用户名: 密码: 验证码:
余姚市水资源优化调度关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东南沿海属于丰水地区,水资源总量相对丰富,但因经济发达、大口密度大,大均水资源占有量较低。另外,水环境污染问题较为突出,导致水质型缺水,目前长三角地区的16个城市都已经成为“水质型缺水城市”。本文分析了国内外关于水库群联合优化调度和平原河网水流水质计算的研究现状及发展趋势,针对存在的问题,以经济百强县—余姚市的水资源系统为背景,研究水库群优化调度模型探讨解决优质水短缺问题,通过河网水质模拟提出河网水质改善方案、计算水环境容量,以指导余姚市水资源优化配置。主要内容如下:
     (1)在分析余姚市和本文研究区水资源基本状况的基础上,分析了研究区的供水现状和水资源系统存在的问题,指出了余姚市水资源优化调度的必要性;并根据余姚市的现状调查分析,指出了余姚市水资源优化调度的可行性。
     (2)研究了两库联合优化调度技术方法。采用逐步优化算法和粒子群算法研究了“陆埠—梁辉”和“四明湖—牟山”两个水库群在现状工程能力约束和解除现状工程能力约束下的两库联合优化调度问题。优化调度过程中,采用多种技术方法的分步结合使用,先使用改进粒子群算法对系统进行初步优化,然后使用逐步优化算法进一步寻优。
     (3)研究了水库群联合优化调度技术方法。首先,利用大系统分解—协调方法研究了姚西北、姚中、姚东水库群在现状工程能力约束和解除现状工程能力约束下的水库群联合优化调度问题;然后,根据各水库需水情况采用自优化模拟技术逆时序递推得到各水库的调度运行规则;最后,采用随机模拟技术生成长系列入库流量,来验证调度运行规则控制条件下系统的运行情况。
     (4)研究了平原河网水质模型计算方法。首先,研究了用于河网宏观水环境管理的箱子模型和用于不同时间不同断面位置河网水环境管理的—维河网水流水质模型。然后,利用这两种模型对余姚平原河网的水环境改善方案进行分析计算,提出了河网水质改善的对策和措施;最后,利用两种模型分析计算余姚市各河网的水环境容量和剩余水环境容量。
     (5)集成开发了水资源优化调度决策支持系统。把两库联合优化调度模型、大系统分解—协调模型、水库群联合调度运行规则、箱子模型和—维河网水流水质模型进行系统集成,开发实现了余姚市水资源优化调度决策支持系统。
     最后对全文做了总结,并对有待于进—步研究的问题进行了展望。
Althouhg water resources are relatively rich in the southeastern costal area of China, the water resource quantity per capita is low due to high population density in the area. In addition, the water environment was polluted with the development of the local economy, resulting in pollution-induced water shortage in all of the16cities in Yangtze River Delta. The paper analysed the the research status and development trends in the area of reservoirs joint optimizing operation and water quality modeling for river networks. Taking Yuyao city—one of the Top100Counties in China, as the research background, the paper studied the reservoirs optimal operation model trying to solve the problem of high quality water shortage, proposed water quality improvement programmes for river networks, calculated the water environment capacity of the river networks in the research area through stuying and application of river flow and quality modeling, in order to conduct the optimal distribution of water resources in the city. The main research contents are as follows:
     (1) On the basis of analysis to the basic condition of the water resource in Yuyao City, pointed out the main problems of the water resources system and the research necessity of water resources optimal operation in the research area, stuyed the feasibility to carry out the optimal operation programme in Yuyao City.
     (2) Studied the methodologies of optimal operation for two-reservoir groups. Taking "Lubu-Lianghui" and "Siminghu-Moshan" reservoir groups as study cases, the author studed the optimal operation problems of the reservoir groups under the working conditions of current engineering capacity restraints and removing the current restraints with various optimization algorithms gradually. A new optimization algorithm, i. e. the improved particle swarm arithmetic combined with prograsive optimal algorithm, was proposed and proved to be practical and effective.
     (3) Studied the methodologies of joint optimal operation for reservoir groups. Firstly, studied reservoirs joint optimizing operation problems of different areas in Yuyao City under the working conditions with and without current engineering restraints with the help of large scale system decomposition and coordination method. Secondly, researched and obtained the operation rules for each reservoir by using the inverse timing recursive of self-optimization simulation model according to the water demands of each reservoir. Finally, verified the operation condition under the proposed operation rules by using long series inflow data created by the stochastic simulation technique.
     (4) Studied the water quality modolling methodologies for plain river networks. Firstly, the author studied the box model for marco-management of water environment of the river networks, and one-dimensional river flow and water quality coupling model for the specific management of water quality of the rivers. Secondly, proposed water quality improvement programmes and measures for the river networks by using the two modeling technologies. Finally, calculated and analyzed the water environment capacity and the remaining water environment capacity of each river networks of Yuyao City.
     (5) Designed and developed the decision support system of water resources optimal operation for Yuyao City by integrating the reservoirs joint optimizing operation methodologies, reservoir optimizing operation rules and the water quality modeling techniques.
     At last, the author summarized the full text, and prospected the problems for further research in the future.
引文
[1]谭维炎,刘健民,黄守信等.应用随机动态规划进行水电站水库的最优调度[J].水利学报,1982,7:1-7.
    [2]J.S. Windsor. Optimization model for reservoir flood control [J]. Water Resources Research,1973, 9(5):1103-1114.
    [3]伍宏中.水电站群补偿径流调节的线性规划模型及其应用[J].水力发电学报.1998(01):11-23.
    [4]李辉.红水河梯级水库群短期优化调度研究与应用[D].大连理工大学,2011.
    [5]Ikura Y, Gross G. Efficient large-scale hydro system scheduling with forced spill conditions. IEEE Transactions on Power Apparatus and Systems,1984, PAS-103(12):3502-3520.
    [6]龙子泉,卓四清.多年调节水电站水库长期优化调度新模型[J].武汉水利电力大学学报,1998.10,31(5):33-35.
    [7]Bellman R.E., Dreyfus S.E.. Applied dynamic programming [M]. Vol.7962:Princeton University Press Princeton, NJ,1964.
    [8]程春田,唐子田,李刚等.动态规划和粒子群算法在水电站厂内经济运行中的应用比较研究[J].水力发电学报.2008(06):27-31.
    [9]王德智,董增川,丁胜祥,供水库群的聚合分解协调模型[J].河海大学学报(自然科学版),2006.11,34(6):622-626.
    [10]陈鹏飞,顾世祥,谢波.分解协调技术在水资源大系统优化配置中的应用[J].中国农村水利水电,2006,(11):44-47.
    [11]杨侃,谭培伦,仲志余.三峡为中心的长江防洪系统优化调度网络分析法[J].水利学报,1997,(7):78-83.
    [12]罗强,宋朝红,雷声隆.水库群系统非线性网络流规划法[J].武汉大学学报,2001,34(3):22-26.
    [13]Hiew K. Optimazation algorithms for largee scale multi-reservoir hydropower system [M]. Collins, Colo Dept of Civil Engineering Colorado State Univ,1987.
    [14]Mizyed N., Loftis J. and Fontane D. Operation of large multireservoir systerms using optimal-control theory [J]. Journal of water Resourses Planning and Management,1992,118(4):371-387.
    [15]方强,王先甲.具有状态约束的最大值原理在水库调度中的应用[J].自动化学报,2006,32(5):767-773.
    [16]申晓东,钟德钰,吴腾.基于最优控制理论的水库排沙调度优化研究[J].水力发电学报,2010.4,29(4):70-76.
    [17]Holland J H. Adaptation in Nature and Artificial Systems. MIT Press,1992.
    [18]马光文,王黎.遗传算法在水电站优化调度中的应用[J].水科学进展,1997,(3):275-280.
    [19]邹进,张友权.梯级水库优化调度中的矩形体遗传算法[J].水力发电学报,2012.2,31(1):27-31.
    [20]尹正杰,胡铁松,吴运卿.基于多目标遗传算法的综合利用水库优化调度图求解[J].武汉大学学报(工学版),2005.12,38(6):40-44.
    [21]陈立华,梅亚东,麻荣永.并行遗传算法在雅砻江梯级水库群优化调度中的应用[J].水力发电学报,2010.12,29(6):66-70.
    [22]Colorni A., Dorigo M., Maniezzo V. Distributed optimization by ant colonies [C]. Proceedings of ECAL91-European Conference on Artificial Life. Paris, France:1991,134-142.
    [23]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents [C]. IEEE Transactions on Systems, man, and Cybernetics-Part B:Cybernetics,1996,26(1):29-41.
    [24]D.X. Gong, X.G. Ruan. A hybrid approach of GA and ACO for TSP. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China,2004, (3):2068-2072.
    [25]G.M. Kumar, A.N. Haq. Hybrid genetic-ant colony algorithms for solving aggregate production plan. Journal of Advanced Manufacturing Systems,2005,4(1):103-111.
    [26]赵杰,董增川,王德智等.遗传蚁群混合算法在水电站优化调度中的应用[J].水电能源科学,2008.10,26(5):132-134.
    [27]原文林,黄强,万芳.基于免疫进化的蚁群算法在梯级水库优化调度中的应用研究[J].西安理工大学学报,2008,24(4):395-400.
    [28]万芳,邱林,黄强.水库群供水优化调度的免疫蚁群算法应用研究[J].水力发电学报,2011.10,30(5):234-239.
    [29]申建建,程春田,廖胜利等.基于模拟退火的粒子群算法在水电站水库优化调度中的应用[J].水力发电学报,2009.6,28(3):10-15.
    [30]郭旭宁,胡铁松,黄兵等.基于模拟-优化模式的供水水库群联合调度规则研究[J].水利学报,2011.6,42(6):705-712.
    [31]张俊,程春田,廖胜利,张世钦.改进粒子群优化算法在水电站群优化调度中的应用研究[J].水利学报,2009.4,40(4):435-440.
    [32]陈立华,朱海涛,梅亚东.并行粒子群算法及其在水库群优化调度中应用[J].广西大学学报:自然科学版,2011.8,36(4):677-681.
    [33]Eberhart R C, Shi Y. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization [C]. Proceedings of the Congress on Evolutionary Computation,2000,84-88.
    [34]Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients [C]. IEEE Transactions on Evolutionary Computation, 2004,8(3):240-255.
    [35]李安强,王丽萍,蔺伟民等.免疫粒子群算法在梯级电站短期优化调度中的应用[J].水利学报,2008.4,39(4):426-431.
    [36]彭勇,梁国华,周惠成.基于改进微粒群算法的梯级水库群优化调度[J].水力发电学报,2009.8,28(4):49-55.
    [37]王星博,李本威,李泽辉.一种基于生物趋化的改进粒子群算法[J].海军航空工程学院学报,2012,27(1):89-93.
    [38]黄炜斌,马光文,王和康等.混沌粒子群算法在水库中长期优化调度中的应用[J].水力发电学报,2010,29(1):102-104.
    [39]原文林,万芳,吴泽宁等.梯级水库发电优化调度的改进粒子群算法应用研究[J].水力发电学报,2012.4,31(2):33-37.
    [40]畅建霞,黄强,王义民.基于改进BP网络的西安供水水库群优化调度函数的求解方法[J].西安理工大学学报,2001,17(2):169-173.
    [41]刘攀,郭生练,张文选等.梯级水库群联合优化调度函数研究[J].水科学进展,2007.11,18(6):816-822.
    [42]吴佰杰,李承军,查大伟.基于改进BP神经网络的水库调度函数研究[J].大民长江,2010,41(10):59-62.
    [43]纪昌明,苏学灵,周婷等.梯级水电站群调度函数的模型与评价[J].电力系统自动化,2010.2,34(3):33-37.
    [44]贾仁甫,陈守伦,梁伟.基于混沌优化算法的混联水电站群长期优化调度[J].水利学报,2008.9,39(9):1131-1135.
    [45]梁伟,陈守伦,刘德有等.变尺度混沌优化算法在梯级水电站水库优化调度中的应用[J].水力发电学报,2008.12,27(6):8-12.
    [46]芮钧,梁伟,陈守伦等.基于变尺度混沌算法的混联水电站水库群优化调度[J].水力发电学报,2010,29(1):66-71.
    [47]陈守煜.可变模糊集理论与模型及其应用[M].大连:大连理工大学出版社,2009.
    [48]龙军,秦雅.基于模糊理论和遗传算法的梯级水电站短期优化调度[J].广西大学学报(自然科学版),2011,36(2):314-319.
    [49]李岳生,杨世孝,肖子良.网河不恒定流隐式方程组的稀疏矩阵解法[J].中山大学学报(自然科学版),1977:27-37.
    [50]张二骏,张东生,李挺.河网非恒定流的三级联合解法[J].华东水利学院学报,1982,10(1):1-13.
    [51]Schulze K W. Finite Element Analysis of Long Waves in open Channel Systems [G]. Finite Element Method in Flow Problems. Chapter 5, Ed.By Oden J T et al., the Univ.Of Alabama Pxess,1974: 295-303.
    [52]吴寿红.河网非恒定流四级解法[J].水利学报,1985,(8):42-50.
    [53]李义天.河网非恒定流隐式方程组的汊点分组解法,水利学报,1997,(3):49-57.
    [54]Naidu B J, Murty Bhallamudi S, and Narasimhan S. GVF Computation in tree-type channel Networks [J]. J.Hydr Engrg,1997, (8):700-708.
    [55]CUNGE J A. Unsteady flow in open channels [M]. New York:Water Resources Publications,1975, 705-761.
    [56]金忠青.平原河网水量计算及参数率定[J].水动力学研究与进展(A辑),1991,6(增刊):39-45.
    [57]韩龙喜,张书农.复杂河网非恒定流计算模型单元划分法[J].水利学报,1994,(2):52-56.
    [58]Ngo L L, Madsen H, Rosbjerg D, et al. Implementation and comparison of reservoir operation strategies for the Hoa Binh reservoir, Vietnam using the MIKE11 model [J]. Water Resources Management,2008,22 (4):457.
    [59]Neto J M, Flindt M R, Marques J C, et al. Modelling nutrient mass balance in a temperate mesotidal estuary:implications for management [J]. Estuar ine Coastal and Shelf Science,2008,76(1):175.
    [60]Usul N, Turan B. Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems [J]. Natural Hazards,2006,39 (2):213.
    [61]徐祖信,卢士强.平原感潮河网水质模型研究[J].水动力学研究与进展,2003,18(2):182.
    [62]徐祖信,卢十强,林卫青.苏州河干流防洪水位的数值计算[J].河海大学学报:自然科学版, 2006,34(2):148
    [63]王庆改,赵晓宏,吴文军等.汉江中下游突发性水污染事故污染物运移扩散模型[J].水科学进展,2008,19(4):500.
    [64]Zhu Y P, Zhang H P, Chen L, et al. Influence of the SouthNorth Water Diversion Project and the mitigation projects on the water quality of Han River [J]. Science of the Total Environment,2008, 406(122):57.
    [65]Danish Hydraulic Institute (DHI). MIKE11:a modelling system for rivers and channels, reference manual [R]. Danmark:DHI,2007.
    [66]朱玉龙,徐宗学,王国强等.缺资料地区河道水动力模拟-以卫河为例[J].北京师范大学学报(自然科学版),2010,46(3):378-382.
    [67]Maurice Sydor. One-dimensional hydrodynamic model computer manual [R]. Environment Canada Water Modelling Section Report, February 1988,1-19.
    [68]吴浩云.杭嘉湖地区洪水演进水动力学模型研究[J].水科学进展,1998,9(3):265-268.
    [69]林荷娟,吴浩云.加拿大河网水动力学模型在望虞河的应用[J].湖泊科学,1999,11(3):219-224.
    [70]Us Army Corps of Engineers HEC. HEC-RAS River Analysis System Hydraulic Reference Manual [R]. Davis, California, USA,2002.
    [71]张行南,彭顺风.平原区河段洪水演进模拟系统研究与应用[J].水利学报,2010,41(7):803-809.
    [72]KARNEY Bryan W. Ice Jams in A Small River and The HEC-RAS Modeling [J]. Journal of Hydrodynamics (Ser.B),2005,17(2):127-133.
    [73]苏铭德,徐昕,朱锦林等.数值模拟在钱塘江涌潮分析中的应用-数值计算方法[J].力学学报,1999,31(5):521-533.
    [74]苏铭德,徐昕,朱锦林等.数值模拟在钱塘江涌潮分析中的应用-计算结果分析[J].力学学报,1999,31(6):700-716.
    [75]Pan Cunhong, Dai Shiqiang, Chen Senmei. Numerical Simulation for 2D Shallow Water Equations by Using Godunov2type Scheme with Unstructured Mesh [J]. Journal of Hydrodynamics (Ser.B),2006, 18 (4):475-480.
    [76]潘存鸿.三角形网格下求解二维浅水方程的和谐Godunov格式[J].水科学进展,2007,18(2)204-209.
    [77]龚春生,姚琪,范成新等.含内源污染平面二维水流水质耦合模型[J].水利学报,2006,37(2)205-209.
    [78]谭维炎.计算浅水动力学-有限体积法的应用[M].北京:清华大学出版社,1998.
    [79]王志力,耿艳芬,金生.具有复杂计算域和地形的二维浅水流动数值模拟[J].水利学报,2005,36(4):129.
    [80]林炳尧,黄世昌,毛献忠等.钱塘江河口潮波变化过程[J].水动力研究与进展(A辑),2002,17(6):665-675.
    [81]TIM A W, ROBERT B A, JAMES LM, et a.l Water quality analysis simulation program (WASP) version 610 draft:userpsmanual [M]. Atlanta:US Environmental rotection Agency, MS Tetre Tech, 2001.
    [82]Hwang Jin Young, Kim Young Do, Noh Joon WooA. Study on Water Quality Modeling of Seonakdong River Using CE-QUAL-RIV1 [C]. Proceedings of 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS,2008,705-709.
    [83]US Army Corps of Engineers, Hydrologic Engineering Center. Water Quality for River-Reservoir Systems (WQRRS) [R]. Users Manual. Reved. California:CPDO8, Davis,1985.
    [84]Davis J E,Holland J P, Schneider M L, et al. SELECT:A Numerical One-Dimensional Model for Selective Withdrawal [R]. In:Instruction Report EO87O2. Vicksburg,MS:US Army Engineer Waterways Experiment Station,1987.
    [85]刘伟,刘洪超,徐海岩.基于MIKE11模型计算河流水功能区纳污能力方法[J].东北水利水电,2009,(8):69-72.
    [86]王庆改,赵晓宏,吴文军等.汉江中下游突发性水污染事故污染物运移扩散模型[J].水科学进展,2008,19(4):500-504.
    [87]卢士强,徐祖信,罗海林等.上海市主要河流调水方案的水质影响分析[J].河海大学学报(自然科学版),2006,34(1):32-36.
    [88]褚君达,徐惠慈.河网水质模型及其数值模拟[J].河海大学学报,1992,20(1):16-22.
    [89]韩龙喜,朱党生.河网地区水环境规划中的污染源控制方法[J].水利学报,2001,(10):28-31.
    [90]金忠青,韩龙喜.一种新的河网水质模型-组合单元水质模型[J].水科学进展,1998,9(1):35-40.
    [91]韩龙喜,蒋莉华,朱党生.组合单元水质模型中的边界条件及污染源项反问题[J].河海大学学报(自然科学版),2001,29(5):23-26.
    [92]韩龙喜.河网地区水力水质特性的组合单元解法及反问题研究[D].南京:河海大学,1998.
    [93]徐一剑,曾思育,张天柱.基于不确定性分析框架的动态环状河网水质模型——以温州市温瑞塘河为例[J].水科学进展,2005,16(4):574-580.
    [94]吴挺峰,周锷,崔广柏,等.河网概化密度对河网水量水质模型的影响研究[J].大民黄河,2006,28(3).46-48.
    [95]张荔,孙程,林金辉,等WASP6水质模型在渭河流域水环境容量解析中的应用[J].水资源与水工程学报,2006,17(6):12-14.
    [96]孙文章,曹升乐,徐光杰.应用WASP对东昌湖水质进行模拟研究[J].山东大学学报(工学版),2008,38(2):83-85,100.
    [97]史铁锤,王飞儿,方晓波.基于WASP的湖州市环太湖河网区水质管理模式[J].环境科学学报,2010,30(3):631-640.
    [98]彭勇,中长期水文预报与水库群优化调度方法及其系统集成研究[D].大连:大连理工大学,2007.
    [99]邓显羽,余姚市水库(群)优化调度方法研究及应用[D].大连:大连理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700