用户名: 密码: 验证码:
南四湖沉积物内源污染释放规律与水质响应的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊沉积物记录着水体污染历史、人类影响和环境变迁,沉积物与水体有着紧密的、强烈的相互作用,对沉积物污染物的状态和动态的研究,可以评价内源污染对水体的影响及预测有内源释放导致的水质变化和富营养化有着重要的理论和实际意义。本研究在结合大量国内外相关文献的基础上,通过野外监测与室内实验分析,运用动态模拟和多元统计分析等方法,对南四湖上下级湖区沉积物的营养物及重金属污染特征、潜在的生态风险、污染物的环境化学行为,释放规律和特征,沉积物-水界面的相互作用,以及与沉积物对应的水质的响应关系进行了系统的研究。
     主要研究包括主要从污染物形态上进行了释放风险评价;通过室内沉积物-水界面模拟,分析其中不同环境条件及水质条件的释放规律,对释放的动力学进行了拟合以进一步寻求其释放的特征和机制。最后,通过分析沉积物与水体污染物及理化特征间的相关性,进一步探究其相互作用和影响过程。本研究得出以下结论:
     1.用沉积物营养物剖面分析了南四湖沉积物中营养元素的积累规律,结果表明南四湖受近代人为影响较大,沉积物氮、磷、有机质有进一步的积累,含量范围分别达925.66~4695.82mg/kg,176.37~1281.37 mg/kg和1.21%~16.65%。表层沉积物总磷富集以入湖河流最为严重,入湖河流高于湖区,湖区沉积物中富集顺序为:南阳湖>独山湖>微山湖>昭阳湖。
     2.运用顺序提取法测定沉积物磷的形态,分析了其移动性、生物有效性和潜在释放风险。结果表明,南四湖上下级湖以无机磷占优势,有机磷含量占总磷的3.98%-27.59%,无机磷中又以交换态磷、铁磷等活性磷含量高,占比例大,磷极易向水体释放,生物有效性高,潜在释放风险大。
     3.磷形态相关性分析结果表明:除残渣态磷外,其余各形态磷含量与总磷含量均显著相关,尤其是Fe-P和Ex-P与总磷呈极显著相关;沉积物中的生物可利用磷的含量变化趋势与人为活动造成的沉积物中TP含量的增加趋势相一致。铁磷与交换态磷、闭蓄态磷、自生磷和有机磷均具有极高的相关性。交换态磷与铁磷、有机磷均有较高的相关性,有机磷的降解释放,铁结合态磷的还原释放等作用,都可导致弱吸附态磷含量的增高。除了残渣态磷外,其他磷形态与沉积物有机质均有着良好的相关性,尤其以有机磷与有机质的相关性极显著。
     4.南四湖下级湖12个监测点沉积物与水质TP浓度对比分析表明,夏季有利于磷P向上覆水体释放。相关分析表明,沉积物总磷与水体总磷和溶解性磷含量不相关,水体磷污染的响应与沉积物磷污染积累并不一致。下级湖区沉积物磷负荷较高,但上覆水中磷负荷较低,表明沉积物-水中污染物交换更强烈。说明水质响应的并不取决于沉积物污染物的含量,而更多地决定于污染物在固-液两相的交换和相互作用,及沉积物所处的状态及变化。
     5.为了进一步阐明污染物在沉积物-水体两相的交换和相互作用,进行了沉积物-水界面动态模拟实验,能够在一定程度上反应了沉积物在环境条件改变时水中污染物的响应情况;还可定量确定其交换速率,通量,以此判断不同条件下,一段时间内的释放量。沉积物在好氧和缺氧条件下均可能发生磷的释放,缺氧条件下总磷和溶解反应性磷(SRP)的释放速率和释放量均大于好氧条件下。但在好氧阶段更倾向于吸附磷,而在水体磷浓度较低时也可能转向磷的释放;在缺氧条件下,沉积物趋向于向上覆水释放磷,
     6.吸附和释放动力学和等温线能够很好地解释磷吸附和释放能力,进一步预测沉积物污染动态和趋势。Pseudo一级和二级动力学均能较好地描述磷吸附/解吸过程,但pseudo二级速率方程预测的平衡吸附量更接近实际所测得的结果。因此,更适合解释沉积物磷吸附和释放过程,说明磷的吸附/释放是受化学速率控制的,吸附速率取决于吸附量而非吸附质浓度。改进的Langmuir模型比Freundlich模型和线性模型能更好地拟合磷释放过程。拟合结果表明沉积物磷的吸附过程是在低浓度范围内的单分子层吸附,并可通过得出的最大吸附量评价沉积物的吸附/解吸能力.
     7.通过序批等温实验,拟合后计算得到沉积物与水平衡时的零平衡磷浓度(EPC0),该方法能够有效地预测沉积物磷所处的释放状态,在白马河、新薛河、小泥河、十字河入湖口及大捐,沉积物向水体释放磷的风险较大,需密切关注;而在大捐洼、艾湖近岸及微山岛北,沉积物和水体磷处于近似的平衡,也有释放的可能,需加强野外监测。
     8.用重金属总量富集因子法分析沉积物重金属的累积程度,结果表明:南四湖沉积物中重金属以Cd富集最严重,与本底值相比超过几十倍,其次Zn, Cu, Pb为中等污染,超标本底值2-6倍,Cr, Mn超标较少,Fe与本底值基本持平。重金属污染较重的为上级湖的独山湖,下级湖的艾湖境内,入湖河流为上级湖区的洗府河和下级湖区的十字河。上级湖区重金属污染较下级湖区严重。
     9.运用沉积物重金属总量和影响筛分标准对比法,详细地评价重金属污染和毒性风险及对生物环境的影响。结果表明,南四湖大部分沉积物在一定程度上遭受到了重金属的污染。其中,受Cr和Zn的影响最严重,受Cd, Pb, Cu, Mn的影响中等,Fe的影响最轻。上级湖较下级湖更多地受至Cu, Cr, Pb和Cd的污染;Zn、Fe和(?)Mn的污染在上、下级湖无明显差异。
     10.运用重金属风险评价码(RAC)及各形态所占比例分析重金属的潜在释放风险。其中,Cd较大部分(30%-65%)是可移动态,因此具有高的进入食物链的风险,约46%-50%的Pb以交换态或碳酸盐结合态存在,对水环境具有较高风险,Cr和Zn移动性也相对较高。大部分Cu和Mn以非移动态存在,近少部分发现于碳酸盐结合态,因此对水生环境具有中等风险。铁绝大多数以非移动态存在,且富集因子很低,对环境风险很低。7种金属的潜在风险顺序为Cd>Pb>Cr>Zn>Cu>Mn>Fe。
     11.应用聚类分析为污染区域进行分类,发现上、下级湖重金属综合污染有着显著的差异;用主成分综合分析确定重金属综合污染的重点区域,结果表明U9,U1,U10,U8,D6和D1是重金属综合污染最严重的点位,上级湖较下级湖污染严重,这与当地密集的工业排放和人为活动有关,与聚类分析和富集因子法的评价结果一致。对重金属释放动力学的拟合研究表明,Pseudo二级动力学模型较Pseudo-一级动力学模型和Elovich模型更好的拟合沉积物重金属动力学。5种重金属的解吸能力顺序为Cr>Cu>Pb>Zn>Cd。
Lake sediment recorded pollution history, human impact and environmental changes. Sediment interacts tightly and strongly with the water column. It is vital and significant to study on the pollution status and dynamic of sediment and further to assess the effect of internal pollution on water quality and predict water quality change and eutrophication. Based on large literature, the pollution characteristics of nutrients and heavy metals in sediments in the upperstream and downstream Nansi Lake, potential release risk, environmental behaviour, release rule and pattern, interaction between sediment-water interface and corresponding water quality response related the sediments were studied comprehensively and systimatically by the means of field monitoring, laboratory experiment analysis and dynamic modeling and multivariate statistical analysis. The main results and concusion were listed as follow:
     1. Nutrient accumulation degree were discussed by the vertical profile of sediment nutrients, and the results showed that Nansi Lake suffered quite human impact in recent years, nitrogen (N), phosphorus (P) and organic matters (OM) accumulated constantly, and the contents range were 925.66~4695.82mg/kg,176.37~1281.37 mg/kg and 1.21%~16.65%, respectively. Surface sediment total phosphorus (TP) accumulation in inflows was heavier than that in lake area. In the lake sediment, TP load followed the order: Nanyang Lake>Dushan Lake>Weishan Lake>Zhaoyang Lake.
     2. P speciation was determined by the sequential extaction method to evalue the mobility, bioavailability and potential release risk. The results indicated that inorganic phosphorus was predominant both in the upperstream and the downstream lake, while, organic phosphorus just accounted for 3.98%~27.59% of total phosphorus. Among inorganic phosphorus, reactive P, like Ex-P and Fe-P, was predominant speciation, with a lare percentage, and was high bioavailable, so it is extremely susceptible to release into water column and brought large risk to environment.
     3. The correlation between phosphorus speciations suggested that, except for De-P, other phosphorus forms showed a significant correlation with total phosphorus, especially for Fe-P and Ex-P, displaying an extremely significant correlation. The change of bioavailable P accorded with the increase of TP in the sediment due to human activities. Fe-P manifested a quite high correlation with Ex-P, Oc-P, ACa-P and Or-P. except De-P, other P forms showed a good correlation with sediment OM, especially, Or-P, is highly related to OM.
     4. Comparation the TP contents of sediment and water of winter and thoseof summer at 12 monitoring sites in the downstream Mansi Lak, the results showed that water TP tended to increase in summer, however, most sediment TP decreased in summer, indicating part of P was susceptible to release in summer. Inaddition, the downstream lake had a relatively low sediment TP load, but a high water TP load, suggestin a moer stronger exchange among pollutants in sediment and water.The analysis revealed that there was no correlation between sediment TP and water TP. Water quality response to the sediment P pollution is not reflected by the sediment P content, but, in most extent, dependent on the exchange and interaction between the solid and the liquid phase, ie., sediment and water, as well as the status of sediment and water.
     5. In order to clarifying the exchange and interaction of pollutant between sediment and water, sediment-water interface dynamic modeling experiment was performed, which, to some degree, reflected the water response to sediment pollution when environmental condition varied, and can further to determine the exchange rate and flux in certain time. The results indicated that P release can occure in both anerobic and oxic condition, the release rate and flux of TP and SRP in anerobic condition were higher than those in oxic condition. Sediment tended to adsorb P in oxic condition, while, when the overlying water P is quite low, sediment can relese P into overlying water. Sediment was more susceptible to release P in anerrobic status.
     6. The kinetics and isotherm of adsorption/desorption can well decriblethe capacity of adsorption/desorption, and further to predict the exchange dymamic and rule. The results showed that Pseudo-first and Pseudo-second order rate equation can well describe the adsorption and release course, however, the pseudo-second-order rate model was more proper to elucidate sediment P sorption and release because adsorption/adsorption capacity predicted by the pseudo-second-order rate was more close to the measured results Pseudo. It suggested that the adsorption and release of P were chemically rate controlled, and the rate depended on the sorption capacity rather than the concentration of the sorbate. The results indicated that the P sorption isotherms on three sediment samples were better described by the modified Langmuir model than by Freundlich or the linear model because of its higher R2 value, which suggested that the adsorption process was single molecular layer adsorption within a low concentration range, and the maximum adsorption contents could be determined to assess the capacity of adsorption and release.
     7. The EPCo method can effectively predict sediment status. At the sample site S1, S3, S4, S5, and S7, i.e. at the sites Baima, Xinxue, Xiaoni, Shizi River and Dajuan, EPC0> SRP, the sediments had potential to release P to the water column. These sites need continual concern; while at S2, S6, S8, and S11, i.e. at the sites Dajuanwa, Aihu and North of Weishan Island, EPC0 SRP, the bed sediment and water were approximately in equilibrium with respect to SRP, and it was likely to release P into water, therefore, these site need to be monitored further.
     8. EFs for all metals from each sampled site can determinate the enrichment degree and the anthropogenic metals. According to the EFs, Cd suffered the most heavy accumulation, up to dozens of times of background value;then, Zn, Cu and Pb showed a medium pollution, about 2-6 times background values; followed by Cr and Mn, were slightly higher than background values. Last, Fe was just close to its background value.the upperstream lake suffered more heavily pollution of metas than the downstream did. In the upper reaches, the most serious pollution in lake area was founded in Dushan Lake, while, in the lower reaches, found in Aihu Lake. As for inflows, Guangfu River and Shizi Rigver were the mos large pollution spots.
     9. Compared the mean of total metal the Nansi Lake sediments with LEL and the SEL, the result indicates that Nansi Lake sediments can be severely impacted by Cr and Zn, meanwhile, the impact from Cd, Cu, Pb and Mn may be considered moderate, while, there is just very low impact from Fe. Based on the above analysis from metal distribution, in the whole, the upstream lake suffered more severe pollution from heavy metal. This is in accordance with the more industries, more developed cities and such high-dense population in the upstream.
     10. Comparing the percentages of 7 heavy metals contributed to different risk levels from 26 sites in Nansi Lake with the Risk Assessment Code (RAC) was used to assess the potential risk of sediment metals. According to the RAC, there was considerable enrichment of metals at inflows and lake area. Amongst the different metals, Cd concentration was the lowest but a major portion (30%-65%) was contained in mobile fraction (either exchangeable or carbonate bound), therefore, it was of great risk to enter the food chain. About 46%-50% of Pb in sediment existed in exchangeable or carbonate fraction and thus exert a potential risk for the aquatic environment. Followed this, Cr and Zn were relatively easy to mobile. Most Cu and Mg were in immobile fraction in Nansi Lake, just little part was found in carbonate fraction thus posing medium risk for the aquatic environment. Fe concentration was the highest but with lowest enrichment, thus showed only low risk for the aquatic environment. The potential risk of these 7 metals followed the order:Cd>Pb>Cr>Zn>Cu>Mn>Fe.
     11. The kinetics of heavy metal adsorption/release can explain the capacity of adsorption and release. The study results indicated that Pseudo-second-order model can more better fit the kinetics of heavy metal adsorption/release than Pseudo-first-order model and Elovich model。The capacity of desorption of five heavy metals followed in the order:Cr>Cu>Pb>Zn>Cd.
引文
[1]金相灿,屠清瑛.湖泊富营养化调查规范[M].第2版.北京:中国环境科学出版社,1990:138-230.
    [2]国家环保总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001.23-28,98-103.
    [3]Jin xiang can. Analysis of eutropication state and trend for lakes in China[J]. Science, Management, Education,2003,62(2):61-63
    [4]金相灿,尚榆民,徐南妮,等.湖泊富营养化控制于管理技术(M)北京:化学工业出版社.2001.87-89.
    [5]贾振邦,黄润华,等.环境学基础教程
    [6]USEPA(1993). Selecting remediation techniques for contaminated sediment.EPA823-B-93-001
    [7]朱广伟.运河(杭州段)沉积物污染特征、释放规律及其环境效应的研究[D].浙江大学博士论文,2001.8
    [8]Phillips, G., Jackson, R., Bennet, C., Chilvers, A.. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation[J]. Hydrobiology,1994,275-276,445-456.
    [9]Jones, G.J., Poplawski, W.. Understanding and management of cyanobacterial blooms in sub-tropical reservoirs of Queensland, Australia [J]. Water Sci. Technol.1998,37,161-168.
    [10]McManus J, Berelson WM, Coale KH, Johnson KS, Kilgore TE. Phosphorus regeneration in continental margin sediments [J]. Geochim Cosmochim Acta 1997; 61(14):2891-907.
    [11]Wang H., Appan A., Gulliver J. S.2003. Modeling of phosphorus dynamics in aquatic sediments:Ⅰ—model development [J]. Water Research 37 (2003) 3928-3938.
    [12]Lee-Hyung Kim, Euiso Choi, Mechael K. Stenstrom. Sediment characteristics, P Types and P release rates between river and lake sediments [J]. Chemosphere 50 (2003) 53-61
    [13]刘亚丽,张智,段秀举.湖泊底泥释氮预测模型及释氮控制研究[J].农业环境科学学报.2006,vol 25(6)1603-1606.
    [14]刘革.水体富营养化的成因、危害及防治措[J],中国水产,2009年第10期,68-69.
    [15]肖化云刘丛强.湖泊外源氮输入与内源氮释放辨析[J].中国科学:D辑.2003 vol 33(6)576-582.
    [18]Lewis G N., Auer M T., Xiang X, Penn M R. Modelng P flux in the sediments of Onondaga Lake:Insight on the timing lake response and recovery [J]. Ecological Modeling,209(2007) 121-135.
    [19]Sundby B, Gobeil C, Silberberg N. The phosphorus cycle in costal marine Sediments [J].Limnology and Oceanography,1992,37(6):1129-1145.
    [20]Grobbelaar, J.U., House, W.A.,1995. Phosphorus as a limiting resource in inland waters; interactions with nitrogen. In:Tiessen, H. (Ed.), Phosphorus in the Global Environment. Scientific Committee on Problems of the Environment. Report no.54, John Wiley and Sons, 476pp.
    [21]Hecky, R.E., Kilham, P.,1988. Nutrient limitation of phytoplankton in freshwater and marine ecosystems:a review on the recent evidence on the effects of enrichment [J]. Limnol. Oceanogr.33,796-822.
    [22]Reynolds, C.S., Davies, P.S.,2001. Sources and bioavailability of phosphorus fractions in freshwaters:a British perspective [J]. Biol. Rev.76,27-64.
    [23]Jarvie. H.P., Robert J.G. Mortimer, Elizabeth J. Palmer-Felgate, et al., Measurement of soluble reactive phosphorus concentration profiles and fluxes in river-bed sediments using DET gel probes [J]. Journal of Hydrology (2008) 350,261-273.
    [24]W.F. Hua, W. Lo, H.Nutrient reLease and sediment oxygen demand in a eutrophic Land-Locked embayment in Hong Kong [J].Environment InternationaL.2001 (26):369-375
    [25]Iken A., Egiebor N.O., Nyavor K.. Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA [J]. Water, Air, and Soil Pollution,2003,149:51-75.
    [26]Kot A., Namiesnik J.. The role of speciation in analytical chemistry [J]. Trends in Analysis Chelnlstry,2004,19:69-79.
    [27]李学填主编.土壤化学[M].北京:高等教育出版社,2001
    [28]陈静生等.铜在沉积物各相中分配的实验模拟与数值模拟研究——以都阳湖为例[J].环境科学学报,1987,7(2):140-149
    [29]张祖陆,牛振国,孙庆义,沈吉.南四湖底泥污染及其变化过程[J].中国环境科学,1999,19(1):29-32
    [30]陈静生,董林,邓宝山,万良碧,王敏,熊征良.铜在沉积物各相中分配的实验模拟与数值模拟研究——以鄱阳湖为例[J].环境科学学报,Vol.7,N0.2,1987.6.140-149
    [31]周来,冯启言,王华,季丽英.南四湖表层底泥磷的化学形态及其释放规律[J].环境科学与技术,2007,30(6):37—40
    [32]杨丽原,沈吉,刘恩峰,季峻峰.南四湖现代沉积物中营养元素分布特征[J].湖泊科学,2007,19(4):390-396.
    [33]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学,2003,15(3):251-256.
    [34]杨丽原,沈吉,张祖陆,等.近四十年来山东南四湖环境演化的元素地球化学记录[J]地球化学,2003,32(5):453-460.
    [35]刘恩峰,沈吉,杨丽原,朱育新,孙庆义,王建军.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学,2007,28(6):1377-1383.
    [36]Filgueiras A.V., Lavilla I., Bendicho C.. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis:a case study [J]. Science of the Total Environment 330 (2004) 115-129
    [37]薛红喜,黄河包头段沉积物重金属吸附机制和污染生态学研究[D],内蒙古大学博士学位论文,2007.3
    [38]Lai, D.Y.F., Lam, K.C., Phosphorus retention and release by sediments in the eutrophic lake, Mar. Pollut. Bull. (2008), doi:10.1016/j.marpolbul.2008.01.038
    [39]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575-578
    [40]UNEP.水体富营养化[J].苏玲译.世界环境,1994,42(1):23-26.
    [41]金相灿,刘树坤,章宗涉编.中国湖泊环境(第一册)[M].北京:海洋出版社,1995.
    [42]中国环境科学研究院,湖泊富营养化过程与蓝藻水花暴发机理研究,研究与发展,2008年10月.
    [43]Christos Z. Katsaounos, Speciation of P fractionation in river sediments by explanatory data analysis [J]. Water Research 41 (2007) 406-418. Introduction
    [44]Kaiserli A., Voutsa D., Samara C..P fractionation in lake sediments-Lakes Volvi and Korania, N.Greece [J]. Chemosphere 46 (2002) 1147-1155.
    [45]Kleeberg A., Dudel G.E.. Changes in extent of phosphorus release in a shallow lake (Lake GroBer Muggelsee; Berlin) due to climatic factors and load [J]. Marine Geology,139 (1997) 61-75
    [46]刘素美,张经.沉积物中磷的化学提取分析方法[J].海洋科学:2001,25(1):22—25
    [47]Hieltjes A H and Lijklema L. Fractionation of inorganic phosphorus in calcareous sediments [J]. Journal ofEnvironmental Quality,1980,8:130-132.
    [48]De Groot C J and Golterman H L. SequentiM fractionation of sediment phosphate [J]. Hydrobiologia,1990,192:143-148.
    [49]Olila O G and Reddy K R. Phosphorus sorption characteristics of sediments in shallow eutrophic lakes of Florida [J]. Archives of Hydrobiology,1993,129:45-65.
    [50]Jensen H S and Thamdrup B. Iron-bound phosphorus in marine sediments as measured by bicarbonate—dithionite extraction[J]. Hydrobiologia,1993,253:47-59.
    [51]Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology & Oceanography,1992,37(7):1460-1482.
    [52]李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J].海洋环境科学,1998,17(1):15—-20
    [53]朱广伟,秦伯强.沉积物中磷形态的化学连续提取法应用研究[J].农业环境科学学报,2003,22(3):349—352
    [54]van Eck GThM, Smits JGC. Calculation of nutrient fluxes across the sediment-water interface in shallow lakes. In:Perter, editor. Sediments and water interaction. Berlin:Springer; 1984.
    [55]Boers PCM, Hese OV. Phosphorus release from the peaty sediments of the Loosdrecht Lake (Netherlands). Water Res 1988;22:355-63.
    [56]Ishikawa M, Nishimura H. Mathematical method of phosphate release rate from sediments considering the effect of dissolved oxygen in overlying water. Water Res 1989;23:335-51.
    [57]Jorgensen SE, Kamp-Nielsen L,Mejer HF. Comparison of a simple and complex sediment phosphorus model. Ecol Modelling 1982;16:99-124.
    [58]Diederik T. Van der Molen, and Janos Pinterl, Environmental model calibration under different specifications:an application to the model SED. Ecological modeling.1993, vol.68, no 1-2(23 ref.), pp.1-19.
    [59]Seo D-I, Canale R. P. Performance, reliability and uncertainty of Total Phosphorus Models for Lakes-Ⅰ. Deterministic Analyses. Wat. Res. Vol.30, No.1, pp.83-94,1996.
    [60]Imboden DM. Phosphorus model of lake eutrophication. Limnol Oceanogr, 1974;19(2):297-304.
    [61]Lorenzen MW. Predicting the effects of nutrient division on lake recovery. In:Middlebro oks EJ, Falkenborg DH, Maloney TE, editors. Modeling the eutrophication process. Michigan, US:Ann Arbor Science Publishers Inc.;1975.
    [62]Kamp-Nielsen L. A kinetic approach to the aerobic sediment-water exchange of phosphorus in L. Esrom. Ecol Modelling 1975; 1:153-60.
    [63]Lung WS. Modeling of phosphorus sediment-water interactions in White Lake, Michigan. Ph.D. Dissertation. The University of Michigan, USA,1975.
    [64]Smits JGC, van der Molen DT. Application of SWITCH, a model for sediment-water exchange of nutrients, to Lake Veluwe in The Netherlands. Hydrobiologia 1993;253(2):281-300.
    [65]Di Toro DM. Sediment flux modeling. New York:Wiley; 2001.
    [66]Di Toro DM, Fitzpatrick JJ. Chesapeake Bay sediment flux mode. Technical Report, Environmental Laboratory, US Army Engineer Waterways Experiment Station,1993.
    [67]Havis R. N. and Ostendorf D. W. (1989) Numerical dynamic lake phosphorus budget models. Am. Soc. Chem.Engrs 11-(EE4),809-821.
    [68]Chapra S. C. and Canale R. P. (1991) Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Wat. Res.
    [69]Draper N. R. and Smith H. (1981) Applied Regression Analysis,2nd edn. Wiley, New York.
    [70]Canale R. P., Seo D-I. Performance, reliability and uncertainty of Total Phosphorus Models for Lakes-Ⅱ. Stochastic Analyses. Wat. Res. Vol.30, No.1, pp.95-102,1996.
    [71]Beck MB. Hard or soft environmental systems. Ecol Modelling 1981;11(4):233-51.
    [72]Muhammad K. Jamali, Tasneem G. Kazi, Muhammad B. Arain, Hassan I. Afridi,Nusrat Jalbani, Ghulam A. Kandhro, Abdul Q. Shah, Jameel A. Baig. Speciation of heavy metals in untreated sewage sludge by using microwave assisted sequential extraction procedure。Journal of Hazardous Materials 163 (2009) 1157-1164
    [73]张辉.重金属污染的地球化学研究——城市和区域性污染的特征与机制[D].南京:南京大学博士研究生毕业论文,2001.
    [74]何江,王新伟,李朝生等.黄河包头段水一沉积物系统中重金属的污染特征[J].环境科学学报,2003,23(1):53-57
    [75]金相灿,徐南妮,吴淑岱等.湘江悬浮沉积物对重金属的吸附、解吸动力学研究[A].环境中重金属研究文集[C].北京:科学出版社,1988.
    [76]朱广伟,陈英旭,周根娣等.运河(杭州段)沉积物中重金属分布特征及变化[J].中国环境科学,2001,21(1):65-69
    [77]石浚哲,刘光玉.太湖沉积物重金属污染及生态风险评价[J].环境管理监测与技术,2001,13(3):24-26
    [78]王海,王春霞,王子健.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435
    [79]刘成,王兆印,何耕等.环渤海湾诸河口底泥现状的调查研究[J].环境科学学报,2003,23(1):58-63
    [80]鹿东华,田贵全,王德明.山东小清河干流底泥污染评价[J].环境保护,2003,1:37-40
    [81]王华、冯启言、郝丽丽.我国重金属污染防治[J].污染防治技术,2004,17(1):75-76
    [82]李颖.水中重金属、腐殖酸和粘土颗粒物之间的相互作用研究[D].山东大学博士学位论文,2010.5,11-27
    [83]A. Bhogal, F.A. Nicholson, B.J. Chambers, M.A. Shepherd, Effects of past sewage sludge additions on heavymetal availability in light textured soils:implications for crop yields and metal uptakes, Environ. Pollut.121 (2003)413-423.
    [84]Stumm W., Branner P.A.. Chemical Speciation [M]. New York:Academic Press,1975.
    [85]汤鸿霄.试论重金属的水环境容量[J].中国环境科学,1985,5:38-43.
    [86]Ph. Quevauviller, Operationally-defined extraction procedures for soil and sediment analysis. Part 3.NewCRMs for trace-element extractable contents, Trend Anal. Chem.21 (2002) 774-785.
    [87]Campanello, L., D'Orazio, D., Petronio, B.M., et al. Proposal for a metal speciation study in sediments. Anal.Chim. Acta,1995,309:387-393
    [88]李桂海.厦门海域现代沉积环境及重金属元素的环境地球化学研究[D].中国海洋大学博士学位论文,2007.5,17-18
    [89]Budimir S, Marko B. Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the Krka river estuary obtained by sequential extraction. Science of the Total Environment,1995, 170:101-18
    [90]Tessier A.Sequential Extraction Procedure for the Speciation of Particulate Trace Metals [J].Anal chem,1979;51(7):844-851
    [91]Ariza J. L. G. Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Analytica Chimica Acta,2000,414:151-164
    [92]Jain C.K..Metal fractionation study on bed sediments of River Yamuna, India, Water Research 38 (2004):569-578
    [93]杨春霖,欧阳通,张珞平等.厦门西海域表层沉积物中金属的赋存形态[J].厦门大学学报(自然科学版),2007,46:89-93.
    [94]杨丽原,沈吉,张祖陆,朱育新,孙庆义.南四湖表层底泥重金属和营养元素的多元分析[J].中国环境科学2003,23(2):206-209
    [95]ZHONG Ai-ping, GUO Shu-hai, LI Feng-mei, LI Gang, JIANG Ke-xu. Impact of anions on the heavy metals release from marine sediments [J]. Journal of Environmental Sciences. Vol. 18, No.6,2006, pp.1216-1220.
    [96]Merian E. Metals and their compounds in the environment.Weinheim:VCH,1991. p.1438.
    [97]Filgueiras AV, Lavilla I, Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples [J]. J Environ Monit 2002;4:823-857.
    [98]Salomons W, Stigliani W. Biogeodynamics of pollutants in soils and sediments. Heidelberg: Springer-Verlag,1995. p.352.
    [99]金相灿主编,沉积物污染化学.北京:中国环境科学出版社,1992,pp147-254,309-310
    [100]金相灿(1984).黄河中游悬浮物对铜,铅,和锌的吸持与释放研究[J].中国环境科学4(4):54-60.
    [101]武周虎,乔海涛,付莎莎等.南水北调东线工程对南四湖环境的影响及对策[J].青岛理工大学学报,2006,27(1):1-7.
    [102]中国环境保护部标准司.中华人民共和国地表水环境质量标准(GB 3838-2002)
    [103]雏昆利,王斗虎,谭见安等.西安市燃煤中铅的排放量及其环境效应[J].环境科学,2002,23(1):123—125.,
    [104]国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002,278-285.
    [105]W.F. Hua, W. Lo, H. Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong [J].Environment International.2001 (26):369-375
    [106]A. Karaca, Effect or organic wastes on the extractability of cadmium, copper, nickel and zinc in soil [J]. Geoderma 122 (2-4) (2004),297-303.
    [107]M. S. Yoo, B. R. James, Zinc Extractability as a function of pH in organic waste-contaminated soils [J]. Soil Science.167 (2002),246-259.
    [108]S. Sinha, A. K. Gupta, K. Bhatt, Uptake and translocation of metals in fenugreek grown on soil amended with tannery sludge:Involvement of antioxidantsfJ]. Ecotoxicology and Environmental Safety 67 (2007) 267-277.
    [109]张军.草海湖泊系统碳稳定同位素地球化学及其循环的简单模式(摘要)[J].地质地球化学,1995,(6):117-119
    [110]Olila O. G. et al. Influence of Phosphorus Retention in Oxidized Lake Sediments [J]. Soil Science Society American Journal,1995,59:946-959
    [111]Rydin E. and E.B.Wleleh. Aluminum Dose Required to Inactivate Phosphate in Lake Sediments[J]. Water Research,1998,32(10):2969-2976
    [112]吴峰炜,汪福顺,吴明红,尹然.滇池、红枫湖沉积物中总磷、分态磷及生物硅形态与分布特征[J],生态学杂志,2009,28(1):88-94
    [113]Boers P. and Bles F. de (1991) Ion concentration of interstitial water as indicators for phosphorus release processes and reactions [J]. Wat. Res.25,591-598.Q.X. Zhou, C.E. Gibson, Y. Zhu, Chemosphere 42 (2001) 221.
    [114]T. Gonsiorczyk, P. Casper, R. Koschel [J], Water Sci. Technol.37 (3) (1998) 51.
    [115]K.L. Linge, C.E. Oldham, Appl [J]. Geochem.19 (2004) 1377.
    [116]E.P. Knapp, J.S. Herman, A.L. Mills, G.M. Hornberger, [J] Appl.Geochem.17 (2002) 87.
    [117]A.D. Kaiserli, C. Voutsa [J], Chemosphere 46 (2002) 1147.
    [118]Benitez-Nelson, C.R.,2000. The biogeochemical cycling of phosphorus in marine systems [J]. Earth Science Reviews 51,109-135.
    [119]Coelho, J.P., Flindt, M.R., Jensen, H.S., Lilleb, A.I., Pardal, M.A.,2004. Phosphorus speciation and availability in intertidal sediments of a temperate estuary:relation to eutrophication and annual P-fluxes [J]. Esturine and Coastal Shelf Science 61,583-590.
    [120]Conley, D.J., Stockenberg, A., Carman, R., Johnstone, R.W., Rahm, L.,Wulff, F.,1997. Sediment-water nutrient fluxes in the Gulf of Finland,Baltic Sea [J]. Esturine and Coastal Shelf Science 45,591-598.
    [121]Conley, DJ., Humborg, C., Rahm, L., Savchuk, O., Wulff, F.,2002. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry [J]. Environmental Science and Technology 36,5315-5320.
    [122]Yurkovskis, A.,2004. Long-term land-based and internal forcing of the nutrient state of the Gulf of Riga (Baltic Sea) [J]. Journal of Marine Systems 50,181-197.
    [123]Spears BM, Carvalho L, Paterson DM. Phosphorus part it ioning in a shallow lake: implications for water qual ity management [J]. Water and Environment Journal,2007,21: 47-53.
    [124]金相灿,庞燕,王圣瑞,等.长江中下游浅水湖沉积物磷形态及其分布特征研究[J].农业环境科学学报,2008,27(1):279-285.
    [125]Jin X C, Wang S R, Pang Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China [J]. Environmental Pollution,2006,139:288-295.
    [126]Li Q M, Zhang W, Wang X X, et al. Phosphorus in Interstitial Water Induced by Redox Potential in Sediment of Dianchi Lake,China [J]. Pedosphere,2007,17(6):739-746.
    [127]Anshumali A L. Phosphorus fractionat ion in surficial sediment s of Pandoh Lake, Lesser Himalaya, Himachal Pradesh, India [J]. Applied Geochemistry,2007,22(9):1860-1871.
    [128]Rydin E. Potentially mobile phosphorus in Lake Erken sediment[J].Water Research,2000, 34(7):2037-2042.
    [129]张路,范成新,朱广伟,等.长江中下游湖泊沉积物生物可利用磷分布特征[J].湖泊科学,2006,18(1):36-42.
    [130]张志斌,张学杨,张波,李梅,黄清辉,李建华.南四湖微山湖区沉积物磷形态分布特征[J].环境科学.2009 Vo1.30(5),1345-1350
    [131]Shengrui Wang, Xiangcan Jin, Yan Pang, Haichao Zhao, Xiaoning Zhou, Fengchang Wu. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China [J].. Journal of Colloid and Interface Science 289 (2005) 339-34
    [132]末广伟,陈英旭,周根娣,等.运河(杭州段)沉积物磷释放的模拟试验[J].湖泊科学,2002,14(4):343-349
    [133]王琦,姜霞,金相灿,徐玉慧.太湖不同营养水平湖区沉积物磷形态与生物可利用磷的分布及相互关系[J].湖泊科学,2006,18(2):]20-126
    [134]Jensen H.S., Kristensen P., Jeppesen E., Skytthe A. Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediment in shallow lakes [J]. Hydrobiologia, 1992,235/236:731-743
    [135]王永华,钱少猛,徐南妮,金相灿,黄健,赵秋华.巢湖东区底泥污染物分布特征及评价[J],环境科学研究,2004,Vol.17,No.6,22-26
    [136]Katarzyna Lukawska-Matuszewska, Jerzy Bolalek. Spatial distribution of phosphorus forms in sediments in the Gulf of Gdansk (southern Baltic Sea) [J], Continental Shelf Research 28 (2008)977-990
    [137]Sondergaard, M., Jensen, J.P., Jeppesen, E.,2001. Retention and internal loading of phosphorus in shallow, eutrophic lakes [J]. The Scientific World 1,421-442.
    [138]Richardson, C.J.,1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands [J]. Science 228,1424-1426.
    [139]Nichols, D.S.,1983. Capacity of natural wetlands to remove nutrients from wastewater [J]. Journal of Water Pollution Control Federation 55,495-505.
    [140]Sundareshwar, P.V., Morris, J.T.,1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient [J]. Limnology and Oceanography 44, 1693-1701.
    [141]黄清辉,王磊,王子健.中国湖泊水域中磷形态转化及其潜在生态效应研究动态湖泊科学[J],2006,18(3):199-206
    [142]Likens GE. Nutrients and eutrophication:the limiting nutrient controversy. Lawrence, KS7 American Society of Limnology and Oceanography;1972.
    [143]Moss B B H, Irvine K, Stansfield J. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment [J]. Journal of Applied Ecologica,1986,23:391-414.
    [144]House WA, Denison FH.1997. Nutrient dynamics in a lowland stream impacted by sewage effluent:Great Ouse, England [J]. Sci Total Environ; 205:25-49.
    [145]Gardner C M K, Cooper D M, et al. Phosphorus in soils and field drainage water in the Thame catchment, UK [J]. Science of the Total Environment,2002,282:253-62.
    [146]Pan G, Krom MD, et al. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in East Mediterranean seawater [J]. Environ Sci Technol 2002;36(16):3519-24.
    [147]T Sakamaki, O Nishimura, R Sudo. Tidal time-scale variation in nutrient flux across the sediment-water interface fo an estuarine tidal flat. Estuarine [J], Coastal and Shelf Science, 2006,67(4):653-663
    [148]Sumi T. and Koike I. (1990) Estimation of ammonification and ammonium assimilation in superficial coastal and estuarine sediments [J]. Limnol. Oceanogr.35,270-286.
    [149]B. Garban, D. Ollivon. M. Poulin. V. Gaultier, A. Chesterikoff. Exchanges at the sediment-water interface in the river seine, Downstream from Paris [J]. War. Res. Vol.29, No. 2, pp.473-481,1995
    [150]Bostrom B. and Pettersson K. (1982) Different patterns of phosphorus release from lake sediments in laboratory experiments [J]. Hydrobiologia 92,415-429.
    [151]Martin G. (1985) Les 6changes phosphates/eau/stdiment. pp.12-34. G. Martin, Laboratoire C.N.G.E. Rennes.
    [152]Boers P. C. M. and Van Hese O. (1988) Phosphorus release from the peaty sediments of the Loodsrecht Lakes (The Netherlands) [J]. Wat. Res.355-363.
    [153]汪艳雯,岳钦艳,刘庆,李志建,高宝玉.山东省南四湖底泥中磷的形态分布特征[J].中国环境科学2009,29(2):125-129
    [154]李艳红,杨丽原,刘恩峰,郭德伟.南四湖富营养化评价与原因分析[J],济南大学学报(自然科学版),Vo.124,No.2,2010,212-215
    [155]沈吉,张祖陆,杨丽原,孙庆义,等.南四湖——环境与资源研究[M],北京:地震出版社,2008:23-75
    [156]张丽媛,王圣瑞,储昭升,杨苏文,金相灿,包亮,张福林,倪兆奎.洋河水库流域土壤与库区沉积物中磷形态特征研究[J],,中国环境科学2010,30(11):1529-1536
    [157]袁和忠,沈吉,刘恩峰,王建军,孟祥华.太湖水体及表层沉积物磷空间分布特征及差异性分析[J],环境科学,2010,Vol.31(4),954-960
    [158]Xia Jiang, Xiangcan Jin, Yang Yao, Lihe Li, Fengchang Wu. Effects of biological activity, light, temperature and oxygen on P release process at the sediment and water interface of Taihu Lake, China [J]. Water Research,42 (2008) 2251-2259
    [159]Drake, J.C. and Heaney, S.I.,1987. Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English Lake. Freshwater Biol.,17:513-523.
    [160]张智,刘亚丽,段秀举.湖泊底泥释磷模型及其影响显著因素试验研究[J],农业环境科学学报,2007,26(1):45-50
    [161]林建伟,朱志良,赵建夫.曝气复氧对富营养化水体底泥氮磷释放的影响[J],生态环境,2005,14(6):812-815
    [162]Naoml E D, Patrick L B. Phosphorus sorption by sediments from a soft-water seepage lake:an evaluation of kinetic and equilibrium models [J]. Environmental Science & Technology,1991, 25:395-403.
    [163]Wang S R, Jin X C, Zhao H C, Wu F C. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions [J]. Journal of Hazardous Materials, 2009,161:1551-1559
    [164]Zhou A M, Tang H X, Wang D S. Phosphorus adsorption on natural sediments:modeling and effects of pH and sediment composition [J]. Water Research,2005,39:1245-1254.
    [165]Tian J R, Zhou P J. Phosphorus fractions of floodplain sediments and phosphorus exchange on the sediment-water interface in the lower reaches of the Han River in China [J]. Ecological Engneering,2007,30:264-270.
    [166]Aksu Z. Biosorption of reactive dyes by dried activated sludge:equilibrium and kinetic modeling [J]. Biochemical Engineering Journal,2001,7:79-84.
    [167]Benaissa H, Elouchi M A. Removal of copper ions from aqueous solutions by dried sunflower leaves [J]. Chemical Engineering and Processing,2007,46:614-622.
    [168]Ho Y S, Wang C C. Pseudo-isotherms for the sorption of cadmium ion onto tree fern [J]. Process Biochemistry,2004 39:759-763
    [169]Ofomaja A E, Naidoo E B, Modise S J. Dynamic studies and pseudo-second order modeling of copper(Ⅱ) biosorption onto pine cone powder [J] [J]. Desalination,2010,251:112-122
    [170]Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J]. Water Research,2000,34:735-742.
    [171]Ho Y S, McKay G. Pseudo-second order model for sorption processes [J]. Process Biochemistry,1999,34:451-465.
    [172]House W A, Denison F H, Armitage PD. Comparison of the uptake of inorganic phosphorus to suspended and stream bed sediment [J]. Water Research,1995,29:767-779.
    [173]Wang S R, Jin X C, Zhao H C, Zhou X N, Wu F C. Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in lake sediments [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,297:154-162
    [174]An W C, Li X M. Phosphate adsorption characteristics at the sediment-water interface and phosphorus fractions in Nansi Lake, China, and its main inflow rivers [J]. Environmental Monitoring and Assessment,2008, DOI 10.1007/s 10661-007-0149-6.
    [175]刘庆,南四湖及其入湖河流底泥氮磷释放及其影响因素的研究[D].山东大学硕士学位论文,2009.11,pp13
    [176]Juliane L, Robert G Q, Shauna M U, Scott D B. Adsorption of dissolved organic and inorganic phosphorus in soils of a weathering chronosequence [J]. Science Society of America Journal, 2004,68 (2):620.
    [177]Taylor A W, Kunishi H M. Phosphate equilibration on stream sediment and soil in a watershed draining an agricultural region [J]._Journal of Agricultural and Food Chemistry,1971,19: 827-831.
    [178]House W A. Geochemical cycling of phosphorus in rivers. Applied Geochemistry,2003,18: 739-748.
    [179]Li Y, Yue Q Y, Gao B Y. Adsorption kinetics and desorption of Cu(II) and Zn(II) from aqueous solution onto humic acid [J]. Journal of Hazardous Materials. (2010), doi:10.1016/j.jhazmat.2010.01.103:1-7
    [180]Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. Journal of Colloid and Interface Science,2004, 278:18-25
    [181]Smith D R, Warnemuende E A, Haggard B E, Huang C. Changes in sediment-water column phosphorus interactions following sediment disturbance [J]. Ecological Engneering,2006, 27(1):71-78.
    [182]Klotz R L. Sediment control of soluble reactive phosphorus in Hoxie Gorge Creek, New York [J]. Canadian Journal of Fisheries and Aquatic Sciences,1988,45:2026-2034.
    [183]Haggard B E, Stanley E H, Hyler R. Sediment-phosphorus relationships in three northcentral Oklahoma streams [J]. Transaction of the ASAE,1999,42:1709-1714.
    [184]House WA, Denison FH.2000. Factors influencing the measurement of equilibrium phosphate concentrations in river sediments [J]. Water Res 34(4):1187-1200.
    [185]Fitzsimons MF, Millward GE, Revitt DM, Dawit MD. (2006).Desorption kinetics of ammonium and methylamines from estuarine sediments:consequences for the cycling of nitrogen. Marine Chemistry 101:12-26
    [186]朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据[J],科学通报,2005,,50(1):67—71.
    [187]朱广伟,秦伯强,高光等,长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J],环境科学学报,2004,(3):381—388
    [188]Koski-Vahala J, Hartikainen H, Tallberg P. Phosphorus Mobilization from Various Sediment Pools in Response to Increased pH and Silicate Concentration [J]. Journal of environmental quality,2000,30 (2), p.546-552
    [189]Gonsiorczyk T, Casper P, Koschel R. Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany) [J], Water Science and Technology,1998,37 (3):51-58
    [190]Golterman HL. Fractionation and bioavailability of phosphates in lacustrine sediments:a review [J], Limnetica,2001,20(1):15-29
    [191]Gachter R, Meyer J. The role of microorganisms in mobilization and fixation of phosphorus in sediments [J], Hydrobiologia,1993,253(1-3):103-121
    [192]Christensen K.K, Jensen HS, Andersen F(?), Holmer M, Wigand C. Interferences between root plaque formation and phosphorus availability for isoetids in sediments of oligotrophic lakes [J], Biogeochemistry,1998,43 (2):107-128, DOI:10.1023/A:1006010502422
    [193]Burley K L., Prepas E E, Patricia A. Chambers. Phosphorus release from sediments in hardwater eutrophic lakes:the effects of redox-sensitive and -insensitive chemical treatments [J], Freshwater B iology,2001,46(8):1061-1074
    [194]Tang C.W., Ip C.C., Shin Paul K.S, Zhang G., Qian P.Y., Li X. D., The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong [J]. Marine Pollution Bulletin 57 (2008),816-825.
    [195]Valdes, J., Vargas, G., Sifeddine, A., Ortlieb, L., Guinez, M.,2005. Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23_S), Northern Chile: geochemical and statistical approach [J]. Marine Pollution Bulletin 50,1558-1568.
    [196]Rubio, B., Pye, K., Rae, J.E., Rey, D.,2001. Sediment geological characteristics, heavy metal distribution and magnetic properties in subtidal sediments, Ria de Pontevedra, NW Spain [J]. Sedimentology 48,1277-1296.
    [197]Birch, G.F., Taylor, S.E., Matthai, C.,2001. Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments:a review and some new concepts [J]. Environmental Pollution 113,357-372.
    [198]Zhou F., Guo H.C., Hao Z.J. Spatial distribution of heavy metals in Hong Kong's marine sediments and their human impacts:A GIS-based chemometric approach [J]. Marine Pollution Bulletin 54 (2007a) 1372-1384.
    [199]Liu, W.X., Li, X.D., Li, Y.S., Wai, W.O., Wai, O.W.H.,2004. Characteristics of metal enrichment in Deep Bay, Hong Kong [J]. Journal of Environmental Sciences 16,9-12.
    [200]Liu, W.X., Li, X.D., Shen, Z.G., Wang, D.C., Wai, O.W.H., Li, Y.S.,2003. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary [J]. Environmental Pollution 121,377-388.
    [201]Du Laing G, Meers E, Dewispelaere M, Vandecasteele B, Rinklebe J, Tack FMG, Verloo MG. Heavy metal mobility in intertidal sediments of the Scheldt estuary. Field monitoring [J]. Science of the Total Environment 2009; doi:10.1016/j.scitotenv.2008.12.024.
    [202]安文超.南四湖及主要入湖河口沉积物的污染物特征及磷吸附释放研究[D],山东大学博士学位论文,2008,4,p.40-53
    [203]刘恩峰,沈吉,王建军,袁和忠.南四湖表层沉积物重金属的赋存形态及底部界面扩散通 量的估算[J],环境化学,2010,29(5):870-874
    [204]Tam NFY, Yao MWY. Normalization and heavy metal contamination in mangrove sediments [J]. Science of the Total Environment 1998;216:33-39.
    [205]El Nemr A, Khaled A, El Sikaily A. Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf [J]. Environmental Monitoring and Assessment 2006,118:89-112.
    [206]Zhao YY, Yan MC. Abundance of chemical elements in sediments from the Huanghe River, the Changjiang River and the continental shift of China [J]. Chinese Science Bulletin 1992; 23:1991-1994.
    [207]Abrahim G., Parker R., Heavy-metal contaminants in Tamaki Estuary:impact of city development and growth, Aukland, New Zealand [J]. Environmental Geology 42,2002, 883-890
    [208]Liu, W.X., Li, X.D., Li, Y.S., Wai, W.O., Wai, O.W.H.,2004. Characteristics of metal enrichment in Deep Bay, Hong Kong [J]. Journal of Environmental Sciences 16,9-12.
    [209]Christos Z. Katsaounos, Dimosthenis L. Giokas, Ioannis D. Leonardos, Miltiades I. Karayannis.2007. Speciation of phosphorus fractionation in river sediments by explanatory data analysis [J]. Water Res.41 (2007) 406-418.
    [210]Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B. Application chemometrics in river water classification [J]. Water Research 2006; 40:744-752.
    [211]Zhou F, Guo HC, Liu Y, Jiang YM. Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong [J]. Marine Pollution Bulletin 2007b;54: 745-756.
    [212]Apitz S.E., Degetto S., Cantaluppi C., The use of statistical methods to separate natural background and anthropogenic concentrations of trace elements in radio-chronologically selected surface sediments of the Venice Lagoon [J]. Marine Pollution Bulletin 58 (2009) 402-414.
    [213]Yeh TY, Chou CC, Pan CT. Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations [J]. Desalination 249 (2009) 368-373.
    [214]Charkhabi AH, Sakizadeh M., Rafiee G., Seasonal fluctuation in heavy metal pollution in Iran's Siahroud River [J]. Environmental Science and Pollution Research,12 (2005) 264-270.
    [215]Mohammed M H, Markert B, Toxicity of heavy metals on Scenedesmus quadricauda (Turp.) de Brebisson in batch cultures[J]. Environmental Science and Pollution Research 13 (2006) 98-104.
    [216]Karamanis D., Stamoulis K., Ioannides K., D. Patiris, Spatial and seasonal trends of natural radioactivity and heavy metals in river waters of Epirus, Macedonia and Thessalia [J]. Desalination 224 (2008) 250-260.
    [217]Salmons W., Forstner U., Metals in Hydrocycle [M], Berlin:Springer Verlag,1984. pp.349
    [218]Ratha P., Pandab U.C., Bhattac D., Sahud K.C., Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—A case study:Brahmani and Nandira Rivers, India [J]. Journal of Hazardous Materials 163 (2009) 632-644.
    [219]H. E. Allen, D. J. Hansen, The importance of trace metal speciation to water quality criteria [J]. Water Environment Research,68:(1996) 42-54.
    [220]G. Billon, B. Ouddane, P. Recourt, A. Boughriet, Depth variability and some geochemical characteristics of Fe, Mn, Ca, Mg, Sr, S, P, Cd and Zn in anoxic sediments from Authie Bay (Northern France) [J]. Estuarine Coastal and Shelf Science,55:(2002)167-181.
    [221]Filgueiras A V, Lavilla I, Bendicho C. Comparison of the st andard SM&T sequential extract ion method with small2scale ultrasound2 assist ed single extract ions for metal partit ioning in sediments [J]. Analytical and Bioanalyt ical Chemistry,2002,374(1):103-108.
    [222]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):81-86.
    [223]Chen S Y, Lin J G. Bioleaching of heavy metals from sediment significance of pH [J].Chemosphere,2001,44:1093-1102.
    [224]NYSDEC (NewYork State Department of Environmental Conservation), Technical Guidance for Screening Contaminated Sediments. Department of Fish, Wildlife and Marine Resources, Albany, New York.1999.
    [225]K. P. Singh, D. Mohan, V. K. Singh, A. Malik. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of the Ganges, India [J]. Journal of Hydrology,312 (2005):14-27.
    [226]H. L. Liu, L. Q. Li, C. Q.Yin, B. Q. Shan, Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake [J]. Journal of Environmental Sciences 20(2008) 390-397.
    [227]R. J. Gibbs. Transport phases of transition metals in the Amazon and Yukon rivers [J]. Geological Society of America Bulletin,88 (1977) 829-43.
    [228]R. Pardo, E. Barrado, L. Perez, M. Vega, Determination and association of heavy metals in sediments of the Pisucrga, river [J]. Water Research 24 (3) (1990) 373-379.
    [229]W. Salomons, U. Forstner, Trace metal analysis on polluted sediments. Part II:evaluation of environmental impact [J]. Environment Technology Letter 1 (1980) 506-517.
    [230]D. P. Modak, K.P. Singh, H. Chandra, P.K. Ray, Mobile and bound forms of trace metals in sediments of the lower Ganges [J]. Water Research 26 (11) (1992) 1541-1548.
    [231]A. Tessier, P.G.C. Campbell, M. Bisson, Trace metal speciation in the Yamaska and St. Francois rivers (Quebec) [J]. Canada Journal of Earth Science 17 (1980) 90-105.
    [232]U. Forstner, G.T.W. Wittmann, Metal Pollution in the Aquatic Environment [M], second ed. Springer, Berlin,1981, pp.486.
    [233]R.Y. LI, H. Yang, Z.G. Zhou, J.J. Lv, X.H. Shao, F. Jin, Fractionation of Heavy Metals in Sediments from Dianchi Lake, China. Pedosphere, (2007) 17(2):265-272.
    [234]G. Perin, L. Craboledda, M. Lucchese, R. Cirillo, L. Dotta, M.L. Zanette, A.A. Orio, Heavy metal speciation in the sediments of Northern Adriatic Sea—a new approach for environmental toxicity determination [M]. In:Lekkas TD, editor. Heavy metal in the environment, vol.2; 1985,pp.454-456.
    [235]K. Vasanth Kumar, S. Sivanesan. Pseudo second order kinetic models for safranin onto rice husk:Comparison of linear and non-linear regression analysis [J]. Process Biochemistry 41 (2006) 1198-1202
    [236]Kumar KV, Ramaurthi V, Sivanesan S. Biosorption of malachite green, a cationic dye onto pithophora sp., a fresh water algae [J]. Dyes Pigments 2006,69:74-9.
    [237]Kumar KV, Sivanesan S, Ramamurthi V. Adsorption of malachite green onto Pithophora sp., a fresh water algae:equilibrium and kinetic modeling [J]. Process Biochem 2005;40:2865-72.
    [238]Lagergren S. Zur theorie der sogenannten adsorption geloster stofee. K Sven Vetenskapsakad Handl 1998;24:1-39.
    [239]Ritchie AG. Alternative to the Elovich equation for the kinetics of adsorption of gases on solids [J]. J Chem Soc Faraday Trans 1977;73:1650-3.
    [240]张增强,张一平,朱兆华等.镉在土壤中释放的动力学特征研究[J].西北农林科技大学学报(自然科学版).2001,29(1):63-67.
    [241]魏俊峰,吴大清,彭金莲等.污染沉积物中重金属的释放及其动力学[J].生态环境.2003,12(2):127-130.
    [242]王继纲,马启敏,刘茜等.渤海湾北部海域沉积物重金属Cu、Zn释放及动力学研究[J].海洋湖沼通报.2007:69-73.
    [243]赵振华,吴玉,蒋新等.低分子量有机酸对红壤中硫丹释放动力学的影响[J].环境科学.2009,30(10):3077-3081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700