用户名: 密码: 验证码:
府南河排污口近区水质模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市河流是指流经或发源于城区的河流或河流段,以及人工开挖的、但经过多年演化已具有自然河流特点的运河或渠系。城市河流污染是全球范围内普遍存在最突出的环境问题之一。本课题以整治后的府南河为研究对象,根据其流动特点建立了一维活塞流水质模型,对主要的4个水质参数的降解关系及运动规律进行了研究,得到一维的四组水质模型,从而能够预测河流及下水管道内水质的变化,找到污染物在河流及下水管道中扩散降解的关键控制参数,并能够根据水质模型得出的水质污染特点采取适当的措施。同时也为强化河流的自净能力,改善河流的水质提供了数据及理论支持。
     研究表明:
     1.DO直接受流速和曝气的影响。在相同流速不同曝气量的情况,曝气量对DO在管路中随时间的分布有着明显的影响。在初期0~30min,曝气量越大,DO的上升速度越快,上升的最大值也随曝气量的增大而增大,其变化范围为4mg/L~7mg/L,而溶氧下降的时间基本都出现在60min左右,几乎在同一时间达到溶氧最低点。
     对比相同曝气量不同流速的情况,提高流速有利于氧的传递,使DO值上升的更快,且平衡后的DO值也有所提高。流速的提高也加快DO达到平衡,在3曝气头时,达到平衡时间从420min缩短到了120min,在5头曝气时,平衡时间从240min缩短到了80min。
     2.COD的降解规律主要受DO值的影响,水体的扰动对其影响较小。在低流速(0.03m/s和0.06m/s)的情况下0到300mins时降解较快,后期则较为平缓,出现平台区(即短暂平衡),当流速和曝气量增大时降解速度加快,达到平缓区的时间大幅缩短,在0.2m/s时较低流速提前近200mins,同时平台区缩短
The city rivers are the rivers or river sections passing or originating from the city, including the man power excavated, years developed canals or ditch systems which already have the characteristics of the natural rivers. The city rivers pollution is one of the most serious environment problem which exist in the global scope generally. This subject is taking the Funan River after the treatment as the object, established the unidimensional piston water quality model according to its characteristic flows, conducted the research to the main 4 water quality parameter degradation relations and the movement rule, obtained the four groups of unidimensional water quality model, thus could forecast the water quality change in the rivers and the sewer pipe, found the essential controlled variable of the pollutant degradation and diffusion in the rivers and the sewer pipe, and could take the suitable measure by the water quality pollution characteristic which obtained from the water quality model. Simultaneously All these studies also have provided the data and theories support for enhancing the self leaning ability of the Funan River body; bettering the river water quality.
    The study results demonstrating that:
    1. DO is directly influenced by velocity of flow and aeration intensity. In the same velocity of flow but different aeration intensity situation, the aeration intensity has the obvious influence to the distribution of DO in the pipeline. In initial period 0-30min, aeration intensity is bigger, the DO ascending velocity is quicker, the maximum value of the rise also increases along with the aeration intensity increases, its change scope is 4mg/L~7mg/L, but the time which the DO begin to drop all appears at about 60min, nearly in the identical time achieves the most low point of
引文
[1] 许世远,陈振楼等.苏州河底泥污染与整治[M].北京:科学出版社,2003:1~3.
    [2] 陈振楼,许世远等.长江三角洲地表水环境污染规律及调控对策[J].长江流域资源与环境,2001,10(4):353~359.
    [3] Carpentier, S. Quality of dredged material in the River Seine basin (France). Ⅰ. Physico-chemical properties. Science of the Total Environment, v 295, n 1-3, Aug 5, 2002, p 101-113.
    [4] Garban, B. Exchanges at the sediment-water interface in the river seine, downstream from Paris. Water Research, v 29, n 2, Feb, 1995, p 473-481.
    [5] Neal, Colin. Water quality of the River Thames. at a rural site downstream of Oxford. Science of the Total Environment, v 251-252, May, 2000, p 441-457.
    [6] 刘汝智.府河双流段水污染现状及控制对策[J].四川环境,2000,19(4):37~39.
    [7] 刘晓涛.关于城市河流治理若干问题的探讨[J].上海水务,2001,3:1~5.
    [8] 徐机玲.南京持之以恒治秦淮[J].嘹望新闻周刊,2000,13:44~45.
    [9] 郑克珉等.内、外秦淮河的水质污染及其防治[J].南京师大学报(自然科学版),1989,12(4):83~89.
    [10] 赵琦.成都市主要河流污染调查[J].四川地质学报,2001,21(3):163~167
    [11] 王德新,王晓春.成都府、南河航运的兴衰与复航展望[J].四川环境,1994,13(2):15-17.
    [13] 吴国平,徐葆华.长江三角洲地区水资源质量状况及保护对策[J].人民长江,1995,26(12):50~53.
    [14] 方子云.长江流域水环境的主要问题、原因及对策探讨[J].长江流域资源与环境,1997,6(4):346~349.
    [15] 陈芳,刘弈梅.1986~1998年运河(杭州段)水质变化趋势分析[J].环境污染与防治,1999,21(增刊):48~50.
    [16] 贾玉霞.“九五”期间辽宁省主要河流水质污染评价[J].辽宁城乡环境科技,2002,22(2):35~36.
    [17] 夏春,刘浩吾.成都市府南河整治工程与城市建设可持续发展[J].世界科技研究与进展,23(5):64~66.
    [18] 陈光庭.城市发展与河流关系三议—成都府南河综合整治成功联想[J].城市问题,1998,1:29~33.
    [19] 张影轩,曹慧利.成都府南河综合整治工程效果剖析[J].规划师,2004,20(6):52~55.
    [20] 袁长兴.府南河综合整治工程设计综述[J].成都建筑,2001,17(4):14~17.
    [21] 周云章.成都市“府南河”水环境治理问题的建议[J].四川地质学报,2004,24(1):22~24
    [22] Ruf. J. Langzeit model~Gewassergute simulation unter Berucksichtigung meteoologischer Einfluss~Prognostisches Modell Neckar. Bericht 16, 1977.
    [23] Prych, E. A. Effects of difference on lateral mixing in open channel flows[J]. California Institute of Technology, 1970
    [24] 张敦寿.杭州市水环境综合治理规划与实施[J].环境工程,1987,6(6):6~8.
    [25] 温灼如,张瑛玉,洪陵成等.苏州河黑臭警报方案的研究[J].环境科学,1987,6(4):2~8.
    [26] 方宇翘,裘祖楠,张国莹等.城市河流中黑臭现象的研究[J].中国环境科学,1993,13(4):256~262.
    [27] 徐贵泉,宋德蕃,黄士力等.感潮河网水量水质模型及其数值模拟[J].应用基础与工程科学学报,1996,4(1):94~105.
    [28] 谢永明.水环境科学研究[M].中国科学技术出版社,1997:120~136.
    [29] 金腊华,徐峰俊.水环境数值模拟与可视化技术[M].化学工业出版社,2004:54~59.
    [30] 余常昭,M.马尔科夫斯基,李玉梁.水环境中污染物扩散输移原理与水质模型[M].北京:中国环境出版社,1989:112~114.
    [31] Fleckseder, H. Rhine-Danube-project: lessons to be learnt in the fields of water quality, European Water Pollution Control, v 2, n 3, May, 1992, p 32-36.
    [32] De Jong, J. Management of the River Rhine, Water Environment & Technology, v 2, n 4, Apr, 1990, 5p.
    [33] Schuite-Wuelwer-leidig, A. Outline of the ecological master plan for the Rhine, Water Science and Technology, v 29, n 3, 1994, p 273-280.
    [34] 韩言柱,王永香.排污口密集的城市河流简化的有机污染物迁移模型[J].山东环境,1998,84(3):8~10.
    [35] 潘鸣钟,孟西林,陈炎等.流域水质与点源污染关系的监测研究[J].环境科学研究,2000,13(5):61~64.
    [36] 毕春娟,陈振楼,许世远等.苏州河非点源分析及调控对策[J].长江流域资源与环境
    [37] 赵仲兴.略论影响苏州河水质的若干因素[J].上海环境科学,1997,16(1):8~10.
    [38] 陈一申,吴国豪,黄解田.苏州河水环境污染现状分析[J].1997,16(1):11~14.
    [39] 郑英铭,高建群.苏州河的水质特征.环境科学[J].1988,9(5):20~26.
    [40] 裘祖楠,方宇翘,张仲燕等.城市河流底泥中镉的形态分布及其向水相释放的关系[J].中国环境科学,1989,9(6):401~406.
    [41] 方宇翘,裘祖楠,马梅芳等.污染河流底泥释放有机物的模拟研究[J].环境污染与防治,1989,11(2):2~6.
    [42] 王玉萍,苏克曼,胡慧廉等.苏州河底质中有机污染物的定性鉴定[J].中国环境科学,1992,12(2):145~149.
    [43] 周永武,胡慧廉,施月儿等.苏州河底质中优先有机污染物的定量测定方法研究[J].中国环境科学,12(5):343~348.
    [44] 徐祖信.河流污染治理规划理论与实践[M].北京:中国环境科学出版社,2003:301~307.
    [45] 徐祖信,廖振良.水质数学模型研究的发展阶段与空间层次[J].上海环境科学,2003,22(2).83~85.
    [46] Liu, H., "Predicting Dispersion Coefficient of Streama"[J]. Envir. Eng. Div., Proc of ASCE, VOl.103, NO. 1, P59-69, 1977.
    [47] 应太林,张国莹,吴芯芯.苏州河水体黑臭机理及底质再悬浮对水体的影响[J].上海环境科学,1997,16(1):23~26.
    [48] 姚重华,废水处理计量学导论[M].北京:化学工业出版社,2002:122~125.
    [49] 刘云.洗涤剂—原理·原料·工艺·配方[M].北京:化学工业出版社,1998:18~25.
    [50] 中国环境科学研究院学术委员会.环境科学论文集1990~1991[M].北京:中国环境科学出版社,1992:98~106.
    [51] 曹植菁,龙炳清等.微生物处理生物难降解有机物的进展[J].重庆环境科学,2002,24(6):63~66
    [52] Fischer, H. B., Mixing in inland and coastal waters[M]. New York: Academic Press, 1979: 224~226.
    [53] Taylor, G.I. Dispersion of solute matter in solvent flowing slowly through a tube.Proc.Roy. Soc.(London), Series A, 219: 186-203, 1953
    [54] 孙贤波,赵庆祥,周军.有机物生物降解极限浓度的探讨[J].城市环境与城市生态,2002,1 5(4):16~18.
    [55] C. P. Leslie Grady, Jr., Glen T. Daigger, Henry C. Lim,废水生物处理[M].北京:化学工业出版社,2003:227~235.
    [56] 孙受荪.水体自净的机理与功能[J],污染防治技术.1994,3(7):13~18.
    [57] 冯建中,乔苏亚.水体自净系数计算[J],山西化工.1993,2:51~53.
    [58] 李文红,陈英旭,孙建平.疏浚对影响上覆水体自净能力的研究[J],农业环境科学学报 2003,22(3):318—320.
    [59] 方字翘,张国莹,漆德瑶.苏州河底泥的耗氧特征及其与水质的关系[J],上海环境科学 1992,10(10):7~10.
    [60] 贺宝根,周乃晟,袁宣民.底泥对河流的二次污染浅析[J],上海师范大学,(15)41~43
    [61] 方字翘 裘祖楠 姚振淮 漆德瑶.城市河流底泥耗氧速率的制定及应用研究[J],环境化学 1989,4(8):13~20.
    [62] 郭振仁.污水排放工程水力学[M].北京:科学出版社,2001:16~29.
    [63] 张书农,环境水力学[M].南京:河海大学出版社,1988:146~147.
    [64] W.金士博,水环境数学模型[M].北京:中国建筑工业出版社,1987:11~16.
    [65] 傅国伟.河流水质数学模型及其模拟计算[M].北京:中国环境科学出版社,1987:10~11.
    [66] 水和废水监测分析方法[M].北京中国环境科学出版社,2002:274~541
    [67] 郝红伟,施光凯.Origin6.0实例教程[M].北京:中国电力出版社,2000:88~94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700