用户名: 密码: 验证码:
非点源污染负荷的水环境影响及其定量化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合国家自然科学基金项目——“农业面源污染负荷的产生及土壤背景参数的影响(49973029)”和近三年来所从事的科研及生产课题,对农业非点源营养类污染因子磷素和氮素在土壤环境和受纳水体环境中的迁移转化规律,农业非点源污染负荷及城市非点源污染负荷的定量化评价方法、非点源污染负荷对地表水体和地下水体的环境影响进行了较系统深入的研究,提出了相应的定量化评价方法。一定的土壤背景参数影响下的营养源(N、P)潜在流失量预测模型;建立了平原河网区农业非点源污染负荷模型、城市非点源污染负荷模型;一维平原河网地表水水质响应模型、一维垂向渗透地下水水质响应模型。本论文的主要成果有:
     1、土壤背景参数对土壤中营养类污染物磷素和氮素的流失性影响分析
     近年来,由于人工神经网络在非线性拟合方面的优势,使其在复杂系统的模拟中的应用越来越广泛。本文将此方法首次应用于对土壤中非点源营养类污染物磷素的潜在流失量预测,提出多变量插值的径向基函数(RBF)较之环境模拟中常用的反向传播网络(BP)在土壤磷素的流失性预测方面具有更好的拟合性。
     2、非点源污染负荷定量化评价方法:
     (1)建立了城市径流污染负荷模型。模型考虑了城区土地利用的不同类型、街区非点源污染负荷的积累速率、干旱期污染负荷在雨水管网中的沉降过程,并分别建立了干旱期非点源沉降过程模拟模型、暴雨期径流过程的非点源模拟模型、污水管网非点源排放过程模拟模型,公式概念清晰,计算方便。
     (2)建立了平原河网区农田径流污染负荷模型。模型考虑旱地径流、旱作径流、稻田排水、稻田渗漏等不同的土地利用类型下径流污染负荷特征,首次将产、汇流理论中陆域宽度的概念应用于农业非点源污染负荷的时、空分配,算例证明这种非点源污染负荷的分配方法对提高水质模型的预测精度有明显效果,为水质模型的实时预报提供了理论基础。
     3、非点源污染负荷对地表及地下水环境的影响
     (1)将水质分析模拟程序(WASP5)成功地应用于平原河网营养源污染物质组分的模拟及预测,并对模型作了进一步的改进和完善:将一维河网水量模型与水质分析模拟模型中的水质模拟模块相耦合,水质分析模拟模型与污染负荷模型相耦合,使水质模拟更方便、更具可操作性。
     (2)建立了非点源污染负荷影响下的一维垂向渗透地下水水质响应模型,利用多孔介质中物质运移的基本理论推导了上述公式,利用实测资料进行了模型的验证和回灌区非点源对地下水的水环境影响分析。
Based on the National Natural Science Foundation Program, the Produce of Non-point Source(NPS) Pollutant Load and the Influence of the Background Parameters of Soil (49973029) and the relative research work and production projects recently, this paper made systematic studies on the transportation and transformation principles of phosphorous and nitrogen from agricultural NFS in soil and receiving water, quantitative approaches for agricultural and urban NFS pollutant load assessment, and the effects of NFS pollutant load on surface and groundwater. And the corresponding quantitative methods were presented. Models developed in this paper are: agricultural NFS pollutant loading model in river plain area, urban NFS pollutant loading model; one-dimension surface water receiving model, one-dimension groundwater receiving model on vertical penetration, and one prediction model for nutrient loss with the influence of background parameters of soil. The details are as following:
    1. The influences of background parameters of soil on the loss of nutrient in soil
    Recently, the Artificial Neural Network (ANN) has been used excessively in complex systems because of its advantages in nonlinear equating. This approach was first used in analysis and determination of background parameters affecting the loss of nutrient factor in soil and the potential loss of nutrient from soil.
    2. Quantitative approaches for NFS pollutant loading assessment
    (1) Pollutant loading model for urban runoff was developed. Simulation models for sedimentation of NFS in dry season, NFS from storm runoff process, and discharge process of NFS from sewer were established with respect to urban land use, accumulation rate of NFS pollutant loading from streets, and sedimentation of pollutant load during dry season in storm drain. And different formulae might be applied in different NFS.
    (2) Pollutant loading model for agricultural runoff was developed. The basic theories of runoff producing and confluence were used in spatial and temporal distribution of rural NFS pollutant load for the first time, considering characteristics of runoff pollutant load occurring in various land uses. Calibration was completed using experimental data and receiving water models. The results showed that the applied method might improve the prediction accuracy of water quality model.
    3. The effects of NFS pollutant load on surface water and groundwater
    (1) Water quality modeling program (WASPS) was applied successfully to simulate and predict pollutant constituents of nutrient sources in river plain. Using one-dimension water net work quantity model, coupled with one part (water quality modeling) of water quality simulating model, and combining water quality simulating model with pollutant loading model can make it more easy and accessible to simulate water quality. Thus, this program was improved.
    (2) One-dimension groundwater quality model on vertical penetration with the influence of NFS pollutant load was developed. Based on the primary theories of mass transportation in porous media, the related formulae were derived. And this model was calibrated using the measured data.
引文
[1] Lee S I. Nonpoint source pollution[J] Fisheries, 1979, (2): 50-52.
    [2] Novotny V and Olem H. Water quality, prevention, identification and management of diffuse pollution. New York: Van Nostrand Reinhold Reinhold Company, 1993, (2).
    [3] Lai R Editor 2nd edition. Soil erosion research methods, Soil and Water Conservation Society. Iowa: Ankeny, 1994:344.
    [4] US EPA. National water quality inventory. Report to Congress Executive Summary. Washington DC: USEPA, 1995: 497.
    [5] 彭奎,朱波.试论农业养分的非点源污染与管理.环境保护,2001,(1):15-17.
    [6] Griffin Jr R. Introducing NPS water pollution. EPA Journal Nov. / Dec., 1991: 6-9.
    [7] Southwick L M et al.. Runoff losses of norflurazon: effect of runoff timing. J. Agric. Food Chem., 1993, 41: 1503-1511.
    [8] Line D F, Osmand D L et al., Non-point sources. Water Environment Research, 1994, 66(4):585-601.
    [9] 贺缠生,等.非点源污染的管理及控制,环境科学.1998,19(5).
    [10] Kronvang B., et al., Diffuse Nutrient Losses in Denmark. Water Sci. Technol. (G. B.), 33: 81(1996).
    [11] Boers, P. C. M.. Nutrient Emission from Agriculture in the Netherlands: Causes and Remedies. Water Sci. Technol. (G. B.), 33:183 (1996).
    [12] 鲍全盛,曹利军,等.密云水库非点源污染负荷评价研究.水资源保护,1997,(1):8-11.
    [13] 杨苏树,倪喜云.大理州洱海流域农业非点源污染现状.农业环境与发展,1999,(2):43-44.
    [14] 蒋晓辉.滇池面源污染及其综合治理.云南环境科学,2000,(12):33-34.
    [15] USEPA. Liquid assets: a summer time perspective on the importance of clean water to the Nation's Economy. Office of Water, Washington DC, USEPA, 1996: 23.
    [16] 杨佑兴.倾听巢湖诉说.中国环境报,1996年9月10日.
    [17] 陆旸.太湖有个难解的“结”.中国环境报,1996年4月10日.
    [18] 张玉良,农业化学与生物圈.Water Resource Research,1979:15:139-147.
    [19] 世界资源环境研究所、联合国环境规划署、联合国开发计划署编.世界资源报告(1992-1993),北京:中国环境科学出版社,1993.
    [20] 易秀,等.氮肥在土中的渗漏污染研究,农业环境保护,1993,12 (6):50-52.
    [21] 李庆龙.全国重点环境考核城市地下水污染概况及防治对策.地下水,1992,14 (1):2-4,5.
    [22] 吕耀.苏南太湖流域农业非点源污染及农业持续发展战略.环境科学动态,1998,(2):1-4.
    [23] 陶为民.化学氮肥的损大危害及其防治措施.农业环境保护,1985,4 (5):30-32.
    [24] Helting, L., J., et al. Genesee River Pilot Watershed Study-Summary Pilot Watershed Report. International Joint Commission, Windsor, Ontario, Canada., 1978.
    [25] Chesters G., et al. Pilot Watershed Studies Summary Report. International Joint Commission, Windsor, Ontario, Canada., 1978.
    [26] Verhoff, F. H., and Melfi, D. A. Total Phosphorous Transport During Storm Events. Jour. Environ. Eng. Div. Amer. Soc. Civil Eng., 104:1021 (1978).
    [27] Wiley, R. G. and Hoff, D. Chattahochee River Water Quality Analysis and Data Requirement for Water Quality Management Models. Svannah District Corps of Engineers, Savannah, Georgia, 1978.
    [28] Knieel W. G. CREAM: A Field-scale Model for Chemicals Runoff and Erosion from Agricultural Management System. Proc. 13th Conf. Modeling and Simulation, 1982, 4, April.
    [29] Young R. A. et al., AGNPS: A Non-point-source Pollution Modeling for Evaluation Agricultural Watersheds. J. of Soil and Water Conservation, 1989, March-April.
    
    
    [30] Lane L. J. et al., The Water Erosion Prediction Project: Model Overview. In Proc. Nau. Water Conf. ASCE., 1989.
    [31] Beasley, D. B. Applying Distributed Parameter Modeling Techniques to Watershed Hydrology and Nonpoint Source Pollution. Proc. 13th Conf. Modeling and Simulation, 1982, 4, April.
    [32] Jackson T. J., and Rawla, W. J. SCS Curve Numbers from a Landset Data Base. Water Resour. Bull., 1981, 17: 857.
    [33] Thomas, A. W., et al., Quantifying Concentrated-Flow Erosion on Cropland with Arial Photogrammerry. J. Soil Water Conserv., 41: 249 (1986).
    [34] Spooner, J., et al. Determining the Statistical Sensitivity of the Water Quality Monitoring Program in the Taylor Creek-Nubbin Slough, Florida Project. J. Lake Reservoir Manage., 4: 113 (1988).
    [35] Logan, T. J., et al. Erosion Control Potential with Conservation Tillage in the Lake Erie Basin: Estimate Using the Universal Soil Loss Equation and the Land Resource Information System (LIRS). J. Soil Water Conserv., 37:50 (1982).
    [36] Gilliland, M. W., and Baster-Potter, W. A Geographic Information System to Predict Non-point Source Pollution Potential. Water Resour. Bull., 23:281 (1987).
    [37] Vanek, V. Riparian Zone as a Source of Phosphorous for a Groundwater-Dominated Lake. Water Res. (G. B.), 25: 409 (1991).
    [38] Daniel, E., et al. Nonpoint Sources. Water Environment Research. 65 (4). 1. Auer, M. T., and Niebass, S. L. Modeling Fecal Coloform Bacteria - I. Field and Laboratory Determination of Loss Kinetics. Water Res., (G B.), 1993, 27: 693 (1993).
    [39] Obrador A., et al. Simulation of Atragine Persistence in Spanish Soil Pestic. Sci., 37: 301 (1993).
    [40] Hayboe, H. N., et al. Estimating Snowmelt Runoff Erosion Indices for Canada. J. Soil Water Conserv., 50: 174 (1995).
    [41] Lowance, R., et al. A Conceptual Model for Assessing Ecological Risk to Water Quality. Environ. Manage., 19: 239 (1995)
    [42] Line, D. E. and Coffey, S. W. Targeting Critical Areas with Pollutant Runoff Models and CIS. ASAE Paper #922015, Am. Soc. Agric. Eng., St. Joseph. Mich., 1992.
    [43] Xiang, W. Application of a CIS-based Stream Buffer Generation Model to Environmental Policy Evaluation. Environ. Manage., 17: 817 (1993).
    [44] Recknagel, F. et al. Hybrid Expert System DELAQUAO-a Toolkit for water Quality Control of Lakes and Reservoirs. Ecol. Modeling., 71:17 (1994).
    [45] Yoder, D., and Lown J. The Future of RUSLE, Inside the New Reviewed Universal Soil Loss Equation. J. Soil Water Conserv., 50: 484 (1995).
    [46] USEPA. 1992. Compendium of watershed-scale Models for TMDL Development. EPA841-R-92-002. U.S. Environmental Protection Agency, Office of Water, Washington, D. C.
    [47] McElroy, A. D., S. W. Chiu, J. W. Nabgen, A. Aleti, R. W. Bennett. 1976. Loading functions for assessment of water pollution for non-point sources. U. S. Environmental Protection Agency. EPA 600/2-76/151 (NTIS PB-253325).
    [48] Mills, W. B. 1985. Water quality assessment: A screening procedure for toxic and conventional pollutants in surface and ground water. Part 1. Environmental Research Laboratory, U. S. Environmental Protection Agency, Athens, GA. EPA/600/6-85/002a.
    [49] Schueler, T. 1987. Controlling urban runoff: A practical manual for planning and designing urban BMPs. Metropolitan Washington Council of Govemments, Washington, DC.
    [50] Tasker, G. D., and N. E. Driver. 1988. Nationwide regression models for predicting urban runoff water quality at unmonitored sites. Water Resource Bulletin 24(5):1091-1101.
    
    
    [51] Tim, U. S., and R. Jolly. 1994. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model. Journal of Environmental Quality 23:25-35.
    [52] Walker, J. F., S. A. Pickard, and W. C. Sonzogni. 1989. Spreadsheet watershed modeling for nonpoint-source pollution management in a Wisconsin basin. Water Resources Bulletin 25(1): 139-147.
    [53] Federal Highway Administration, 1990. Pollutant loadings and impacts from highway stormwater runoff Research, Development, and Technology. U. S. Department of Transportation, McLean, VA.
    [54] Camp, Dresser, and McKee (CDM). 1992. Watershed Management Model user's manual, version 2.0. Prepared for the Florida Department of Environmental Regulation, Tallahassee, FL.
    [55] Pantalion, J., A. Scharlach, and G. Oswald. 1995. Water quality master planning in an urban watershed. Watershed Management: Planning for the 21st Century. Proceedings of the ASCE's First International Conference of Water Resources Engineering, held in San Antonio, TX, August 14-16, 1995. pp.330-339.
    [56] Dillaha, T. A. 1992. Nonpoint source modelling for evaluating the effectiveness of best management practices. NWQEP Notes 52(March):5-7.
    [57] Omicron Associates. 1990. Nonpoint Pollution Source Model for Analysis and Planning (NPSMAP)-Users manual. Omicron Associates, Portland, OR.
    [58] Haith, D. A., R. Mandel, and R. S. Wu. 1992. GWLF- Generalized Watershed Loading Functions, Version 2.0-User's manual. Department of Agricultural Engineering, Cornell University, Ithaca, NY.
    [59] Haith, D. A., and L. L. Shoemaker. 1987. Generalized watershed loading functions for stream flow nutrients. Water Resources Bulletin 107(EEI):121-137.
    [60] Palmstrom, N., and W. W. Walker, Jr. 1990. P8 urban catchment model: User's guide, Program documentation, and evaluation of existing models, design concepts, and Hunt-Potowomut data inventory. The Narragansett Bay Project Report No. NBP-90-50.
    [61] Terstriep, M. L., M. T. Lee, E. P. Mills, A. V. Greene, and M. R. Rahman. 1990. Simulation of urban runoff and pollutant loading from the greater Lake Calumet area. Prepared by the Illinois State Water Survey for the U. S. Environmental Protection Agency, Region V, Water Division, Watershed Management Unit, Chicago, IL.
    [62] Young, R. A., C. A. Onstad, D. D. Bosch, and W. P. Anderson. 1989. AGNPS: A nonpoint-source pollution model for evaluating agriculture watersheds. Journal of Soil and Water Conservation 44:168-173.
    [63] Panuska, J. C., I. D. Moore, and L. A. Kramer. 1991. Terrain analysis: Integration into the agricultural nonpoint source (AGNPS) pollution model. Journal of Soil and Water Conservation 46(1): 59-64.
    [64] Addiscott, T. M., and R. J. Wagenet. 1985. Concepts of solute leaching in soils: A review of modeling approaches. Journal of Soil Science 36: 411-424.
    [65] Nix, J. S. 1991. Applying urban mnoffmodels. Water Environment and Technology, June 1991.
    [66] Beasley, D. B. 1986. Distributed parameter hydrologic and water quality modeling. Agricultural Nonpoint Source Pollution: Model Selection and Application. ed. Giorgini and F. Zingales. pp. 345-362.
    [67] Brabets, T. P. 1986. Quantity and quality of urban runoff from the Chester Creek Basin, Anchorage, Alaska. Water Resources Investigations Report 86-4312. U. S. Geological Survey. Denver, CO.
    [68] Lindner-Lunsford, J. B., and S. R. Ellis. 1987. Comparison of conceptually based and regression rainfall-runoff models, Denver Metropolitan Area, Colorado. and potential applications in urban areas. Water Resources Investigations Report 87-4104. U. S. Geological Survey. Denver, CO.
    [69] Guay. J. R. 1990. Simulation of urban runoff and river water quality in the San Joaquin River near Fresno, California. In Symposium Proceedings on Urban Hydrology. American Water Resources Association, Denver, Colorado, November 4-8, 1990, pp. 177-182.
    
    
    [70] Arnold, J. G., J. R. Williams, A. D. Nicks, and N. B. Sammons. 1989. SWRRB, a basin scale simulation model for soil and water resources management. Texas A & M Press.
    [71] Donigian, A. S., and W. C. Huber. 1991. Modeling of nonpoint source water quality in urban and non-urban areas. U. S. Environmental Protection Agency. EPA/600/3-91/039.
    [72] Arnold, J. G., B. A. Engel, and R. Srinivasan. 1993. A continuous time, grid cell watershed model. In: Proceedings of Application of Advanced Information Technologies for the Management of Natural Resources. Sponsored by ASAE, June 17-19, 1993, Spokane, Washington.
    [73] Srinivasan, R., and J. G. Arnold. 1994. Integration of a basin-scale water quality model with GIS. Water Resources Bulletin 30(3):453-462.
    [74] Huber, W. C. and R. E. Dickinson. 1988. Storm Water Management Model Version 4, User's manual. U. S. Environmental Protection Agency, Athens, GA. EPA/600/3-88/001a (NTIS PB88-236641/AS).
    [75] Bicknell, B. R., J. C. Imhoff, J. L. Kirtle, A. S. Donigian, and R. C. Johanson. 1993. Hydrological Simulation Program-FORTRAN (HSPF): User's manual for release 10.0. Environmental Research Laboratory, U. S. Environmental Protection Agency, Athens, GA. PA 600/3-84-066.
    [76] Donigian, A. S. Jr., B. R. Bicknell, L. C. Linker, J. Hannawald, C. Chang, and R. Reynolds. 1990. Chesapeake Bay Program Watershed Model application to calculate bay nutrient loadings: Preliminary Phase I findings and recommendations. Prepared by AQUA TERRA consultants for the U. S. Chesapeake Bay Program, Annapolis, MD.
    [77] Donigian, A. S. Jr., and A. S. Patwardhan. 1992. Modeling nutrient loadings from croplands in the Chesapeake Bay Watershed. In Proceedings of Water Resources sessions at Water Forum '92. Baltimore, Maryland. August 2-6, 1992. pp. 817-822.
    [78] Moore, L. W., C. Y. Chew, R. H. Smith, and S. Sahoo. 1992. Modeling of Best Management Practices on North Reelfoot Creek, Tennessee. Water Environment Research 64(3):241-247.
    [79] Scheckenberger, R. B., and A. S. Kennedy. 1994. The use of HSPF in subwatershed planning. In Current practices in modelling the management of stormwater impacts. W. James (ed). Lewis Publishers, Boca Raton, FL. p. 175-187.
    [80] Ball, J. E., M. J. White, G. de R. Innes, and L. Chen. 1993. Application of HSPF on the Upper Nepean Catchment. In Proceedings of Hydrology and Water Resources Symposium. Newcastle, New South Wales, Australia. June 30- July 2, 1993, pp 343-348.
    [81] Lumb, A. M., J. L. Kirtle, and K. M. Flynn. 1990. Users manual for ANNIE, A computer program for interactive hydrologic analyses and data management. Water Resources Investigations Report 89-4080. U. S. Geological Survey, Reston, VA.
    [82] Lumb, A. M., and J. L. Kittle. 1993. Expert System for calibration and application of watershed models. In Proceedings of the Federal Interagency Workshop on Hydrologic Modeling Demands for the 90's. U. S. Geological Survey Water Resources Investigation Report 93-4018. Fort Collins, Colorado, June 6-9, 1993.
    [83] USEPA. 1992. National Water Quality Inventory. 1990 Report to Congress. EPA 503/9-92/006. U. S. Environmental Protection Agency, Office of Water, Washington, D. C
    [84] USEPA. 1994a. National Water Quality Inventory. 1992 Report to Congress. EPA 841-R-94-001. U. S. Environmental Protection Agency, Office of Water, Washington, D. C.
    [85] Vollenweider, R. A. 1968. Scientific fundamentals of the eutrophication of lakes and fiowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Technical Report DAS/CSI/68.27, Organization for Economic Cooperation and Development, Paris.
    [86] Hutchinson, G. E. 1973. Eutrophication. The scientific background of a contemporary practical problem. American Sci.. 61: 269-279.
    [87] Wetzel, R. G, 1983. Limnology. 2nd ed. Saunders College Publishing. Fort Worth, TX.
    
    
    [88] Cooke, G. D. and R. E. Carlson. Water quality management in a drinking water reservoir. Lake and Reservoir Management. 2:363-371.
    [89] Cooke, G. D., E. B. Welch, A. B. Martin, D. G. Fulmer, J. B. Hyde, and G. D. Schrieve. 1993. Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes. Hydrobiologia. 253: 323-335.
    [90] van der Molen, D. T. and P. C. M. Boers. 1994. Influence of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiologia. 275/76:379-389.
    [91] Chapra, S., and R. P. Canale. 1991. Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water Research. 25(6):707-715.
    [92] Walker, W. W., 1985. Empirical methods for predicting eutrophication in impoundments; Report 3, Phase Ⅲ: Model Refinements. Technical Report E-81-9, U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
    [93] Walker, W. W., 1986. Empirical methods for predicting Eutrophication in Impoundments; Report 4, Phase Ⅱ: Applications Manual. Technical Report E-81-9, U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
    [94] Ernst, M. R., W. Frossard, and J. L. Mancini. 1994. Two eutrophication models make the grade. Water Environment and Technology, November. p. 15-16.
    [95] Cole, R. W., and E. M. Buchak. 1995. CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model. Version 2.0 Instructional Report EL-95-1, U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
    [96] Cerco, C. F., and T. Cole. 1995. User's Guide to the CE-QUAL-ICM. Release Version 1.0. Technical Report. EL-95-1. U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
    [97] Johnson, B. L., W. B. Richardson, and T. J. Naimo. Past, Present, and Future Concepts in Large River Ecology. BioScience. 45(3): 134-141.
    [98] Brown, L. C., and T. O. BarnweU. 1987. The enhanced stream water quality model QUAL2E and QUAL2E-UNCAS: Documentation and user manual. EPA600/3-87/007, USEPA, Athens, GA 30605.
    [99] Kuo, A. Y., and B. J. Neilson. 1988. A modified tidal prism model for water quality in small coastal embayments. Water Science Technology. 20(6/7): 133-142.
    [100] Cerco, C. F. and T. Cole. 1993. Three-dimensional eutrophication model of the Chesapeake Bay. Journal of Environmental Engineering. 119(6): 1006-1025.
    [101] Olson, R. K. (Ed). 1993. Created and natural wetlands for controlling nonpoint source pollution. U. S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. 216 pp.
    [102] Hammer D. A. 1989. (Ed). Constructed Wetlands for Wastewater Treatment. Lewis Publishers, Chelsea, Michigan. 831 pp.
    [103] Moshiri, GA. 1993. Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton, FL. 632 pp.
    [104] van der Valk, A. G. and Jolley. 1992. Recommendations for research to develop guidelines for the use of wetlands to control rural nonpoint source pollution. Ecological Engineering 1 (1992): 115-134.
    [105] Bowden, W. B. et al. 1991. Transport and Processing of nitrogen in a Tidal Freshwater Wetland. Water Resources Research. 27(3):389-408.
    [106] Landers, J. C. and B. A. Knuth. 1991. Use of Wetlands for Water Quality Improvement under the USEPA Region V Clean Lakes Program. Environmental Management 15(2): 151-162.
    [107] Johnston, C. A. 1989. Human impacts to Minnesota wetlands. J. of Minneapolis Academy of Sciences. 55: 120-124.
    [108] Cooper. J. and J. Gilliam 1987 Phosphorus redistribution from cultivated fields into riparian areas. Soil
    
    Science Society of America Journal, 51:1600-1604.
    [109] Kadlec, R. H., 1983. The Bellaire wetland: wastewater alteration and recovery. Wetlands, 3,44, 1983.
    [110] Nixon, S. W. and V. Lee. 1986. Wetlands and Water Quality: A Regional Review of Recent Research in the United States on the Role of Freshwater and Saltwater Wetlands as Sources, Sinks, and Transformers of Nitrogen, Phosphorus, and Various Heavy Metals. Rhode Island University, Kingston Graduate School of Oceanography. Technical Report Y 86 2, October 1986. Final Report. 229 pp.
    [111] Knight, R. L. 1992. Ancillary benefits and potential problems with the use of wetlands for nonpoint source pollution control. Ecological Engineering. 1 (1992) 97-113.
    [112] Brinson, M. M. 1993. A Hydrogeomorphic Classification of Wetlands. U. S. Army Corps of Engineers. Technical Report No. WRP-DE-4.79 pp.
    [113] Adamus, P. R., E. J. Clairain, Jr., R. D. Smith, and R. E. Young. 1987. Wetland Evaluation Technique (WET). U. S. Army Engineer Water-ways Experiment Station, Vicksburg, MS.
    [114] Kent, D. M., R. J. Reimold, J. M. Kelly and C. E. Tammi. 1992. Coupling wetlands structure and function: developing a condition index for wetlands monitoring. In McKenzie, D. H., D. E. Hyatt and V. J. McDonald (eds). Ecological Indicators Volume I. Elsevier Applied Science. pp.559-570.
    [115] Howard-Williams, C. 1985. Cycling and retention of Nitrogen and Phosphorus in wetlands: a theoretical and applied perspective. Freshwater Biology 15:391-431.
    [116] Johnston, C. A. 1991. Sediment and Nutrient Retention by Freshwater Wetlands: Effects on Surface Water Quality. University of Minnesota, Duluth, Natural Resources Research Institute. CRC Critical Reviews in Environmental Control, 21(5)(6):491-565.
    [117] Martha W G, Wanada B P. A Geographic information system to predict nonpoint source pollution potential [J]. Water Resource Bulletin, 1987, (2): 281-291.
    [118] Lopes T J, Bender D A. Nonpoint source of volatile organic compounds in urban areas-relative importance of land surface and air [J]. Environmental Pollution, 1998, (2): 221-230.
    [119] Neda F, Gregory M M, Eneas S F. Nutrient removal in a vertical upflow wetland in Piracicaba, Brazil [J]. AMBIO, 2000, (2): 74-77.
    [120] Schwabe K A. Modeling state-level water quality management: the case of the Neuse River Basin [J]. Resource and Energy Economics, 2000, (1): 37-62.
    [121] 朱萱,鲁纪行,等.农田径流非点源污染特征及污染负荷定量化方法探讨.环境科学,1988,6 (5):6-11.
    [122] 夏青,庄大浜,等.计算非点源污染负荷的流域模型.中国环境科学,1985,5 (4):23-30.
    [123] 王昕皓.非点源污染负荷计算的单元坡面模型法.中国环境科学,1985,5 (5):62-67.
    [124] 陈西平.有机氯农药径流污染模拟试验研讨.四川环境,1986,5 (3):47-53.
    [125] 陈西平,黄时达.涪陵地区农田径流污染输出负荷定量化研究.环境科学,1990,12 (3):75-79.
    [126] 吴林祖.杭州城市径流污染特征的初步分析.上海环境科学,1987,6.
    [127] 温灼和,等.苏州水网城市暴雨径流污染的研究.环境科学,1986,7 (6).
    [128] 夏青.城市径流污染系统分析.环境科学学报,1982,2 (4).
    [129] 刘枫,王华东.流域非点源污染的量化识别方法及其在于桥水库流域的应用.地理学报,1988,43 (4):329-339.
    [130] 陈西平.计算降雨及农田径流污染负荷的三峡库区模型.中国环境科学,1992,12 (1):48-52.
    [131] 章北平.东湖面源污染负荷的数学模型.武汉城市建设学院学报,1996,13 (1):1-8.
    [132] 陈西平,扬柳.三峡库区农田径流污染对长江水质影响的模拟.水电站设计,1997,13 (3):39-42.
    [133] 李定强,王继增,等.广东省东江流域典型小流域非点源污染物流失规律研究.土壤侵蚀与水土保持学报,1998,4 (3):12-18.
    
    
    [134] 杨具瑞,方铎.湖泊暴雨径流水质模拟研究.环境科学学报,1999,19 (1):37-41.
    [135] 黄沈发,陈长虹.黄浦江流域农田地表降雨径流分析.上海环境科学,1998,17 (3):21-23,44.
    [136] 赵孟芹,侯炳江,等.浅析非点源污染对雨洪过程中的水质影响.黑龙江水专学报,1999,26 (2):27-30.
    [137] 施为光.城市降雨径流长期污染负荷模型的探讨.城市环境与城市生态,1993,6 (2).
    [138] 陈西平.水网城市径流污染对河流水质影响的模拟研究.环境科学学报,1991,11 (1):118-125.
    [139] 陈西平.城市径流对河流污染CIS模型与计算.水利学报,1993,(2):57-63.
    [140] 王少平,陈满荣,等.GIS在农业非点源污染研究中的应用.农业环境保护,2000,19 (5):289-292.
    [141] Dennis L. Corwin, Keith Loague, Timothy R. Ellsworth. GIS支持下的非点源污染模型.水土保持科技情报,1999,(1):14-16.
    [142] 蔡崇法,丁树文,等.GIS支持下三峡库区典型小流域土壤养分流失量预测.水土保持学报,2001,15 (1):9-12.
    [143] 何强,王增欣,等.地理信息系统(GIS)在非点源污染控制中的应用.重庆环境科学,2001,23 (1):24-26,49.
    [144] 陈国湖.农业非点源污染模型AGNPS及GIS的应用.人民长江,1998,29 (4):20-22.
    [145] Karen A. Poiani et al. 建立GIS上的湿润地区非点源污染模型.水土保持科技情报,1997,(1):34-37.
    [146] 李怀恩,沈晋.流域非点源污染模型的建立与应用实例.环境科学学报,1997,17 (2):141-147.
    [147] 李怀恩.透水性流域非点源产污模型的初步研究.水利学报,1998,(2):16-19.
    [148] 洪小康,李怀恩.水质水量相关法在非点源污染负荷估算中的应用.西安理工大学学报,2000,16 (4):384-386.
    [149] 李怀恩.估算非点源污染负荷的平均浓度法及其应用.环境科学喜报,2000,20 (4):397-400.
    [150] Lepisto, A. Increased Leaching of Nitrate at Two Forested Catchments in Finland Over a Period of 25 Years. J. Hydrol., 171: 103 (1995).
    [151] Coode, G. W. The Control of Soil Fertility. Crosby Lockwood, London, 1967.
    [152] Hatman, D. S. and Mosse, B. Plant growth responses to vesiculararbuscular mycorrhiza. Ⅲ. Increased uptade of labile P from soil, New Phytologist, 1972, 71: 41-47.
    [153] 彭近新,《水质富营养化与防治》北京.中国环境科学出版社,1988:191.
    [154] Anderson, G. Nudeik acids, derivatives and organic phosphates in Soil Biochenistry, Volume 1(edited by A. D. Mclaren and G. H. Peterson), Arnold, London, 1967, 67-90.
    [155] Cagrove, D. J. Metabolism of organic phosphates in soil, in Soil Biochemistry, Volume 1(editedby A. D. Mclaren and G. H. Peterson). Edward Amold, London, 1967.
    [156] Zhang, Y. S. Werner, W., Scherer, H. W., Sun, X. Effect of organic manure on organic Phosphorus fractions in two paddy soils. Biol. Fertil. Soils, 1994, 17:64-68.
    [157] Stevenson, F. J. Cycles of soil. Carbon, nitrogen, phosphorus, sulfur and micronutrients. John Willey & Sons, 1985, 281-284.
    [158] Dalai, R. C. Soil organic phosphorus. Adv. Agron., 1977, 29: 83-119.
    [159] 鲁如坤,刘鸿翊等.我国典型地区农业生态系统养分循环和平衡现状.土壤通报,1996,27 (5):193-196.
    [160] Sample, E. C., Soper, R. J., Racz, G. J. Reactions of phosphate fertilizer in soils. In: Khasawneh, F. E., Sample, E. C. Kamprath, E. J. Eds. The Role of Phosphorus in Agriculture. Madison, Wesconsin, USA: ASA-CSSA-SSSA, 1980, 263-310.
    [161] Sauchelli, V. Phosphates in Agreculture. Reinhold, New York; Chapman and Hall, London, 1965.
    [162] Tsubota, G. Phosphate reduction in the paddy field I, Soil and Plant Food, 1959, 5: 10-15.
    
    
    [163] Agnihotri, V. P. Solubilisation of insoluble phosphates by some soil fungi isolated from nursery seedbeds, Canadian Journal of Microbiology, 1970, 16: 877-880.
    [164] Tardieux-Roche, A. Contribution à l'étude des interactions entre phospates naturels et microflore du sol, Annales Agronomiques, 1966, 17: 403-479.
    [165] Bekele, T., Cino, B. J., Ehler, P. A. J., Vander Mass, A. A., Van Diest, A., An evaluation of planbome factors promoting the solubilization of alkaline rock phosphates. Plant Soil, 1983, 75: 361-378.
    [166] Kobus, J. The distribution of micro-organisms mobilising phosphorus in different soils, Acta microbiologica Polonica, 1962, 11: 235-264.
    [167] 尹瑞龄.我国旱地土壤的溶磷微生物.土壤,1988,(5):243-246.
    [168] Greaves, S. R. Anderson, G. And Webley, D. M. A rapid method of determining the phytase activity of soil micro-organisms, Nature, 1963, 200: 1231-1232.
    [169] Greaves, M. P. And Webley, D. M. A study of the breakdown of organic phosphates by micro-organisms from the root region of certain pasture grasses, Journal of Applied Bacteriology, 1965, 28: 454-465.
    [170] Abd-Alla, M. H. Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol. Fertil. Soils, 1994, 18: 216-218.
    [171] Tadano, T., Sakai, H. Secretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditions. Soil Sci. Plant Nutr., 1991, 37(1): 129-140.
    [172] Nelemans, J. A. Findenegg, G. R. Origin of organic acids exuded by roots of phosphorus-stressed rape (Brassica napus) plants. In: Van Beusichem M. L., Plant Nutrition-Physiology and Applications. The Netherlands: Kluwern Academic Pub., Dordrecht 1990: 179-183.
    [173] Raven, J. A., Smith, F. A. Significance in H~+ transport in plant cells. Can. J. Bot. 1974, 52: 1035-1048.
    [174] Raven, J. A., Smith, F. A. Nitrogen assimilation and transport invascular land plants in relation to intracellular pH regulation. New Phytol., 1976, 76:415-431.
    [175] Dinkelaker, B., Marschnir, H. In vivo demonstration and of acid phosphatase activity in the rhizosphere of soil-grown plants. Plant Soil, 1992: 199-205.
    [176] Tarafdar, J. C. Use of electrofocussing technique for characteriz. ing the phosphatases in the soil and root exsudates. J. Ind. Soc., 1989, 37: 393-395.
    [177] Park, S. C., Smith, T. J., Bisesi, M. S. Actives of phosphomonoesterase and phosphodiesterase from Iumbricus terrestris. Soil Biol. Biochim., 1992, 24: 873-876.
    [178] Sharpley, A. N., Syers, J. K. Seasonal variation in casting activity and in the amounts and release to solution of phosphorus forms in earthworm casts. Soil Biol. Biochem., 1977, 9: 227-231.
    [179] Mansell, G. P. Syers, J. K., Gregg, P. E. H., Plant availability of phosphorus in dead herbahe ingested by surface-casting earthworms. Soil Biol. Biochem. 1981, 13: 163-167.
    [180] [英] N.沃尔克编.土壤微生物学,1975:74-75.
    [181] Larsen, S. and Gunary, D. 《J. Sci. Food Agric.》, 13: 566-572, 1962.
    [182] 朱兆吕,等.土壤中氮素的转化和移动的研究近况.土壤学报,1978,(10).
    [183] Crooke, G. W. A review of the effects of agriculture on the chemical composition and quality of surface and underground waters. P. 5-57. In Agriculture and water quality. MAFF Tech. Bull. 32. HMSO, London, UK. 1976.
    [184] Ryden, J. C., and J. K. Syers. And R. F. Harris. Phosphorus in runoff and streams. Adv. Agron. 1973, 25: 1-45.
    [185] Van Riemsdijk, W. H., T. M. Lexmond, C. G. Enfield, and S. E. A. T. M. Van der Zee. 1987. Phosphorus and heavy metals: Accumulation and consequences. P. 213-227. In H. G. Van der Meet et al. (ed.) Animal manure on grassland and fodder crops. Fertilizer or waste Martinus Nijhoff Publ., Dordrecht, the Netherlands. 1987.
    
    
    [186] Gilliam, J. W., J. L. Baker, and K. R. Reddy. Water quality effects of drainage in humid regions. In R. W. Skaggs (ed.) Drainage. Agron. Monogr. Madison, WI (in press). 1994.
    [187] sharpley, A. N., S. C. Chapra, R. Wedeplhl, et al. Managing agricultural phosphorus for protection of surface waters:issues and options. J Environ. Qual. 1994, 23:437-451.
    [188] 晏维金,等.磷在土壤中的解吸动力学.中国环境科学,2000,20 (2):97-101.
    [189] Sharpley, A. N., R. G. Menzel, S. J. Smith, E. D. Rhoades and A. E. Olness. The sorption of soluble phosphorus by soil material during transport in runoff from cropped watersheds. J. Environ. Qual. 1981, 10: 211-215.
    [190] Sharpley, A. N. The selective erosion of plant nutrients in runoff. Soil Sci. Am. J. 1985, 49: 1527-1534.
    [191] 单保庆,等.小流域磷污染物非点源输出人工降雨模拟研究.环境科学学报,2000,20 (1):33-37.
    [192] 阮晓红.氮肥在饱和及非饱和土壤中迁移转化规律研究.硕士研究生论文,1995,12.
    [193] 杨珏.土壤背景参数对土壤中STP的影响研究.硕士研究生论文,2002,6.
    [194] Thomann, R. V., and J. A. Mueller. Principles of surface water quality modeling and control. Harper Collins Publ., New York. 1987.
    [195] Romkens, M. J. M., and D. W. Nelson. Phosphorus relationships in runoff from fertilized soil. J. Environ. Qual. 1974, 3: 10-13.
    [196] Mueller, D. H., R. C. Wendt, and T. C. Daniel. Phosphorus losses as affected by tillage and manure application. Soil Sci. Soc. Am. J. 1984, 48: 901-905.
    [197] Edwards, D. R., and T. C. Daniel. Effects of poultry litter application rate and rainfall intensity on quality of runoff from fescuegrass plots. J. Environ. Qral. 1993, 23: 361-365.
    [198] Westerman, P. W., T. L. Donnely, and M. R. Overcash. Erosion of soil and poultry manure-a laboratory study. Trans. Am. Soc. Agric. Eng. 1983, 26: 1070-1078,1084.
    [199] Edwards, D. R. and T. C. Daniel. Tunoff quality impacts of swine manure applied to rescue plots. Trans. Am. Soc. Agric. Eng. 1994, 36: 81-86.
    [200] Baker, J. L., and J. M. Laflen. Effect of crop residue and fertilizer management on soluble nutrient runoff losses. Trans. Am. Soc. Agric. Eng. 1982, 25: 344-348.
    [201] Edwards, D. R., T. C. Daniel and O. Marbun. Determination of best timing for poultry waste disposal A modeling approach. Water Res. Bull. 1992, 28: 487-494.
    [202] Burwell, R. E., D. R. Timmons and R. F. Holt. Nutrient transport in surface runoff as influenced by soil cover and seasonal periods. Soil Sci. Soc. Am. Proc. 1975, 39: 523-528.
    [203] Freedman B. The impacts of pollution and other stresses on ecoststem structure and function. San Diego: Academic Press Inc. 1989.
    [204] Westerman, D. W., and M. R. Overcash. Short-term attenuation of runoff pollution potential for land-applied swine and poultry manure. In livestock waste-a renewable resource. Proc. 4th Int. Syrup. 1980.
    [205] 酒井彰.下水道雨天时汚濁负荷制御关研究.1996,3.
    [206] 文康,等.水利学报,1982,8:1~12.
    [207] Vladimir N and Gordon C. Handbook of Nonpoint Pollution. New York: CRC Press Inc, 1981. 212~230
    [208] 谢鹏,等.土壤学报,1998,25 (2):175~183.
    [209] 徐向阳,刘俊.农业区氨氮流失模型环境污染与防治,1999,(8):34-37.
    [210] 水利部科技重点项目,太湖流域污染源调查及污染负荷分析,1997年.
    [211] Cammara A S, Randal C W. The Qual-Ⅱ Model, J Envir. Eng. ASCE, 1984, 110(5): 993.
    [212] US Envir. Protec. Agen. Envir. Res. Labor, Workshop Manual for Stream Quality Routing Model, Qual-Ⅱ E. Athens, Georgia, 1985.
    [213] Hahn H H, Eppler B. Models of River. State of the Art in Ecological Modeling, 1978, 7:13.
    
    
    [214] Robert B. Ambrose, P. E. Tim A. Wool et al., WASP_4, A Hydrodynamic and Water Quality Model, Environmental Research Laboratory Office of Research and Development, U. S. Environmental Protection Agency, January 1988.
    [215] Chu Junda etc. Unsteady water quality model with multi-parameter for river network, Proc. Inter. Sym. On Envir. Hydrolics, Hong Kong, Dec. 1991: 1063-1068.
    [216] 褚君达,等.河网对流输移问题的求解与应用.水利学报,1994,(10):14-23.
    [217] 郑孝宇.河网非稳定水环境容量数值计算.河海大学硕士研究生毕业论文,1994年10月.
    [218] 金忠青,等.太湖流域河网水质研究.研究报告,1997年12月.
    [219] Reginald P.Tewarsom,稀疏矩阵,计算机应用与应用数学,1997年,第3,4,5期.
    [220] 李岳生,等.河网不恒定流隐式方程组稀疏矩阵解法.中山大学学报(自然科学版),1997年3月.
    [221] J.J.Dronkers,河流近海区和外海的潮汐计算.水利水运科技情报,1976年增刊.
    [222] Klaus-Wilhelm Schulze. Finite Element Analysis of Long Waves in Open Channel System, Finite Element Method in Flow Problems. Chapter 5, Ed. By Oden, J. T., et al., the Univ. of Alabama, 1974, PP. 295-303.
    [223] G. Noseda. Mathematical Model of Unsteady Flow in Open Channels Networks, Proceedings of the International Symposium on Unsteady Flow in Open Channels, 1976.
    [224] J. J. R. Williams, T. R. E. Chidley. Nonlinear Analysis of Unsteady Flow in Open Channel Networks, Proceedings of the International Symposium on Unsteady Flow in Open Channels, 1976.
    [225] 徐正凡.明渠非恒定流.武汉水利电力学报,1983.
    [226] 张二骏,等.河网非恒定流的三级联合解法.华东水利学院学报,1982年第1期P1-12.
    [227] 吴寿红.河网非恒定流四级解法.水利学报,1985年第8期,P42-50.
    [228] 河海大学.运河及典型河网水量调控研究报告(“七五”国家科技环保攻关项目75-59-04-04),国家环抱局,1990年10月.
    [229] 姚琪,韩龙喜,等.苏北长江水系片水环境容量研究(江苏省:“八五”环保科技攻关项目08专题),江苏省环境保护局,1997年3月.
    [230] 韩龙喜,金忠青.三级联解法水量水质模型中的参数反演及污染面源计算.水利学报,2000,(1).
    [231] S. E. Jogensen, Mathematical Submodels in Water Quality System, Elsevier Science Publication B. V., (1989).
    [232] 张自杰,等.排水工程下册,中国建筑工业出版社,(1996).
    [233] 李博,等.生态学,高等教育出版社,(1984,10).
    [234] Gerald T. Orlob, Mathematical Modeling of water Quality: Streams, Lakes, and Reservoirs, Pitman Press in Great Britain.
    [235] 兖州县水利局,兖州县王家村试区水文地质参数试验研究报告,1987.7.
    [236] Schwarzenbach, R. P., and Westall, J., Transport of Nonpolar Organic Compounds from Surface Water to Groundwater: Laboratory SorptionStudies. Environ. Sci. Technol. 1981, 15:1360-1367.
    [237] Schwarzenbach, R. P., et al, Behavior of Organic Compounds during Infiltration of River Water to Groundwater: Field Studies. Environ. Sci. Tectmol. 1983, 17: 472-479.
    [238] Matsunaga, T., et al, Redox Chemistry of Iron and Manganese Minerals in River-recharge Aquifers: A Model Interpretation of a Column Experiment. Geochim. Cosmochim. Acta., 1993, 57: 1691-1704.
    [239] Cunningham, A. B., et al, Influence of Biofilm Accumulation on Porous Media Hydrodynamics. Environ. Sci. Technol. 1991, 25: 1305-1311.
    [240] 阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究,河海大学学报 1996.3,第24卷,第2期:P51~55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700