究[M].北京:中国农业科学院,2008.
    69.向东,孙志强,段广洪,吕飞,刘兆民.不同灌溉方式对大棚西红柿生长发育的影响[J].灌溉排水学报,2006,25(5):68-71.
    70.徐坤,郑国生,王秀峰.施氮量对生姜群体光合特性及产量和品质的影响[J].植物营养与肥料学报.2001,7(2):189-193.
    71.徐迎春.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J].果树学报,2001,18(1):160-162.
    72.许贵民,周桂仁.大棚黄瓜高产稳产综合配套栽培技术试验研究[J].吉林农业大学学报,1994,(3):59-62.
    73.姚磊,张晋岩,张万青.露地番茄不同时期灌水开始点组合试验[J].北京农业科学,1993,11(2):25-29.
    74.姚磊,杨阿明.不同水分胁迫对番茄生长的影响[J].华北农学报,1997,12(2):102-106.
    75. Cutforth H W.杨健译.等著.残茬高度对加拿大干早区春小麦生长的微气候和产量的效应[J].麦类作物1998,18(3):52-55.
    76.杨丽娟,张玉龙,须晖,李军.灌溉方法对保护地土壤耗水量与番茄水分利用效率的影响[J].灌溉排水学报.2004,(3):49-51.
    77.杨遏,关佩聪.干旱胁迫与菜心叶片活性氧代谢的研究[J].华南农业大学学报,1998(2):81-85.
    78.依艳丽,梁运江,张大庚.不同水肥处理对辣椒保护地土壤温度和CO2的影响[J].2006.土壤通报,7(5):875-880.
    79.於丽华,韩晓日,娄春荣,高晓宁,董环.不同灌溉方式和施肥处理对番茄氮素吸收及产量和品质的影响[J]..2005.沈阳农业大学学报,(4):286-289.
    80.虞娜,张玉龙,黄毅.2003.温室滴灌施肥条件下水肥耦合对番茄产量影响的研究[J].土壤通报,34(3):20-24.
    81.虞娜,张玉龙,邹洪涛,等.温室内膜下滴灌不同水肥处理对番茄产量和品质的影响[J].干旱地区农业研究,2006,24(1):60-64.
    82.于红梅,李子忠,龚元石.传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响[J].农业工程学报,2007,(2):54-59.
    83.于凤颖,张胜利.塑料大棚中番茄节水灌溉的研究[J].吉林农业科学.1996,(4):82-84.
    84.袁仕豪,易建华,蒲文宣,韩锦峰,汪妖富.多雨地区烤烟对基肥和追肥氮的利用率[J].作物学报.2008,34(12)2223-2227.
    85.袁新民,同延安,杨学云等.灌溉与降水对土壤NO-3-N累积的影响[J].水土保持学报,2000b,(3):71-74.
    86.张福墁.强化科技创新大力提升我国设施园艺现代化水平口[J].沈阳农业大学学报,
    2006.37(3):261-264.
    87.张洁瑕.高寒半干旱区蔬菜水肥耦合效应及硝酸盐限量指标的研究[D].2003.河北农业大学硕士论文.
    88.张西平,赵胜利,张旭东,等.不同灌水处理对温室黄瓜形态及光合作用指标的影响[J].2007.农业工程科学,23(6):622-625.
    89.张学军,赵营,任福聪.滴灌条件下施氮量对黄瓜-番茄种植体系中土体NO3—N淋洗的影响[J].干旱农业研究,2007,25(4):157-162.
    90.张永丽,于振文.灌水量对不同小麦品种籽粒品质、产量及土壤硝态氮含量的影响[J].水土保持学报.2007,(5):155-158.
    91.张真和,鲁波,赵建阳等.当代中国蔬菜产业的回顾与展望[J].长江蔬菜.2005,5:2-5.
    92.张振贤主编,喻景权,于贤昌,刘世琦副主编,蔬菜栽培学[M].中国农业大学出版社.2003
    93.张振贤,于贤昌,陈利平等.水分状况与大白菜光合作用关系的研究[J].园艺学报,1993,20(4):358-362
    94.张振贤,郑国生,赵德婉.大白菜光合作用特性的研究[J].园艺学报,1993,20(1):38-44
    95.张维强,沈秀瑛.水分胁迫和复水对玉米叶片光合速率的影响[J].华北农学报,1994,9(3):44-47.
    96.张志斌.中国设施园艺高新技术的发展探讨[J].内蒙古农业大学学报,2007.28(3):252-255.
    97.赵义涛,梁运江,许广波.水肥耦合对保护地辣椒水分利用效率的影响[J].2007.吉林农业大学学报,29(5):523-527,546.
    98.张振贤,郑国生,赵德婉.大白菜光合作用特性的研究[J].园艺学报,1993,20(1):38-44.
    99.张维强,沈秀瑛.水分胁迫和复水对玉米叶片光合速率的影响[J].华北农学报,1994,9(3):44-47.
    100.张大鹏,罗国光.不同时期水分胁迫对葡萄果实生长发育的影响[J].园艺学报,1992,19(4):296-300.
    101.郑国清,尹红征,段韶芬,黄静.作物模拟研究中的模型检验[J].华北农学报,2003,18(02):110-113.
    102.周博,周建斌.不同水肥调控措施对日光温室土壤水分和番茄水分利用效率的影响[J].2009.西北农林科技大学学报(自然科学版),37(1):211-216.
    103.周春菊,薛万新,邹养军,甘国斌等.早熟番茄苗期光合特性的研究[J].西北农业学报,1998,7(1):60-63
    104.周强,陈春宏,徐明.现代化设施园艺生产机构提高市场竞争力研究[J].上海农业学报.2003.19(4):5-10.
    105.周艺敏,任顺荣,王正祥.氮素化肥对蔬菜硝酸盐积累的影响[J].华北农学报.1989,4(1):110-115.
    106.中华人民共和国水利部.灌溉与排水工程设计规范(GB50288-99)[M].国家质量技术监督局中华人民共和国建设部.1997.
    107.诸葛玉平,张玉龙,张旭东,冯永军,李军,黄毅,刘鸣达[J].应用生态学报,2004,15(5):767-771.
    108.邹冬生.不同土壤水分条件下番茄叶片光合及蒸腾日变化研究[J].中国蔬菜,1989(6):8-9
    109. Abdul-Baki A A,Stommel J R.Pollen viability and fruits set of tomato genotypes under optimumand high-temperature regimes[J].HortScience,1995,30:115-117.
    110. Alexiev N P,Rankov V,Jevtic S.The effect of intensive organo-mineral fertilization on the yield ofgreenhouse cucumber and mineralization of nitrogen-containing organic compounds insoil[J].ISHS Acta Horticulturae.462:ⅠBalkan Symposium on Vegetables and Potatoes,1996.
    111. Allaire-Leung S E,Wu L,Mitchell J P,Sanden B L.Nitrate leaching and soil nitrate contents asaffected by irrigation uniformity in a carrot field[J].Agricultural WaterManagement,2001,48(1):37-50.
    112. Bakker J C,Van Uffelen J A M.1998.The effect of diurnal temperature regimes on growth and yieldof glasshouse sweet pepper[J].Netherlands Journal of Agricultural Science,36:201-208.
    113. Bauer O,Biehler K Fock H,etal.Aroleofcytosolic glutamine synthetasein there mobilization ofleaf nitrogen during water stressin tomato[J].Physiologia Plantarum,1997,99:241-248
    114. Bar-Yosef B.1999, Advances in fertigation[J].Advances in Agronomy,65:1-77.
    115. Bharambe P R,Narwade S K,Oza S R.Vaishnava V G,Shelke DK,Jadhav G S.Nitrogen managementin cotton through drip irrigation[J].Journal of the Indian Society of SoilScience,1997,45(4):705-709.
    116. Bogle C R.1989.Comparison of subsurface trickle and furrow irrigation on plastic-mulched andbare soil for tomato production[J].J Amer Soc Holt Sci,14(1):40-43.
    117. Boukn soluble solids of muskmelon[J].Scientia Horticulturae,1978,8(3):265-271.
    118. Branthome X, Ple Y, Machado J R.Influence of drip on the technological characteristics ofprocessing tomatoes[J].Acta Horticulturae,1994,376:285-290.
    119. Brüggemann W, Dauborn B. long-term chilling of young tomato plants under low light. Ⅲ. Leafdevelopment as reflected by photosynthesis parameters [J]. Pant Cell Physiol.1993,34(8):1251-1257.
    120. Brüggemann W, Linger P. Long-term chilling of young tomato plants under low light. ⅣDifferential responses of chlorophyll fluorescence quenching coefficients in Lycopersicon speciesof different chilling sensitivity [J]. Plant Cell Physiology,1994,35(4):585-591.
    121. Cockshull K E. Integration of energy conservation on crop productivity [J]. Acta Hoticulturae,1988,229:113-123.
    122. Chartzoulakis K,Drosos N.Water use and yield of greenhouse grown eggplant under dripirrigation[J].Agricultural Water Management,1995,28:113-120.
    123. De Koning A NM, More efficient use of base load heating with a temperature integrating controlprogram[J].Acta Horticulturae,1988.229:233-237.
    124. Edna Antony,Singandhup,R.B.Impact of drip and surface irrigation on growth,yield and WUE ofcapsicum[J].Journal of Agricultural Water Management,2004,65:121-132.
    125. Elwell D L.Soil heating using subsurface pipes[J].0hio Agr Res Devel Center Bul,1985,1175.
    126. Fabio Favati,Stella Lovelli,Fernanda Galgano,Vito Miccolis,Teodoro Di Tommaso,VincenzoCandido.Processing tomato quality as affected by irrigation scheduling[J].ScientiaHorticulturae,122(2009):562-571.
    127. Fapohunda H O. Crop emergence as affected by soil and irrigation [J].Plant and Soil,
    1986.92:201-208.
    128. Gan Yinbo, Peoples M B, Benjavan Rerkasemc. The effect of N fertilizer strategy on N2fixation,growth and yield of vegetable soybean[J].Field Crops Research,1997,51(3):221-229.
    129. Goodlass G, Rahn C, Shepherd M A, Chalmers A G, Seeney F M. The nitrogen requirement ofvegetables:comparisons of yield response models and recommendation systems[J]. J. Hort. Sci.,1997,72:239-254.
    130. GuptaJ P.1983.Hydrothermal environment of soil and vegetable production with drip and furrowirrigation[J].Indian J Agr Sci,53(2):138-142.
    131. Harmanto, V M Salokhe, M S Babel, H J Tantau.2005. Water requirement of drip irrigatedtomatoes grown in greenhouse in tropical environment [J].Agricultural Water Management,71(2005):225-242.
    132. Haynes RJ. Principles of fertilizer use for trickle irrigated crops [J].Fertilizer Research,1985,6:235-255.
    133. Helms T C,Deckard E,Goos R J,Enz J W.Soil moisture,temperature,and drying influence onsoybean emergence[J]. Agron.J.1996,88:662-667.
    134. Hill T R,Kailan,Tsoi sum,Pak choi. The effect of nitrogenous fertilizer and plant spacing on theyield of three Chinese vegetables [J].Scientia Horticulturae,1990,45(1-2):11-20.
    135. Ho L.C.The physiological basis for improving tomato fruit quality [J].Acta Hort.,1999,487:33-40.
    136. Hori Y,Arai K,Toki T.studies on the effects of root temperature and its combination with airtemperature on the growth and nutrition of vegetable crops[J].Bull Hort Res Sta Japan ser A,1970,9:189-219.
    137. Janoudi A K,Widders I E,Flore J A.Water deficits and environmental factors affect photosynthesisiin leaves of cucumber(Cucumis sativus)[J].Journal of the American Society for HorticulturalScience.1993,118(3):366-370.
    138. Javanmardi J,Kubota C,2008.Variation of lycopene,antioxidant activity,total soluble solids andweight loss of tomato during postharvest storage[J].Postharvest Biol Technol,41:151-155.
    139. Kirda, C., C evik, B., Tu¨lu¨cu¨, K., Asimple method to estimate the irrigation water requirementof greenhouse grown tomato[J]. Acta Hort.(ISHS).1994.366,373-380.
    140. Kitamura. Using liquid fertilizer to create sustainable cultures of Greenhouse tomatoes[J].Research-Bulletin-of–the-Aichi-ken-Agricultural-Research-Center,1994(26):177-184.
    141. Kleier C, Farnsworth B, Winner W.2001. Photosynthesis and biomass allocation of radish cv.“Cherry Belle” in response to root temperature and ozone [J].Environmental Pollution,111(1):127-133.
    142. Kwong K F N K,Deville J. Application of15N-labbelled urea to sugar cane through adrip-irrigation system in Mauritius [J].Fertilizer Research,1994,39:223-228.
    143. leaching for various fertigation scenarios under microirrigation.Agric.Water Manage.,2005,74(3):219-242.
    144. LI J.,Zhang J.,Ren L..Water and nitrogen distribution as affected by fertigatjon ofammoniumnitrate from a point source[J].Irrig.Sci.,2003,22(1):19-30.
    145. Machado RMA, Oliveira MRG.Tomato root distribution, yield and fruit quality under differentsubsurface drip irrigation regimes and depths[J].Irrigation Science,2005,24:15-24.
    146. Magdoff F R. Understanding the corn pre-sidedress nitrate test: A step towards environmentallysound N management [J]. J. Prod. Agric.,1992,4:297-305.
    147. Miller R J,Rolsen D E, Ranschkolb R S,Wolfe D W.Labeled nitrogen uptake bydrip-irrigated[J].Agronomy Journal.1981.73:265-270.
    148. Nguyen M L, Schwartz S J,1999,Lycopene:chemical and biological properties[J].FoodTechnol,53,38-45.
    149. Peet M, Sato S, Ce mente C, et al.Heat stress increases sensitivity of pollen,fruit and seedproduction in tomatoes (Lycopersicon esculentum Mill.) to non-optimal vapor pressuredeficits[J].Acta Hortic,2003,618:209-215.
    150. Playan E, Faci JM. Border fertigation: field experiments and simple model[J].IrrigationScience,1997,17:163-171.
    151. Rahil M H, Antonopoulos V Z. Simulating soil water flow and nitrogen dynamics in a sunflowerfield irrigated with reclaimed waste water [J]. Agricultural Water Management,2007,92:142-150.
    152. Sainju U M, Singh B P, Rahman S, Reddy V R.Soil nitrate-nitrogen under tomato following tillage,cover cropping, and nitrogen fertilization [J]. Environ Qual,1999,28:1837-1844.
    153. Sato S,Peet M M,Thomas J F. Physiological factors limit fruit set of tomato(Lycopersiconesculentum Mill.) under chronic,mild heat stress[J].Plant Cell Environ,2000,23:719-726.
    154. Sezen S M, Attila Yaza,Salim Eker.Effect of drip irrigation regimes on yield and quality of filegrown bell pepper[J].Agricultural Water Management,2006,81(1-2):115-131.
    155. Thompson T L,Doerge T A,Godein R E.Nitrogen and water interactions in subsurfacedrip-irrigated cauliflower:Ⅱ Agronomic,economic,and environmental outcomes[J].Soil ScienceSoceity of America Journal,2000,64:412-418.
    156. Tiwari K N,Ajai Singh,Mal P K.Effect of drip irrigation on yield of cabbage(Brassica oleraceaL.var.capitata) under mulch and non-mulch conditions[J].Agricultural WaterManagement,2003,58(1):19-28.
    157. Unlu M,Kanber R,Senyigit U,Onaran H,Diker Onaran.Trickle and sprinkler irrigation of potato(Solanum tuberosum L.)in Middle Anatolian Region in Turkey[J].Agricultural WaterManagement,2006,79:43-71.
    158. Vassey T.L., Quick P., Sharkey T.D.et al..Water stress, carbon dioxide,and light effects on sucrosephosphate synthase activity in phaseolus vulgaris[J].Physiologia Plantarum,1991,81:37-44.
    159. Vazquez N, Pardo A, Suso M L, et al. A methodology for measuring drainage and nitrate leachingin unevenlyirrigated vegetable crops[J].Plant Soil,2005,269:297-308.
    160. Wang F X,Kang Y,Liu S P.Effects of drip irrigation frequency on soil wetting pattern and potatogrown in North China Plain[J].Agricultural Water Mangement.2006,79:248-264.
    161. W.Th.M.van Meurs,Th.H.Gieling.A research strategy to solve air humidity problems ingreenhouses,coused by the use of enelgy saving measure[J].Acta Hoticulturae.1981,115:359-364.
    162. Xu D Q,Terashima K,Crang,R.E E.Stomatalandnons tomatal accilimation to a C02enrichedatmosphere[J].Biotronics,1994,23:123-128
    163. Yuan B Z,Sun J,Kang Y, Nishiyama S.Response of cucumber to drip irrigation water under arainshelter[J].Agricultural Water Management,2006,81:145-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700