用户名: 密码: 验证码:
旱地覆盖种植的水热效应及其对玉米产量和水分利用效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)是我国仅次于水稻、小麦的第三大粮食作物。建国后种植面积和单产逐年增加。但随社会经济发展和城镇化推进,可持续耕地面积逐渐减少,玉米种植面积的增加不大,其产量的增加只能靠提高单产来实现。近年来,全膜双垄沟播玉米种植技术在西北干旱半干旱地区大面积推广,可显著提高玉米产量,但其增产机制仍需系统研究分析。本文以春玉米为试验材料,在位于西北黄土高原丘陵沟壑区半干旱区的定西市安定区于2009-2010年进行大田定位试验,设全膜双垄沟播、全沙覆盖平作和裸地平作三个处理,测定玉米全生育期的土壤耕层温度、0-200cm土层土壤水分、玉米生长发育指标、干物质累积和产量构成因子等,计算玉米阶段性耗水、水分利用效率,探讨全膜双垄沟播的增产机制及其对土壤水分平衡的影响,得到如下主要结果:
     1.全膜双垄沟播(whole field surface plastic mulching and double ridge-furrow planting,PMF)能提高玉米苗期-抽雄期0-25cm土壤平均温度3℃左右,利于玉米早生快发;其地温与气温线性相关,但线性拟合曲线的斜率小于SM和CK,尤其是10cm以下土层地温对气温波动的响应灵敏度低于SM和CK,地温相对稳定,为玉米生长提供较好的温度条件;SM增温和稳定地温的作用均弱于PMF;
     2.三种种植方式在地温最低点,温度梯度为正值,土壤热量从土壤深层传向地表,在地温最高点,温度梯度为负值,土壤热量从土壤表层传向深层;拔节期前,无论在地温最低或最高点,PMF温度梯度最大,SM居中,CK最小,PMF土壤导热性强于其余2个处理;拔节后-成熟期,地温最低点温度梯度PMF﹥SM﹥CK,地温最高点PMF﹤SM﹤CK,可见玉米生育中后期地温较高时段,PMF土壤导热性弱于SM和CK,而地温较低阶段则相反,表明PMF能响应土壤热状况的改变从而调节土壤热量传导性能,维持土壤温度的稳定;在PMF和SM增温和稳定地温作用下,玉米生育期提前,总生育期缩短,但生殖生长阶段延长,有利于玉米籽粒灌浆。
     3.PMF明显改善玉米拔节前0-200cm土壤水分条件,并减少此阶段地表蒸发为主的水分消耗,提高土壤水分保蓄的能力,在玉米需水较少阶段储蓄更多水分供需水盛期使用。拔节期前,2009年PMF0-60cm土壤贮水量较SM和CK平均增加9.5mm和18.2mm,60-120cm平均增加13.7mm和9.6mm,2010年0-60cm土壤贮水量较SM和CK平均增加24.7mm和6.9mm,60-120cm平均增加8.6mm和14.2mm;随玉米生育进程的推进,3种处理的耗水量依次为:PMF﹥SM﹥CK,而土壤贮水量表现为CK﹥SM﹥PMF;玉米拔节后,PMF耗水加快,其中灌浆期最为显著,其次是拔节-抽雄期。灌浆期,2009年PMF耗水量较SM和CK提高72.0%和190.8%,2010年提高84.5%和237.7%,拔节-抽雄期,2009年PMF耗水量较SM和CK提高8.2%和23.9%,2010年提高8.2%和37.8%,为玉米生殖生长提供较好水分条件;玉米耗水高峰的出现与当年降雨充沛时段基本吻合;SM在一定程度减少地表蒸发,促进生殖生长阶段耗水,但效果显著弱于PMF;
     4.PMF因前期温度、水分条件好,耗水量增加,促进了玉米叶的生长和干物质累积。PMF处理的LAI在玉米整个生育期均大于SM和CK,并在整个生殖生长阶段保持相对较高的LAI,因此,PMF干物质累积量最大,相对旺盛的营养生长为生殖生长和产量形成提供支撑;再者PMF和SM生殖生长阶段延长,玉米生育后期耗水显著增多,在整个生殖生长阶段提高并维持较高地上干物质水分利用效率(WUEb),促进了光热水资源的利用,因而使玉米穗长、穗粒数、穗粒重、百粒重显著提高,产量较CK增加310.0%-356.2%,HI增加95.3%-169.6%;SM增产效果小于PMF,产量较CK增加224.3%-256.1%,HI增加76.1%-156.0%;
     5.PMF和SM地上干物质水分利用效率(WUEb)和籽粒水分利用效率(WUEg)均显著大于CK(P<0.05)。与CK相比,PMF和SM不仅能提高WUEb,而且能在玉米生殖生长阶段维持长时间高WUEb。抽雄后PMF处理的玉米WUEb下降幅度在4.8-6.1%之间,SM在5.8-7.9%之间,而CK在9.0-25.6%之间。玉米生殖生长阶段持续较高的WUEb,促进玉米对水分的高效利用,使PMF的WUEg较CK提高265.6%-315.5%;SM全生育期WUEg同样显著高于CK,较CK提高204.9%-249.3%;
     6.PMF在获得持续高产的同时,加快了土壤水分的循环和消耗,以较快速度和较大程度耗散了土壤蓄存水分。所以,在相同降雨条件下,PMF处理0-200cm土壤水分降雨入渗补给深度最大,SM次之,CK最小;在这种吸水腾空库容,入渗加快,土壤水分条件改善,再次促进耗水的驱动下,PMF耗水量和耗水深度随种植年限的增加而增加,本试验两年种植期间耗水深度从20-120cm向120-200cm推移,连续种植两年后,3种处理40-120cm土壤含水量下降至9%以下,其中PMF下降最快,降至7.9%,土壤含水量接近萎蔫系数7.2%,玉米只能靠当年降水生长,但本试验区常有降水供需错位的气象特征,如种植年限继续增加,土壤水分持续消耗加上补给不足,极有可能导致土壤干层形成,土壤水分平衡被打破和土壤水分生态环境被恶化的潜在风险增加;
     可见,PMF首先是提高玉米苗期-抽雄期0-25cm土壤平均温度并增大拔节期前土壤温度梯度,显著改善玉米拔节期0-200cm土壤水分条件,促进前期营养生长;在玉米生育中后期,PMF因前期累积的较大营养体促进了生殖生长阶段耗水,尤其是灌浆期,促进玉米生育后期光合产物向籽粒转移,促进籽粒灌浆,在玉米对光热水资源更好利用的基础上,玉米穗部性状得到最大程度的改善,穗长、穗粒数、粒重显著增加,产量和水分利用效率(包括WUEb和WUEg)显著提高,但代价却是土壤蓄存水分的大量消耗。两年种植期间耗水深度从20-120cm向120-200cm推移,连续种植两年后,0-200cm土壤耗水量达163.6mm,40-120cm土壤含水量下降至7.9%,接近萎蔫系数7.2%,玉米只能靠当年降水生长,土壤水分平衡被打破和土壤水分生态环境被恶化的潜在风险增加。可见,PMF对作物和土壤环境的一系列效应均在温度梯度驱动下热量和水分的上下迁移过程中完成,而且这一过程对玉米生产有利,对土壤水分环境不利。
Corn (Zea mays L.) is the third mainly crop (inferior to wheat and rice) in China. its plantingarea is increasing yearly from1949to nowadays. However, the cropland area is decreasing withthe development of economy and town expanding, resulted in the restricted area of corn, and theproductivity of corn is determined by unit yield solely. Recently, whole field surface plasticmulching and double ridge-furrow planting (PMF), a new technology increased corn yieldsignificantly, is applied widely in arid and semi-arid northwestern China. However, there has nosystemic research on the mechanism of improvement of PMF. To explore these, field experimentwere conducted in dingxi county of Gansu province during2009-2010, where locates at hilly andsemiarid northwest Loess plateau. Three treatments involved in the field experiment,1) wholefield surface plastic mulching and double ridge-furrow planting (PMF),2) whole field surfacesand mulching and flat planting (SM), and3) flat planting without mulching (CK), designedrandomly and replicated three times. Soil temperature, soil water storage, crop growth index, drymass, water consumption in different growth stages, water use efficiency, yield and yieldcomponent of corn were determined and analyzed. The main results are as follows:
     1. PMF increased soil average temperature about3℃in0-25cm soil profile duringSeeding-Heading stage of corn, as compare with CK, improved corn development in early growthperiod. Soil temperature of PMF was linear correlation with air temperature, but responsiblesensitivity was lower than SM and CK, especially in10-25cm soil profile. Therefore, PMF couldsustain relative stable soil temperature, benefit to corn development. SM also could improve andsustain relative stable soil temperature, but the impact was not significant as PMF.
     2. At the minimum soil temperature point, soil temperature gradient (Gra) of three treatmentswas positive, the deeper soil heat transported to surface. However, the Gra was opposed at themaximum soil temperature point. Before corn jointing, whether at the minimum or maximum soiltemperature point, Gra followed the sequence as PMF﹥SM﹥CK, soil thermal conductivity ofPMF was stronger than SM and CK. From corn jointing to harvest, Gra followed the sequence asPMF﹥SM﹥CK at the minimum soil temperature point, and followed the sequence as PMF<SM<CK at the maximum soil temperature point, then, it suggested that soil thermal conductivity of PMF was stronger at lower soil temperature condition, weaker at higher soil temperature stage,plastic mulching adjust the characteristics of soil thermal conductivity, keep the relative stable soiltemperature, therefore, PMF improve corn growth, advance corn growth stage, shorten the wholegrowing stage, especially, extend the reproductive growth period, its benefit to corn filling.
     3. PMF could improve soil water storage in0-200cm profile and reduce evaporationsignificantly before corn jointing, enhance the soil water capacity, the more soil water sustainedfor later corn development. As compared with SM and CK, before corn jointing, PMF increasedsoil water storage by9.5mm and18.2mm in0-60cm soil profile, by13.7mm and9.6mm in60-120cm soil layer in2009, and by24.7mm and6.9mm in0-60cm soil layer, by8.6mm and14.2mm in60-120cm soil layer in2010, respectively. With the corn growth, there was a significant differencein water consumption between three treatments, which followed the sequence as PMF>SM>CK.Conversely, the change of soil water storage followed as CK>SM> PMF.After corn jointing, cornwater consumption accelerated, the most significantly stage was filling, then was the stage fromjointing to heading. During corn filling stage, as compared with SM and CK, water consumptionof PMF increased by72.0%and190.8%in2009, by84.5%and237.7%respectively in2010,during corn jointing-heading stage, water consumption of PMF increased by8.2%and23.9%in2009, by8.2%and37.8%respectively in2010. Thus, PMF could sustain a relatively better watercondition for corn reproductive growth. The water consumption peak was adaptive to thedynamics of precipitation. SM also could reduce evaporation and promote water use inreproductive growth period, but the effect was not significant as PMF.
     4. PMF increased soil temperature, soil water storage during corn growth early stage,increasd corn water consumption, therefore, improved leaf growth and biomass accumulation ofcorn. Leaf area index (LAI) of PMF was higher than SM and CK through whole corn growingstage and keep higher LAI in whole reproductive growth period, therefore, dry matteraccumulation of PMF was highest among three treatments, better vegetative growth supportreproductive growth and yielding. PMF and SM elongated reproductive growth period andaccelerate water consumption during corn reproductive stage, keep higher water use efficiencybiomass(WUEb) in whole reproductive growth period, benefit to the using of light, heat and water.Therefore, spike length, grain number per spike, grain weight per spike,100-grain weigh of cornwere increased significantly. For example, corn yield, harvest index (HI) of PMF increased by310.0%-356.2%and95.3%-169.6%respectively, as compared with CK. Likely, SM also increased corn yield and HI by224.3%-256.1%and76.1%-156.0%, respectively.
     5. WUEband WUEgof PMF were higher than CK significant, as well as SM treatment. AsCompared with CK, PMF and SM not only improved WUEb, but also kept higher WUEbthroughcorn reproductive growth period. After corn heading, WUEbof PMF decreased by4.8-6.1%,WUEbof SM decreased by5.8-7.9%, and WUEbof CK decreased by9.0-25.6%, resulted in theincrement of WUEgby265.6%-315.5%in PMF treatment, by204.9%-249.3%in SM treatment,respectively, as compared with CK.
     6. PMF increased corn yield continuously, but speeding up the soil water cycle andconsumption, as well as increased the water loss in deeper soil profile. Thus, the restored depth ofsoil water in0-200cm soil profile was deepest in PMF treatment under the same annualprecipitation, and then was SM, CK was shallowest. Under PMF treatment, the quicker soil waterloss promoted the speed of soil water restoration, further, the quicker soil water restoration drovethe crop water consumption, so the quantity and depth of soil water consumption in PMFtreatment increased with the increases of corn planting years. For example, from2009to2010, thedepth of soil water loss increased from20-120cm profile to120-200cm profile. After2years corncontinuous cropping, soil water content in40-120cm profile was less than9%in all threetreatments, especially, the soil water content of PMF treatment was7.9%, closed to the wiltingcoefficient (7.2%), corn development only depending on rainfall in growth season. The dynamicof precipitation was not coincide with corn water need in the experimental area, the continuouscorn cropping with PMF probably caused soil dry layer in semiarid area. Therefore, PMF couldimprove corn yield significantly, but continuous cropping may result in the significant reductionof soil water storage, and was disadvantage to the sustainable the balance of soil water storage.
     We can conclud that PMF firstly increased soil average temperature in0-25cm soil profileduring Seeding-Heading stage, increased Gra and0-200cm soil water storage before jointing stageof corn, improve corn development in early growth period. Secondly, PMF increased waterconsumption during corn reproductive growth stage, especially filling stage, promoted thetransferring of energy to grain, improved filling, benefit to the using of light, heat and water, thus,spike properties of corn improved significantly, spike length, grain number per spike, grain weightper spike and then yield, WUE(WUEband WUEg) of corn increased significantly. But, the costwas the huge consumption of soil water. For example, from2009to2010, the depth of soil waterloss increased from20-120cm profile to120-200cm profile. After2years corn continuous cropping, soil water consumption in0-200cm was up to163.6mm, soil water content in40-120cmprofile was7.9%, closed to the wilting coefficient (7.2%), corn development only depending onrainfall in growth season, the potential risk increased that soil water balance was broken and soilwater ecosystem was deteriorated. Therefore, effect of PMF on crop and soil was drove by Gra,taken by transferring of soil heat and water, was advantage to corn but disadvantage to soil waterecosystem.
引文
[1]赵松龄.集水农业引论[M].西安:陕西科学技术出版社.1996.
    [2]姚玉璧,王润元,杨金虎,等.黄土高原半干旱区气候变化对春小麦生长发育的影响-以甘肃省定西为例[J].生态学报.2011,31(15):4225-4234.
    [3]王旭清,王法宝,任德昌.等.作物垄作栽培增产机理及技术研究进展[J].山东农业科学.2001,(3):41-45.
    [4]肖国举,王静.黄土高原集水农业研究进展[J].生态学报.2003,23(5):1003-1008.
    [5]王学春,李军,蒋斌,等.黄土高原不同降水类型区旱作玉米田土壤干燥化效应与土壤水分承载力模拟研究[J].生态学报.2009,29(4):2053-2066.
    [6]周侃,秦富华,权建民.雨水集流补偿是开发旱作农业生产潜力的有效途径[J].甘肃农业科技.1996,1:2-4.
    [7]黄占斌,山仑.论我国旱地农业建设的技术路线与途径[J].干旱地区农业研究.2000,18(2):1-6.
    [8]邓振镛,张毅,郝志毅.半干旱半湿润气候区实施集雨节灌农业技术的研究[J].中国农业气象.2003,24(4):16-19.
    [9]李儒,崔荣美,贾志宽,等.不同沟垄覆盖方式对冬小麦土壤水分及水分利用效率的影响[J].中国农业科学.2011,44(16):3312-3322.
    [10]柴强,杨彩红,黄高宝.交替灌溉对西北绿洲区小麦间作玉米水分利用效率的影响[J].作物学报.2011,37(9):1623-1630.
    [11]杨治平,周怀平,李红梅.旱农区秸秆还田秋施肥对春玉米产量及水分利用效率的影响[J].农业工程学报.2001,17(6):49-52.
    [12]山仑,陈培元主编.旱地农业的生理生态基础[M].北京:科学出版社,1998.
    [13]黄明斌,党廷辉,李玉山.黄土区旱塬农田生产力提高对土壤水分循环的影响[J].农业工程学报.2002,18(6):50-54.
    [14]李凤民,王静,赵松龄.半干旱黄土高原集水高效旱地农业的发展[J].生态学报.1999,19(2):259-264.
    [15]康绍忠.新的农业技术革命与21世纪我国节水农业的发展[J].干旱地区农业研究.1998,16(1):11-17.
    [16]刘钰, Fernando R M, Pereira L S.微型蒸发器田间实测麦田与裸地土面蒸发强度的试验研究[J].水利学报.1999,(6):45-50.
    [17] Dong H Z, Li W J, Tang W, et.al. Early plastic mulching increases stand establishment andlint yield of cotton in saline fields [J]. Field Crops Research,2009,111(3):269-275.
    [18] Luo Y Q. Talking about the plastic film mulching[J]. China State Farms,1982,(3):19-20.
    [19]韩永祥,万信.地膜棉花农业气象效应的初步分析[J].甘肃农业科技.1995,(8):14-16.
    [20]温晓霞,何玲,唐拴虎.渭北塬区旱地小麦微型聚水增产效应研究[J].麦类作物学报.2000,20(4):51-54.
    [21]王虎全,韩思明,李岗.渭北旱原冬小麦全程微型聚水两元覆盖高产栽培增产机理研究[J].干旱地区农业研究.2000,18(1):48-53.
    [22] Cook H F, Valdes Gerardo S B, Lee H C. Mulch effects on rainfall interception, soil physicalcharacteristics and temperature under Zea mays L [J]. Soil&Tillage Research.2006,91:227-235.
    [23]谭军利,王林权,李生秀.地面覆盖的保水增产效应及其机理研究[J].干旱地区农业研究.2008,26(3):50-54.
    [24] Quezada M, Maria R, Munguia L, et al. Plastic mulching and availability of soil nutrients incumuber crop. TERRA (Mexico),1995,13:136-147
    [25]陈锡时,郭树凡,汪景宽,等.地膜覆盖栽培对土壤微生物种群和生物活性的影响[J].应用生志学报.1998(4):435-439.
    [26] Li XY, Gong JD, Gao QZ, et.al. Incorporation of ridge and furrow method of rainfallharvesting with mulching for crop production under semiarid conditions[J]. AgriculturalWater Management,2001,50:173-183.
    [27] Li FM, Guo AH, Wei H. Effects of clear plastic film mulch on yield of spring wheat[J]. FieldCrops Research,1999,63:79-86
    [28] Xie ZK, Wang YJ, Li FM. Effect of plastic mulching on soil water use and spring wheat yieldin arid region of northwest China[J]. Agricultural Water Management,2005,75:71-83
    [29] Wang XL, Li FM, Jia Y, et al. Increasing potato yields with additional water and increasedsoil temperature [J]. Agricultural Water Management.2005,78:181-194.
    [30] Li XY, Gong JD, Wei XH. In situ rainwater harvesting and gravel mulch combination forcorn production in the dry semiarid region of China [J].Arid Environment.2000,46:371-382.
    [31] Chakraborty D, Nagarajan S, Aggarwal P, et al. Effect of mulching on soil and plant waterstatus, and the growth and yield of wheat (Triticum awstivum L.) in a semiaridenvironment[J].Agricultural Water Management,2008,95:1323-1334.
    [32] Wang YJ, Xie ZK, Malhi SS. Effect of rainfall harvesting and mulching technologies onwater use efficiency and crop yield in the semi-arid Loess Plateau, china[J]. AgriculturalWater Management,2009,96:374-382.
    [33] Li XL, Su DR, Yuan QH. Ridge-furrow planting of alfalfa for improved rainwater harvest inthe rainfed semiarid areas in the Northwest China[J].Soil&Tillage Research,2007,93:117-125.
    [34] Jana L, Heisler W, John M, et al. Contingent productivity responses to more extreme rainfallregimes across a grassland biome[J]. Global Change Biology,2009,15:2894-2904.
    [35]贺峰.在甘肃推广玉米全膜双垄沟播栽培技术的必要性分析[J].农业科技与信息.2008,13:12-14.
    [36]刘广才,杨祁峰,段禳全,等.甘肃发展旱地全膜双垄沟播技术的主要模式[J].农业现代化研究.2008,29(5):629-632.
    [37]张雷,牛建彪,赵凡.旱作玉米提高降水利用率的覆膜模式研究[J].干旱地区农业研究.2006,24(2):8-17.
    [38]方彦杰,黄高宝,李玲玲,等.旱地全膜双垄沟播玉米生长发育动态及产量形成规律研究[J].干旱地区农业研究.2010,28(4):128-134.
    [39]金胜利,周丽敏,李凤民,等.黄土高原地区玉米双垄全膜覆盖沟播栽培技术土壤水温条件及其产量效应[J].干旱地区农业研究.2010,28(2):28-33.
    [40]郭庆法,王庆成,汪黎明,等.中国玉米栽培学[M].上海:上海科学技术出版社,2004:3-13.
    [41]朱玉廷.玉米单产900千克栽培技术模式[J].现代农业,2011,(9):56-57.
    [42]中国行业研究网.2010-2011年度中国玉米种植面积情况简析[Z].http://www.chinairn.com/
    [43]柏光晓,任洪,兰仲模,等.贵州玉米优良种质资源鉴评初报[J].山地农业生物学报.2000,19(3):156-159
    [44]鲍巨松,薛吉全,郝引川,等。紧凑型玉米高产的生理基础[J].玉米科学.1992年00期玉米科学,1992(创刊号):18-22.
    [45]杨继芝,龚国淑,张敏,等.密度和品种对玉米田杂草及玉米产量的影响[J].生态环境学报.2011,20(6):1037-1041.
    [46]李志勇,王璞, Marion boening-zilkens,等.优化施肥和传统施肥对夏玉米生长发育及产量的影响[J].玉米科学.2003,11(3):90-93,97.
    [47]汪顺生,费良军,孙景生,等.控制性交替隔沟灌溉对夏玉米生理特性和水分生产效率的影响[J].干旱地区农业研究.2011,29(5):115-119,138.
    [48]白金铠主编.杂粮作物病害[M].北京:中国农业出版社,1995
    [49] MOHAPATRA BK,LENKA D,NAIK D. Effects of plastic mulching on yield and water useefficiency in maize[J].Annals of Agric Res.1998,19:101-109.
    [50]宋立泉.低温对玉米生长发育的影响[J].玉米科学.1997,(3):58-60.
    [51]曹广才,王崇义,卢庆善,等.北方旱地主要粮食作物栽培[M].北京:气象出版社,1996.
    [52]魏永超,刘虎成,刘希忠等.温度与光照因子对夏玉米灌浆及产生的影响[J].河南职技师院学报.1989,17(1):1-6.
    [53]曹宗巽,吴相钰.植物生理学[M].北京:人民教育出版社,1980.
    [54]陶世蓉,东先旺,张海燕,等.土壤水分胁迫对玉米植株性状整齐度的影响[J].西北植物学报,2000(5):812-817.
    [55]鲍巨松,杨成书,薛吉全,等.不同生育时期水分胁迫对玉米生理特性的影响[J].作物学报,1991,17(4):261-265.
    [56]李素美,东先旺,陈建华.不同土壤目标水量对夏玉米光合性能及产量的影响[J].华北农学报,1999(3):55-59.
    [57]郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响[J].生态学报.2006,26(4):1138-1143.
    [58]徐世昌,戴俊英,沈秀瑛等.水分胁迫对玉米光合性能和产量的影响[J].作物学报,1995,21(3):356-363.
    [59]张建华,李迎春.光、温土壤湿度影响玉米生长发育及产量形成的模拟模式[J].干旱地区农业研究.1997,15(2):8-14.
    [60]朱自玺,侯建新.夏玉米土壤水分指标研究.气象,1988(9):13-17.
    [61]毛明策,郭东伟,梁银丽.水分处理对油菜叶位光合速率、蒸腾速率及水分利用效率的影响[J].中国生态农业学报.2001,(1):49-51.
    [62]胡昌浩.玉米栽培生理[M].北京:中国农业出版社,1995.
    [63]谭国波,赵立群,张丽华,等.玉米拔节期水分胁迫对植株性状、光合生理及产量的影响[J].玉米科学.2010,18(1):96-98.
    [64]张景生,肖俊夫,段爱旺,等.夏玉米耗水规律及水分胁迫对其生长发育和产量的影响[J].玉米科学,1999,7(2):45-48.
    [65]隋红建,曾德超.地面覆盖应用与研究的现状及发展方向[J].农业工程学报.1990,6(4):26-34.
    [66]陈奇恩.中国塑料薄膜覆盖农业.中国工程科学[J].2002,4(4):12-15.
    [67]巩杰,黄高宝,陈利顶,等.旱作麦田秸秆覆盖的生态综合效应研究[J].干旱地区农业研究.2003,21(3):69-73.
    [68]王俊,李凤民,宋秋华,等.地膜覆盖对土壤水温和春小麦产量形成的影响[J].应用生态学报.2003,14(2):205-210.
    [69]潘渝,郭谨,李毅.地膜覆盖条件下的土壤增温特性[J].水土保持研究.2002,9(2):130-134.
    [70]李建奇.覆膜对春玉米土壤温度、水分的影响机理研究[J].耕作与栽培.2006(5):44,47-49.
    [71]李志军,赵爱萍,丁晖兵,等.旱地玉米垄沟周年覆膜栽培增产效应研究[J].干旱地区农业研究.2006,24(2):2-l7.
    [72]李生秀,罗志成,王谦,等.中国旱地农业[M].北京:中国农业出版社,2004.
    [73]刘永忠,张克强,王根全,等.旱地农业覆盖栽培技术研究进展[J].农艺科学.2005,5(21):202-205.
    [74]陈士辉,谢忠奎,王亚军,等.砂田西瓜不同粒径砂砾石覆盖的水分效应研究[J].中国沙膜.2005,25(3):433-436.
    [75]王亚军,谢忠奎,刘大化,等.砾石直径和补灌量对砂田西瓜根系分布的影响[J].中国沙漠.2006,26(5):820-825.
    [76]张义,谢永生.不同覆盖措施下苹果园土壤水文差异[J].草业学报.2011,20(2):85-92.
    [77]张广忠,王有科,樊辉,等.不同覆盖材料的保水效果及其对枸杞生长发育的影响[J].干旱地区农业研究.2010,28(2):49-52.
    [78]胡恒觉.我国砂田免耕法[A],耕作制度论文集[C].北京:农业出版社,1981,206-217.
    [79]贾登云,曾希琳,张永洋,等.籽用西瓜旱砂田覆膜栽培技术试验[J].中国西瓜甜瓜,1998,(1):20-21.
    [80] Gale WJ, McColl RW, Xie Fang. Sandy fields traditional farming water conservation inChina[J]. Soil&Water Conserve,1993,48:474-477.
    [81] Li xiaoyan. Gravel-sand mulch for soil and water conservation in the semiarid loess region ofnorthwest China[J]. Catena,2003,2:105-127.
    [82]刘连友,刘玉璋,李小雁,等.砾石覆盖对土壤吹蚀的抑制效应[J].中国沙漠.1999,19(1):60-62.
    [83]周斌,蔺海明,薛福祥,等.高海拔区覆盖栽培对幼龄枸杞生长的影响[J].甘肃农业大学学报.2009,44(6):97-101.
    [84]沈荣开.土壤水资源及其计算方法浅议[J].水利学报.2008,39(12:1395-1400.
    [85]信乃诠,王立祥.中国北方旱区农业[M].南京:科技出版社,1998.
    [86] Boers TM, Zondervan K, Ben-Asher J. Micro-catchments water harvesting(MCWH)for aridzone development[J]. Agricultural Water Manage.1986,12,21-39.
    [87]李军,王龙昌,孙小文.宁南半干旱偏旱区旱作农田沟垄径流集水蓄墒效果与增产效应研究[J].干旱地区农业研究.1997,15(1):8-13.
    [88]李晓雁.人工集水面降雨径流观测实验研究[J].水土保持学报.2001,15(1):1-4.
    [89]刘贤赵,康绍忠.黄土区坡地降雨入渗产流过程中的滞后效应[J].水科学进展,2001,12(1):56-60.
    [90] Zhou LM, Li FM, Jin SL. How double ridges and furrows mulched with plastic film affectsoil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. FieldCrops Research.2009,113(1):41-47.
    [91]壬耀林,张志斌.地膜覆盖的抗旱保墒效果及其应用[A].西北农业大学干旱中心.中国干旱半干旱农业科技资料选集[C].陕西杨凌.西北农业大学.1982,21-125.
    [92]赵聚宝,李克煌.干旱与农业[M].北京:中国农业出版社,1995.
    [93]张德奇,廖允成,贾志宽.旱区地膜覆盖技术的研究进展及发展前景[J].干旱地区农业研究.2005,23(1):208-213.
    [94] Unger PW. Surface residue, water application and soil texture effects on wateraccumulation[J]. Soil Science Society of America Journal.1976,40:298-300.
    [95] TOLKJ A,HOWELL TA,EVETT S R. Effect of mulch, irrigation and soil type on water useand yield of maize[J]. Soil&Tillage Research.1999,50:137-147.
    [96] JIA SN,PAUL W,UNGER B. Soil water accumulation under different precipitation, potentialevaporation, and straw mulch conditions [J].Soil Science Society of America Journal.2001,65:442-44.
    [97]李世清,李东方,李凤民,等.半干旱农田生态系统地膜覆盖的土壤生态效应[J].西北农林科技大学学报(自然科学版).2003,31(5):21-28.
    [98] Sharma P K, Parmar D K. The effect of phosphorus and mulching on the efficiency ofphosphorus use and productivity of wheat growth on a mountain Alfisol in the WesternHimalayas[J]. Soil Use Manages.1998,14(1):25-29.
    [99]王彩绒,田霄鸿,李生秀.沟垄覆膜集雨栽培对冬小麦水分利用率及产量的影响[J].中国农业科学.2004,37(2):208-214.
    [100]王俊鹏,韩清芳,王龙昌,等.宁南半干旱区农田微集水种植技术效果研究[J].西北农业大学学报.2000,28(4):16-20.
    [101]丁瑞霞,贾志宽,韩清芳,等.宁南旱区微集水种植条件下谷子边际效应和生理特性的响应[J].中国农业科学,2006,39(3):494-501.
    [102] Wang Q, Zhang E H, Li F M, et al. Runoff efficiency and the technique of microwaterharvesting with ridges and furrows, for potato production in semi-arid areas[J]. WaterResource Management,2008,22:1431-1443.
    [103] Kayombo B, Hatibu N, Mahoo H F. Effect of micro-catchment rain water harvesting onyield of maize in a semi-arid area. Conserving Soil and Water for Society: Sharing Solutions
    [M].2004:29-40.
    [104]李生秀,肖俊璋,程素云,等.论我国旱地土壤的水分管理[J].干旱地区农业研究.1989,7(1):1-10.
    [105]雒焕忻.白银地区砂田的防旱作用及其耕作[J].干旱地区农业研究.1991(1):37-45.
    [106]翟胜,梁银丽,王巨媛,等.地表覆盖对温室黄瓜生长及生理特性的影响[J].应用生态学报.2006,17(6):1039-1044.
    [107]Chaudry TN, Chopra UK. Effect of soil covers on growth and yield of irrigated wheatplanted at two dated [J]. Field Crops Research.1983,6:293-304.
    [108]Gan YT, Stobbe EH. Main stem leaf stage and its relation to single plant grain yield in springwheat [J].Crop Science.1996,36:628-632.
    [109] Niu JY, Gan JW, Zhang JW, et al. Postanthesis dry matter accumulation and redistribution inspring wheat mulched with plastic film [J]. Crop Science.1998,38:1562-1568.
    [110]卜玉山,苗果园,邵海林,等.对地膜和秸秆覆盖玉米生长发育与产量的分析[J].作物学报.2006,32(7):1090-1093.
    [111]李凤民,鄢珣,王俊,等.地膜覆盖导致春小麦产量下降的机理[J].中国农业科学,2001,33(3):330-333.
    [112]王俊,李凤民,宋秋华,等.地膜覆盖对土壤水温和春小麦产量形成的影响[J].应用生态学报.2003,14(2):205-210.
    [113]田嫒,李凤民,刘效兰.半干旱区不同垄沟集雨种植马铃薯模式对土壤蒸发的影响[J].应用生态学报.2007, l8(4):795-800.
    [114] Liu CA, Jin SL, Zhou LM, et al. Effects of plastic film mulch and tillage on maizeproductivity and soil parameters. European Journal of Agronomy,2009,31(4):241-249.
    [115]黄培荣.甘肃的砂田[C].中国干旱半干旱农业科技资料选集.1983:125-129.
    [116]刘东海,周玉平,赵国杰.宁夏黄土丘陵区旱作农田蓄水保墒耕作技术经验总结[J].干旱地区农业研究.1997,15(1):33-38.
    [117]钮溥.旱地农业蓄水保墒技术[M.北京:农业出版社,1992.
    [118]冷石林,韩仕峰,王立祥,等.中国北方旱地作物节水增产理论与技术[M].北京:中国农业科技出版社,1996.
    [119]黄昌勇主编.土壤学[M].北京:中国农业出版社,2000.
    [120]Hou QH, Han RL, Han SF. The preliminary study of “Soil dry layer’ of artificial forest andgrass in Loess Plateau[R].SWCC.1999,(5):11-14.
    [121]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报.1983,3(2):91-101.
    [122]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报.2003,23(8):1644-1647.
    [123]何小武,刘广全,郭孟华.黄土高原植被建设的水资源环境及对策[J].水利学报.2008,39(7):843-847.
    [124]Li Y S. Fluctuation of yield of high yield field and desiccation of the soil on dryland [J]. ActaPedologica Sinica,2001,38(3):353-356.
    [125]王喜庆,李生秀,高亚军.地膜覆盖对旱地春玉米生理生态和产量的影响[J].作物学报.1998,24(3):348-353.
    [126]柳媛普,李耀辉,王胜,等.河西走廊中段干旱荒漠区土壤水热状况初步分析[J].干旱区资源与环境.2011,25(5):204-208.
    [127]盖钧镒主编.试验统计方法[M].北京:中国农业出版社,2000.
    [128]尚勋武,杨祁峰,刘广才.甘肃发展旱作农业的思路和技术体系[J].干旱地区农业研究,2007,25(增刊):194-196
    [129]山仑,陈国良.黄土高原旱地农业的理论与实践[M].北京:科学出版社,1993,1-5。
    [130] Mo Xing-guo, Liu Su-xia, Lin Zhong-hui, et al. Regional crop yield, water consumption andwater use efficiency and their responses to climate change in the North China Plain[J].Agriculture, Ecosystems and Environment.2009,134:67-68.
    [131]Rita Dahiya, Joachim Ingwersen, Thilo Streck. The effect of mulching and tillage on thewater and temperature regimes of a loess soil: Experimental findings and modeling[J]. Soil&Tillage Research.2007,96:52–63.
    [132] A. Ramakrishna, Hoang Minh Tam, Suhas P. Wani, et al. Effect of mulch on soiltemperature, moisture, weed infestation and yield of groundnut in northern Vietnam[J]. FieldCrops Research2006,95:115–125.
    [133] Xie Zhong-kui, Wang Ya-jun, Li Feng-min. Effect of plastic mulching on soil water use andspring wheat yield in arid region of northwest China[J]. Agricultural Water Management2005,75:71–83.
    [134]王绍美,金胜利,王刚.半干旱区全覆膜双垄沟播技术对玉米产量和水分利用效率的影响[J].甘肃农业大学学报.2010,45(4):100-106.
    [135]黄高宝,方彦杰,李玲玲,等.旱地全膜双垄沟播玉米高效用水机制研究[J].干旱地区农业研究.2010,28(6):116-121.
    [136]郭忠升.黄土丘陵半干旱区土壤水资源利用限度[J].应用生态学报.2010,21(12):3029-3035.
    [137]陈洪松,邵明安,王克林.黄土区深层土壤干燥化与土壤水分循环特征[J].生态学报.2005,25(10):2491-2498.
    [138]郭忠升,邵明安.半干旱区人工林地土壤入渗过程分析[J].土壤学报.2009,46(5):953-958.
    [139]王志强,刘宝元,路炳军.黄土高原半干旱区土壤干层水分恢复研究[J].生态学报.2003,23(9):1944-1950.
    [140]李军,王学春,邵明安,等.黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟[J].植物生态学报.2010,34(3):330-339.
    [141]李军,绍明安,张兴昌,等.黄土高原旱塬区高产玉米田土壤干燥化与产量波动趋势模拟研究[J].中国生态农业学报.2007,15(2):54-58.
    [142]李凤民,徐进章.黄土高原半干旱地区集水型生态农业分析[J].中国生态农业学报,2002,10(1):101-103.
    [143]朱祖祥.土壤学(上册)[M].北京:农业出版社,1983.
    [144]中国地膜覆盖栽培研究会主编.地膜覆盖栽培技术大全[M].北京:农业出版社,1988.
    [145]华盂,王坚.土壤物理学[M].北京:北京农业大学出版社,1993.
    [146]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [147]黄介生,沈荣开.地膜覆盖技术的研究现状与展望[J].中国农村水利水电.1997,(增刊):80-81.
    [148] Heusinkveld B G, seobs A F G, Holtslag A A M, et a1.Surface energy balance closure in anarid region:role of soil heat flux[J]. Agricultural and Forest Meteorology,2003,(116):143-158.
    [149]Zhang Qiang, Cao Xiao-yan. The influence of synoptic conditions On the averaged surfaceheat and radiation budget energy over desert or Gobi[J]. Chinese Journal of AtmosphericScences,2003,27(2):245-254.
    [150] Kell W, Allen G, Eva F, et a1. Energy balance closure at FLUXNEF ites[J]. Agriculturaland M eteorology,2002,(113):223-243.
    [152]李锁锁,吕世华,奥银焕,等.黄河上游地区辐射收支及土壤热状况季节变化特征[J].太阳能学报,2009,30(2):156-161.
    [152]朱前林.温度梯度作用下非饱和土中水—水气运移探讨[C].第十届全国渗流力学学术会议暨2009渗流力学及应用国际学术论坛论文集,2010.
    [153]张锡梅,徐勇,山仑.不同作物在不同土壤水分条件下的耗水特性[J].生态学报,1989,9(1),97-98.
    [154]胡芬,陈尚谟.旱地玉米农田地膜覆盖的水分调控效应研究[J].中国农业气象,2000,21(4):14-17.
    [155]杨文治,绍明安.黄土高原土壤水分研究[M].北京:科学出版社,2000,10.
    [156]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003,36(1):71-76.
    [157]张宾,赵明,董志强,等.作物产量"三合结构"定量表达及高产分析[J].作物学报,2007,33(10):1674-1681.
    [158]王敬亚,齐华,梁熠,等.种植方式对春玉米光合特性、干物质积累及产量的影响[J].玉米科学,2009,17(5):113-115,120.
    [159]侯玉虹,陈传永,郭志强,等.春玉米不同产量群体叶面积指数动态特征与生态因子资源量的分配特点[J].应用生态学报,2009,20(1):135-142.
    [160]王树安主编.作物栽培学[M].北京:中国农业出版社,1980.
    [161]王顺霞,王占军,左忠,等.不同覆盖方式对旱地玉米田土壤环境及玉米产量的影响[J].干旱区资源与环境,2004,18(9):134-137.
    [162]王红丽,张绪成,宋尚有,等.旱地全膜双垄沟播玉米的土壤水热效应及其对产量的影响[J].应用生态学报,2011,22(10):2609-2614.
    [163]王红丽,张绪成,宋尚有,半干旱区旱地不同覆盖种植方式玉米田的土壤水分和产量效应[J].植物生态学报,2011,35(8):825-833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700