用户名: 密码: 验证码:
木聚糖酶基因的体外定向进化及其高拷贝重组酵母的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖是谷物类饲料中一种主要的抗营养因子,通常需要添加内切木聚糖酶(EC3.2.1.8)破坏木聚糖长链结构,释放出短链木寡糖,在木糖苷酶(EC3.2.1.37)的协同作用下,木聚糖可最终被水解成木糖。近年来,内切木聚糖酶已被广泛应用于饲料、食品和制浆造纸工业等,此外以木糖为底物生产燃料乙醇的研究也具有广阔前景。然而,目前木聚糖酶仍存在酶的催化活性不高、酶学特性不能满足工业加工或生产应用的需求或酶的生产成本较高等不足,亟需开发兼具高活性且酶学特性优良的理想木聚糖酶基因及其高效表达宿主。本研究克隆了糖苷水解酶家族11的4种内切木聚糖酶基因和1种木糖苷酶基因,以其中的优良基因为基础对其进行分子改良,构建了相应的高拷贝重组酵母表达宿主,在摇瓶中发酵表达内切木聚糖酶和木糖苷酶,并对底物形态和水解特性进行分析。主要结果如下:
     1内切木聚糖酶与木糖苷酶基因的克隆及原核表达
     本研究克隆了家族11黑曲霉(Aspergillus niger xylanase, anx)、枯草芽孢杆菌(Bacillus subtilis xylanase, bsx)、褐色高温单孢菌(Thermomonospora fusca xylanse, tfx)和杂合内切木聚糖酶(hybrid xylanse, atx)基因以及枯草芽孢杆菌来源的木糖苷酶(B. subtilis xylosidase, xylo)基因,并在大肠杆菌中进行表达。酶学特性分析发现,所有木聚糖酶均在酸性条件下较为稳定。其中,ATx和Tfx兼具高酶活性和良好的热稳定性,且Tfx具备良好的抗抑制剂特性和一个家族11木聚糖酶少有的碳水化合物结合域(carbohydrate binding module, CBM)。因此,atx和tfx可作为后续分子改良的基因材料。
     2atx的分子改良及重组酵母菌的构建
     基于非理性设计思路,采用定向进化提高atx的催化活性。定向进化策略包括易错PCR (error-prone PCR, EP-PCR)产生随机突变,在微孔板上筛选木聚糖酶活性提高的优势突变体。一轮EP-PCR后共筛选1530个转化子得到一个酶活性提高的突变体基因FSI-A124。(?)将atx和FSI-A124分别转化毕赤酵母(Pichia past or is) GS115,在PGAP启动子和α交配因子信号肽的控制下分泌表达木聚糖酶,96h发酵上清液中比活性分别为954和1556U/mmg。突变酶YFSI-A124的Km为4.25mg/ml,较之野生酶YATx下降4.7%,催化转化数Kcat则提高44%。然而,酶学特性分析显示,YFSI-A124热稳定性略有下降。氨基酸比对和三维结构分析发现,L49P替换使得酶的催化区域变得柔和,突变酶与底物木聚糖的亲和能力增强,酶的催化效率提升,另一方面氢键作用、相邻氨基酸之间的范德华力和表面疏水作用减弱,导致酶的热稳定性下降。
     3tfx的分子改良
     综合非理性设计和理性设计的优势,采用定向进化和定点突变相结合的技术,提高tfx的催化活性和热稳定性。首先利用两轮EP-PCR随机突变,经微孔板筛选约7000个突变体,获得6个木聚糖酶活性提高的优势突变体。并对其中4处可能与酶的催化活性或热稳定性相关的氨基酸残基进行序列饱和突变。将优势突变体用于DNA shuffling和StEP进行优势重组,经筛选3000个转化子共获得3个木聚糖酶活性提高的优势突变体。之后,将S144C点突变引入G3DS2,使分子内产生一个新的二硫键,获得兼具高活性和良好热稳定性的突变基因G4SM/(S62T/S144C/N198D/A217V)。G4SM1的特异性比活为2036±45.8U/mg,是野生酶Tfx的2.12倍,而Km值为1.84mg/ml,较之野生酶显著下降(P<0.05),而Kcat/Km提高76%,提示酶与底物的亲和能力增强,且酶的催化效率提高。三维结构分析显示,推测位于催化区的两处氨基酸替换S62T和S144C有助于提高酶的催化活性和稳定性。
     4构建包含高拷贝G4SM1基因的重组酵母菌
     采用两种不同的方法构建包含高拷贝G4SM1及其催化区G4SM1CBM基因的重组酵母。一是采用高浓度抗生素压力法筛选酵母转化子,将电击后的转化子分别涂布于含500、1000、1500和2000μg/ml zeocin的YPD平板,在1500和2000μg/ml zeocin的平板上挑取阳性转化子进行拷贝数鉴定,Southern blot和qPCR分析显示,28号菌株为包含两拷贝G4SM1的重组酵母菌,命名为33-1。研究发现,Tfx中包含一段没有催化活性的CBM2,为了减少高拷贝外源基因对宿主的压力,将Tfx中不影响其其催化活性的CBM2截去,采用一对同尾酶BamH I和BglⅡ(?)将表达盒头尾相连,构建一个包含四拷贝表达盒的穿梭载体pGAPZaA/G4SM1_CBM (4),再将该载体转化P. pastoris SMD1168获得包含四拷贝G4SM1_CBM基因的重组酵母33-2, Southern blot和qPCR进一步验证其正确性。
     5共表达内切木聚糖酶和木糖苷酶的重组酵母菌的构建及摇瓶发酵、底物形态和水解特性分析
     利用BamH Ⅰ和BglⅡ(?)将pGAPZαA/G4SM1_CBM (4)与包含木糖苷酶基因的pPICZαA/xylo相连接,获得共表达内切木聚糖酶和木糖苷酶的重组载体paAX-GAPGC(4),转化P. pastoris SMD1168获得共表达宿主33-3。将菌株33-1和33-2在YPD培养基中分泌表达内切木聚糖酶,培养120h后发酵上清液中总蛋白含量分别为0.49g/l和0.65g/l。菌株33-3能在YPD培养基中仅表达内切木聚糖酶,同时也能在甲醇的诱导下共表达内切木聚糖酶和木糖苷酶,120h发酵上清液中总蛋白含量达1.22g/l。底物形态和水解特性分析显示,未处理的桦木木聚糖结构致密、表面粗糙,多糖分子粘连程度高,经内切木聚糖酶水解后,长链结构被破坏,分子呈现较小的颗粒状态,表面形态趋于平整。水解24h后,木二糖和木三糖的浓度分别为0.954±0.093mg/ml和0.360±0.022mg/ml,分别占总水解产物的62.6%和23.6%。在内切木聚糖酶和木糖苷酶的协同作用下,木聚糖可彻底水解成木糖,水解24h后,木糖的浓度为1.198±0.016mg/ml,占总水解产物的69.1%。综上所述,本研究采用理性设计与非理性设计相结合的方法改良内切木聚糖酶基因tfx,构建的高拷贝重组酵母33-1和33-2、共表达重组酵母33-3摇瓶发酵蛋白表达量较高,可在发酵罐中进行高密度发酵进一步提高蛋白表达水平,在饲料工业和生物能源应用具有良好的应用前景。
Xylan is a main anti-nutritional factor in cereals. Xylanases (EC3.2.1.8) are glycosidases that break long sugar chain of xylan into xylooligosaccharides (XOs), the synergic effects of both endo-xylanase and exo-xylosidase (EC3.2.1.37) catalyze xylan into D-xylose. In the past decade, xylanases have been widely used in paper pulp, food and feed industries. Xylose has been of tremendeous interests to produce bio-ethanol. Therefore, it is desirable for xylanase to exhibit high catalytic activity and thermostability to handle industrial tasks. The current study was designed to clone four xylanase genes from family11and one xylosidase gene, modify the gene with high catalytic activity and good properties, and construct recombinant yeast containing high-copy xyalanse genes. After that, xylanase and xylosidase were heterologously co-expressed in flask medium. The secreted proteins were further subjected to analyze substrate morphology and hydrolytic products of birchwood xylan. The main results were as follow:
     1Cloning and expression of endo-xylanse and xylosidase in E. coli
     Four family11xylanase genes (Aspergillus niger xylanase, anx; Bacillus subtilis xylanase, bsx; Thermomonospora fusca xylanase, tfx; hybrid xylanase, atx) and B. subtilis xylosidase (xylo) gene were cloned and expressed in E. coli. All xylanases were stable under acidy conditions. Among them, both ATx and Tfx showed high acitivity and good thermostability. Furthermore, Tfx was observed to be capable to endure xylanase inhibior and contain a carbohydrate binding module (CBM), which was seldom found in family11xylanses. With the context, xylanase genes atx and tfx were employed for further protein enginnering.
     2Molecular modification of atx and construction of the recombinant yeast
     A directed evolution strategy comprising of error-prone PCR (EP-PCR) and high-throughput screening based on micro-plate was employed to improve the catalytic activity of atx, according to the non-rational degisn. A total of1530clones were screened to obtain the mutant FSI-A124with most improved xylanase activity. The wild type gene atx and the mutant FSI-A124were transformed into Pichia pastoris GS115to target the PGAP locus of yeast genome by electroporation. The recombinant xylanases driven by the Saccharomyces cerevisiae a-mating factor were secreted into culture medium. After incubation in YPD medium for96h, the specific activities of YATx and YFSI-A124reached954and1556U/mg, respectively. The Km of YFSI-A124was4.25mg/ml,4.7%lower than that of YATx, while the turnover number kcat was44%higher. Nevertheless, YFSI-A124was less thermally stable than YATx. Amino acid alignment and three-dimensional strucute revealed that a single substitution L49P was formed within the sequence of YFSI-A124. The mutagenesis possibly made the catalytic module of YFSI-A124more flexible than wild type. Therfore, the pocket cavity was supposed to have good affinity to substrate and catalytic efficiency. The decrease of thermostability was attributed to decline of hydrogen bond, van der Waals force and hydrophobic interactions with other residues nearby the catalytic center.
     3Molecular modification of tfx
     Both directed evolution and site-directed mutagenesis were employed to improve the catalytic activity and thermostability of tfx. Two round EP-PCR and high-throughput screening based on micro-plate were initially used to screen7000clones for six mutants with improved activity. Four mutation sites possibly relative to catalytic acticvity and enzymatic properties were optimized using site-saturation mutagenesis. After that, all mutants obtained were subjected to DNA shuffling and StEP. A total of3000clones were screened to obtain three mutants with improved activity. A single substitution S144C was further introduced into G3DS2to obtain the mutant G4SM1(S62T/S144C/N198D/A217V) with most improved activity and thermostability. The specific activity of G4SM1was2036±45.8U/mg,2.12times wild type, while the Km value (1.84mg/ml) was27.8%lower (P<0.05). Furthermore, the kcat/Km ratio of G4SM1was improved by76%, indicating that the affinity to substrate and catalytic effiency were dramatically enhanced. Three-dimensional structure analysis revealed that the substitutions S62T and S144C, located at the catalytic domain, were responsible for the improved activity and thermostability.
     4Construction of recombinant yeast containg high-copy G4SM1
     The construction of recombinant yeast containg high-copy genes were achieved using two different methods. The YPD plates with high concentrations of zeocin were used to obtain high-zeocin resistant transformants. After electroporation, the transformed cells were spread onto YPD plates supplemented with500,1000,1500and2000μg/ml zeocin. The positive clones of1500and2000μg/ml zeocin plates were picked and subjected to evaluation of gene copy number. Southern blot and qPCR showed that the No.28strain (designated as33-1) was a recombinant yeast containing two-copy integrated G4SM1. It was suggested by both previous study and our result, CBM2of Tfx was non-essential for catalysis. With the context, CBM2was removed from Tfx and the catalytic domain was used for construction of high-copy yeast. A pair of isocaudarners (BamHⅠ and BglⅡ) was employed to establish a shuttle vector pGAPZαA/G4SM1_CBM (4), which contains four tandemly arranged expression cassettes. The resultant plasmid was transformed into P. pastoris SMD1168and the gene copy number of the strain (also named as33-2) was confirmed by Southern blot and qPCR.
     5Construction of a recombinant yeast co-expressing endo-xylanase and xylosidase, fermentation in flask medium, and characterization of xylan morphology and its hydrolytic products
     The co-expression pladmid was constructed by ligating pGAPZaA/G4SM1_CBM(4) and pPICZaA/xylo using BamHⅠ and BglⅡ. The resultant plasmid was transformed into P. pastoris SMD1168to obtain the co-expression strain33-3. Both33-1and33-2were cultured in YPD medium for120h. The recombinant protein concentrations secredted into supernatant were0.49and0.65g/l. The co-expression strain33-3could either secrete endo-xylanase only in YPD medium or secrete both endo-xylansae and xylosidasae when methanol was supplemented. After incubation for120h, total protein concentration in culture supernatant was1.22g/1/. The kurtosis surface of xylan substrate was observed to be noticeably altered. The untreated birchwood xylan exhibited well-arranged polysaccharide molecules and a sharp kurtosis surface, and polysaccharides were observed to be viscous. After hydrolysis of xylan by endo-xylanase, endo-xylanase broke the ligation between polysaccharides into small particles, the concentrations of xylobiose and xylotriose were0.954±0.093and0.360±0.022mg/ml, or62.6%and23.6%of total XOs. Furthermore, the synergic effects of endo-xylanase and β-xylosidase were capable to convert xylan into xylose. After hydrolysis for24h, the concentration of xylose was1.198±0.016mg/ml,69.1%of total XOs. In summary, endo-xylanase gene tfx was modified using rational and non-rational design. The mutant gene was subjected to construct two high-copy yeasts33-1and33-2, and a co-expression yeast33-3. The proteins concentrations in culture medium of these strains were high, and could be further improved by high-density fermentation in fermenter. The strains are potential candidates for application in feed and biofuel industries.
引文
Abecassis, V., Pompon, D., and Truan, G. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast:Statistical and functional analysis of a combinatorial library between human cytochrome P450 IAI and IA2. Nucleic Acids Res., 2000,28:88-89.
    An, J. M., Kim, Y. K., Lim, W. J., Hong, S. Y., An, C. L., Shin, E. C., Cho, K. M., Choi, B. R., Kang, J. M., Lee, S. M., Kim, H., and Yun, H. D. Evaluation of anovel bifunctional xylanase-cellulase constructed by gene fusion. Enzyme Microb. Technol.,2005,36:989-995.
    Arnold, F. H., and Georgious, G. Directed enzyme evolution:Screening and selection methods (methods in molecular biology). Totowa, Humana Press,2003b.
    Arnold, F. H., and Georgious, G. Directed evolution library creation:methods and protocols. Totowa, Humana Press,2003a.
    Arnold, F. H., and Volkov, A. A. Directed evolution of biocatalysts. Curr. Opin. Chem. Biol., 1999,31:54-59.
    Arnold, F. H., Wintrode, P. L., Miyazaki, K., and Gershenson, A. How enzymes adapt:lessons from directed evolution. Trends. Biochem. Sci.,2001,26:100-106.
    Atsumi, S., Hanai, T., and Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature,2008,451:86-90.
    Bailey, M. J., Biely, P., and Poutanen, K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol.,1992,32:257-270.
    Beauchemin, K. A., Rode, L. M., Maekawa, M., Morgavi, D. P., and Kampen, R. Evaluation of a nonstarch polysaccharidase feed enzyme in dairy cow diets. J. Dairy Sci.,2000,83:543-553.
    Becker, S., Schmoldt, H. U., Adams, T. M., Wilhelm, S., and Kolmar, H. Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr. Opin. Microbiol.,2004,15:323-329.
    Bedford, M. R., Classen, H. L., and Campbell, G. L. The effect of pelleting, salt and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci., 1991,70:1571-1577.
    Belien, T., Hertveldt, K., Van den Brande, K., Robben, J., Van Campenhout, S., and Volckaert, G. Functional display of family 11 endoxylanases on the surface of phage M13. J. Biotechnol, 2005,115:249-260.
    Berrin, J. G., Williamson, G., Puigserver, A., Chaix, J. C., Mclauchlan, W. R., and Juge, N. High-level production of recombinant fungal endo-β-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein. Express. Purif.,2000,19:179-187.
    Bocchini, D. A. Gomes, E., and Da Silva, R. Xylanase production by Bacillus circulans D1 using maltose as carbon source. Appl. Biochem. Biotechnol.,2008,146:29-37.
    Boder, E. T., and Wittrup, K. D. Yeast surface for screening combinatorial polypeptide libraries. Nat. Biotechnol.,1997,15:553-557.
    Boraston, A. B., Bolam, D. N., Gilbert, H. J., and Davies, G. J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J.,2004,382:769-781.
    Bouveng, H. O. Phenylisocyanate deriva-tives of carbohydrates Ⅱ Location of O-acetyl groups in birch xylan. Acta Chem. Scand.1961,15:96-100.
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.,1976,72:248-254.
    Cadwell, R. C., Joyce, G.F. Randomization of genes by PCR mutagensis. PCR Methods Appl., 1992,2:28-33.
    Cao, Y. H., Qiao, J. Y., Li, Y. H., and Lu, W. Q. De novo synthesis, constitutive expression of Aspergillus sulphureus β-xylanase gene in Pichia pastoris and partial enzymic characterization. Appl. Microbiol. Biotechnol.,2007,76:579-585.
    Cereghino, J. L., and Cregg, J. M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev.,2000,24:45-66.
    Chambat, G., Karmous, M., Costes, M., Picard, M., and Joseleau, J. P. Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose.1995,12:117-125.
    Chapla, D., Pandit, P., and Shah, A. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour. Technol.,2011, doi:10.1016/ j.biortech.2011.10.083.
    Chen, K.. Q., Arnold, F. H. Enzyme engineering for nonaqueous solvents:Random mutagenesis to enhance activity of subtilisin E inpolar organic media. Bio Technology,1991,9:1073-1077
    Chen, K. Q., Arnold, F. H. Tuning the activity for unusual environments:Sequential random mutagenesis of subtilisin E inpolar for catalysis in dimethylformamide. Proc. Natl. Acad. Sci. USA.,1993,90:5618-5622.
    Chica, R. A., Doucet, N., and Pelletier, J. N. Semi-rational approaches to engineering enzyme activity:combining the benefits of directed evolution and rational design. Curr. Opin. Biotechnol.,16:378-384.
    Chow, J., Kopp, R. J., and Portney, P. R. Energy resources and global development. Science,2003; 302,1528-31.
    Claeyssens, M. and Henrissat, B. Specificity mapping of cellulolytic enzymes:classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci.1992, 1:1293-1297.
    Clare, J. J., Rayment, F. B., Ballantine, S. P., Sreekrishna, K., and Romanes, M. A. High-level expression of tetanus toxin fragmentC in Pichia pastoris strains containing multiple tandem integrations of the gene. Nature Biotechnol.,1991a,9:455-460.
    Clare, J. J., Romanes, M. A., Rayment, F. B., Rowedder, J. E., Smith, M. A., Payne, M. M., Sreekrishna, K., and Henwood, C. A. Production of mouseepidermalgrowthfactor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 1991b,105:205-212.
    Coco, W. M., Levinson, W. E., Crist, M. J., Hektor, H. J., Darzins, A., Pienkos, P. T., Squires, C. H., and Monticello, D. J. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol.,2001,19:354-359.
    Collins, T., Gerday, C., and Feller, G. Xylanase, xylanase families and extremophilic xylanases. FEMS. Microbiol. Rev.,2005:19,3-23.
    Connerton, I., Cummings, N., Harris, G. W., Debeire, P., and Breton, C. A single domain thermophilic xylanase can bind insoluble xylan:evidence for surface aromatic clusters. Biochim. Biophys. Acta.,1999,1433:110-121.
    Coughlan, M. P., and Hazlwood, G. P. β-1,4-D-xylan-degrading enzyme system:Biochemisty, molecular biology and applications. Biotechnol. Appl. Biochem.,1993,17:259-289.
    Courtin, C. M., and Delcour, J. A. Arabinoxylans and endoxylanases in wheat flour bread-making. J. Cereal. Sci.,2002,33:225-243.
    Cregg, J. M., and Higgins, D. R. Production of foreign proteins in the yeast Pichia pastoris. Canadian. J. Botany Supp.,1995,73:5981-5987.
    Cregg, J. M., Tschopp, J. F., Stillman, C., Siegel, R., Akong, M, Craig, W. S., Buckholz, R. G., Maddem, K. R., Kellaris, P. A., Davis, G. R., Smiley, B. L., Cruze, J., Torregrossa, R., Velic lebil, G., and Thill, G. P. High-level expression and efficient assembly of hepatitis b surface antigen in the methylotrophic yeast, Pichia pastoris. Nature Biotechnol., 1987,5:479-485.
    Dekker, R. F. H. Biodegradation of the hetero-lP-linked xylans. ACS Symp. Ser.1989,399: 619-629.
    Demirbas, A. Political, economic and environmental impacts of biofuels:a review. Appl. Energ., 2009,86:S108-S117.
    Deng, P., Li, D. F., Cao, Y. H., Lu, W. Q., and Wang, C. L. Cloning of a gene encoding an acidophilic endo-(?)-1,4-xylanase obtained from Aspergillus niger CGMCC1067 and constitutive expression in Pichia pastoris. Enzyme Microb. Technol.,2006,39:1096-1102.
    Derewenda, U., Swenson, L., Green, R., Wei, Y., Morosoli, R., Shareck, F., Kluepfel, D., and Derewenda, Z. S. Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J. Biol. Chem.,1994,269: 20811-20814.
    Diaz, M., Rodriguez, S., Fernandez-Abalos, J. M., De Las Rivas, J., Ruiz-Arribas, A., Shnyrov, V. L., and Santamaria, R. I. Single mutations of residues outside the active center of the xylanase Xys1D from Streptomyces halstedii JM8 affect its activity. FEMS Microbiol. Lett., 2004,240:237-243.
    Ebringerova, A., and Heinze, T. Xylan and xylan derivatives, biopolymers with valuable properties. Macromol. Rapid Commun,2000,21:542-556.
    Flint, H. J., Martin, J., McPherson, C. A., Daniel, A. S., and Zhang, J. X. A bifunctional enzyme, with separate xylanase and beta (1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol.,1993,175:2943-2951.
    Freeman, A., Cohen-Hadar, N., Abramov, S., Modai-Hod, R., Dror, Y., and Georgiou, G. Screening of large protein libraries by the "cell immobilized on adsorbed bead" approach. Biotechnol. Bioeng.,2004,86:196-200.
    Fujino, T., Beguin, P., and Aubert, J. P. Cloning of a Clostridium thermocellum DNA fragment encoding polypeptides that bind the catalytic components of the cellulosome. FEMS Microbiol. Lett.,1992,94:165-170.
    Funahashi, J., Takano, K., Yamagata, Y., and Yutani, K. Role of surface hydrophobic residues in the conformational stability of human lysozyme at three different positions. Biochemistry, 2000,39:14448-14456.
    Gat, O., Lapidot, A., Alchanati,1., Regueros, C., and Shoham, Y. Cloning and DNA sequence of the gene coding for Bacillus stearothermophilus T-6 xylanase. Appl. Envir. Microbiol.,1994, 60:1889-1896.
    Gebler, J., Gilkes, N. R., Claeyssens, M., Wilson, D. B., Beguin, P., Wakarchuk, W. W., Kilburn, D. G., Miller Jr., R. C., Warren, R. A. and Withers, S. G. Stereoselective hydrolysis catalyzed by related beta-1,4-glucanases and beta-1,4-xylanases. J. Biol. Chem.,1992,267:12559-12561.
    Gibbs, M. D., Nevalainen, K.M. H., and Bergquist, P. L. Degenerate oligonucleotide gene shuffling (DOGS):a method for enhancing the frequency of recombination with family shuffling. Gene,2001,271:13-20.
    Gilkes, N. R., Warren, R.A., Miller, R. C J., and Kilburn, D. G. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem.,1988,263:10401-10407
    Han, Y., and Lei, X. G. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys.,1999,364:83-90.
    Haros, M., Rosell, C. M., and Benedito, C. Effect of different carbohydrases on fresh bread texture and bread staling. Eur. Food Res. Technol.,2002,215:425-430.
    Harris, G. W., Pickersgill, R. W., Connerton, I., Debeire, P., Touzel, J. P., Breton, C. and Perez, S. Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins, 1997,29:77-86.
    He, X. P., Liu, N., Li, W. W., Zhang, Z. Y., Zhang, B. Y., and Ma, Y. H. Inducible and constitutiveexpression of anovelthermostablealkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Pichia pastoris and characterization of the recombinant enzyme. Enzyme Microb. Technol.,2008,43:13-18.
    Henrissat, B. and Coutinho, P. M. Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol.,2001,330:183-201.
    Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L. and Mornon, J. P. Cellulase families revealed by hydrophobic cluster analysis. Gene,1989,81,83-95.
    Heo, J. H., Hong, W. K., Cho, E. Y., Kim, M. W., Kim, J. Y., Kim, C. H., Rhee, S. K., and Kang, H. A. Properties of the Hansenula polymorpha-derived constitutive GAP promoter, assessed using an HSA reporter gene. FEMS Yeast Res.,2003,4:175-184.
    Hesselman, K., and Aman, P. The effect of β-glucanase on the utilization of starch and nitrogen by broilerchickensfed on barley of low- or high-viscosity. Animal Feed Sci. Tech.,1986,45: 65-69.
    Ho, N. W. Y., Chen. Z., Brainard, A. P., and Sedlak, M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv. Biochem. Eng. Biot.,1999,65:163-192.
    Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene,1989,77:51-59.
    Holler, P. D., Holman, P. O., Shusta, E. V., O'Herrin, S., Wittrup. K. D., and Kranz, D. M. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. U S A, 2000,97:5387-5392.
    Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., Pease, L. R. Engineering hybrid genes without the use of restriction enzymes:gene splicing by overlap extension. Gene,1989,77: 61-68.
    Irwin, D., Jung, E. D., and Wilson, D. B. Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microb.,1994,60:763-770.
    Irwin, D., Shin, D. H., Zhang, S., Barr, B. K., Sakon, J., Kapplus, P. A., and Wilson, D. B. Roles of the Catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol.,1998,180:1709-1714.
    Izard, J. W., Doughty, M. B., and Kendall, D. A. Physical and conformational properties of synthetic idealized signal sequences parallel their biological function. Biochemistry.1995,34: 9904-9912.
    Jestin, J. L., and Kaminski, P. A. Directed enzyme evolution and selections for catalysis based on product formation. J. Biotechnol.,2004,113:85-103.
    Johannes, T. W., Zhao H. M. Directed evolution of enzymes and biosynthetic pathways. Curr. Opin. Microbiol.,2006,9:261-267.
    Joshi, C. P., and Mansfield, S. D. The cellulose paradox-simple molecular, complex biosynthesis. Current Option in Plant Biology.2007,10:220-226.
    Kabel, M. A., Borne, H. V. D., Vinvken, J. P., Voragen, A. G. J., Schols, H. A. Structural differences of xylans affects their interaction with cellulose. Carbohydrate Polymers.2007, 69:94-105.
    Kaneko, S., Iwamatsu, S., Kuno, A., Fujimoto, Z., Sato, Y., Yura, K., Go, M., Mizuno, H., Taira, K., Hasegawa, T., Kusakabe, I., and Hayashi, K. Module shuffling of a family F/10 xylanase: replacement of modules M4 and M5 of the FXYN of Streptomyces olivaceoviridis E-86 with those of the Cex of Cellulomonas fimi. Protein Eng.,2000,13:873-879.
    Kantelinen, A., Hortling, B., Sundquist, J., Linko, M., and Viikari, L. Proposed mechanism of the enzymatic bleaching of kraft pulp with xylanases. Holzforschung,1993,47:318-324.
    Knaust, R. K. C., and Nordlund, P. Screening for soluble expression of recombinant proteins in a 96-well format. Anal. Biochem.,2001,297:79-85.
    Komeda, H., Ishikawa, N., and Asano, Y. Enhancement of the thermostability and catalytic activity of D-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3 by directed evolution. J Mol. Catal. B-Enzym.,2003,21:283-290.
    Korona, B., Korona, D., and Bielecki, S. Efficient expression and secretion of two co-produced xylanases from Aspergillus niger in Pichia pastoris directed by their native signal peptides and the Saccharomyces cerevisiae α-mating factor. Enzyme Microb. Technol.,2006,39: 683-689.
    Kulkarni, N., Shendye, A., and Rao, M. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev.,1999,23:411-456.
    Kung, L. Jr., Treacher, R. J., Nauman, G. A., Smagala, A. M., Endres, K. M., and Cohen, M. A. The effect of treating forages with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. J. Dairy Sci.,2000,83:115-122.
    La Grange, D. C., Pretorius, I. S., Claeyssens, M., and van Zyl, W. H. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase Ⅱ(xyn2) genes. Appl. Environ. Microbiol.,2001,67:5512-5519.
    Larson, S. B., Day, J., Barba de la Rosa, A. P., Keen, N. T. and McPherson, A. First crystallographic structure of a xylanase from glycoside hydrolase family 5:implications for catalysis. Biochemistry,2003,42:8411-8422.
    Lee, J., Chio, S., Jang, J. S., Jang, K., Moon, J. W., Bae, C. S., Yang, D. S., and Seong, B. L. Novel secretion system of recombinant Saccharomyces cerevisiae using an n-terminus residue of human IL-1βas secretion enhancer. Biotechnol. Prog.,1999,15:884-890.
    Lee, S. H., Ryu, E. J., Kang, M. J., Wang, E. S., Piao, Z., Choi, Y. J., Jung, K. H., Jeon, J. Y. J., and Shin, Y. C. A new approach to directed gene evolution by recombined extension on truncated templates (RETT). J Mol. Catal. B-Enzym.,2003,26:119-129.
    Lindberg, B., Rosell, K.G., and Svensson, S.1 Position of the O-acetyl groups in birch xylan. Svensk. Papperstid.973,76:30-32.
    Liu, M. Q., and Liu, G. F. Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it.. Protein Expres. Purif.,2008, 57:101-107.
    Liu, M. Q., Weng, X. Y., and Sun, J. Y. Expression of recombinant Aspergillus niger xylanase A in Pichia pastoris and its action on xylan. Protein Expres. Purif,2006,48:292-299.
    Mangala, S. L., Kittur, F. S., Nishimoto, M., Sakka, K., Ohmiya, K., Kitaoka, M., and Hayashi, L. Fusion of familyVIcellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan. J. Mol. Catal. B-Enzym., 2003,21:221-230.
    Marquardt, R. R., Ward, A. T., and Misir R. The retention of nutrients by chicks fed rye diets supplemented with amino acids and penicillin. Poult. Sci.,1979,58:631-640.
    Matte, A., and Forsberg, C. W. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl. Environ. Microbiol.,1992,58:157-168.
    Mchunu, N. P., Singh, S., and Permaul, K. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J. Biotechnol.,2009, 141:26-30.
    Mclean, B. W., Bray, M. R., Boraston, A. B., Gilkes, N. R., Haynes, C. A., and Kilburn, D. G. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose:specificity and identification of functionally important amino acid residues. Protein Eng.,2000,13:801-809.
    Meiering, E. M., Serrano, L., and Fersht, A. R. Effect of active site residues in barnase on activity and stability. J. Mol. Biol.,1992,225:585-589.
    Menendez, C., Hernandez, L., Banguelaa, A., and Paisb, J. Functionalproduction and secretion of the Gluconacetobacter diazotrophicus fructose-releasing exo-levanase (LsdB) in Pichia pastoris. Enzyme Microb. Technol.,2004,34:446-452.
    Menendez, J., Valdes, I., and Cabrera, N. The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast,2003,20:1097-1108.
    Miller, G. L., Blum, R., Glennom, W. E., and Burton, A. L. Measurement of methods for assay of xylanase activity. Anal. Biochem.,1959,2:127-132.
    Miyazaki, K., Takenouchi M., Kondo, H., Noro, N., Suzuki, M., and Tsuda, S. Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J Biol. Chem.. 2006,281:10236-10242.
    Mochizuki, S., Hamato, N., Hirose, M., Miyano, K., Ohtani, W., Kameyama, S., Kuwae, S., Tokuyama, T., and Ohi, H. Expression and characterization of recombinant human antithrombin Ⅲ in Pichiapastoris. Protein Expres. Purif.,2001,23:55-65.
    Murashima, K., Kosugi, A., and Doi, R. H. Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol. Microbiol..2002,45:617-626.
    Nanmori, T., Watanabe, T., Shinke. R., Kohno, A., and Kawamura, Y. Purification and properties of thermostable xylanase and β-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J. Bacteriol., 1990,172:6669-6672.
    Ostermeier, M., Nixon, A. E., Shim, J. H., and Benkovic, S. J. Combinatorial protein engineering by incremental truncation. Proc. Natl. Acad. Sci. USA,1999,96:3562-3567.
    Poon, D. K.., Withers, S. G., and McIntosh, L. P. Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi Xylanase Cex through NMR spectroscopic analysis. J. Biol. Chem., 2007,282:2091-2100.
    Poutanen, K., and Puls, J. Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Appl. Microbiol. Biotechnol.,1988,28:425-432.
    Puls, J. and Schuseil, J. Chemistry of hemicelluloses:relationship between hemicellulose structure and enzyme required for hydrolysis. In:Hernicelluloses and Hemicellulases. Coughlan, M. P. and Hazlewood, G. P., Eds., Portland Press, London.1993.1-27.
    Ragon, M., Neugnot-Roux, V., Chemardin, P., Moulin, G., and Boze, H. Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expr. Purif.,2008,58:275-283.
    Romanos, M. Advances in the use of Pichia pastoris for high-level expression. Curr. Opin. Biotech.,1995,6:527-533.
    Rowe, L. A., Geddie, M. L., Alexander, O. B., and Mastsumura, L. A comparison of directed evolution approaches using the β-Glucuronidase model system. J. Mol. Biol.,2003,332: 851-860.
    Ruanglek, V., Sriprang, R., Ratanaphan, N., Tirawongsaroj, P., Chantasigh, D., Tanapongpipat, S., Pootanakit, K., and Eurwilaichitr, L. Cloning, expression, characterization, and high cell-density production of recombinant endo-1,4-β-xylanase from Aspergillus niger in Pichia pastoris. Enzyme Microb. Technol.,2007,41:19-25.
    Rye, C. S. and Withers, S. G. Glycosidase mechanisms. Curr. Opin. Chem. Biol.,2000,4:573-580.
    Schoichet, B. K.., Baase, W. A., Kuroki, R., and Matthews, B. W. A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA,1995:92:452-456.
    Sears, I. B., O'Connor, J., Rossanese, O. W., Glick, B. S. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast,1999,14:783-790.
    Sedlak. M. and Ho. N. W. Y. Production of ethanol from cellulosic biomass hydrolysate using genetically engineered Sacchuromyces yeast capable of co-fermenting glucose and xylose. Appl. Biochem. Biotech..2004,114:403-416.
    Sedlak, M., Edenberg, H. J., and Ho, N. W. Y. DNA microarray analysis of the expression of the genes encoding major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enzyme. Microbial. Technol,2003,33:19-28.
    Shao, Z., Zhao. H., Giver, L.. and Arnold, F. H. Random-priming in vitro recombination:an effective tool for directed evolution. Nucleic Acids Res..1998,26:681-683.
    Shen, S., Sulter, G. Jeffries. T. W., and Cregg. J. M. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene,1998,216: 93-102.
    Shibuya, H., Kanaeko, S., and Hayashi, K. Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling. Biochem. J.,2000,349:651-656.
    Shin, E., Yang, M., Jung, K. H., Kwon, E., Jung, J. S., Park, S. K., Kim, J., Yun, H. D., and Kim, H. Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl. Environ. Microbiol.,2002,68:3496-3501.
    Shusta, E. V., Holler, P. D., Kieke. M. C., Kranz, D. M., and Wittrup, K. D. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol.,2000,18:754-759.
    Somerville, C. Biofuels. Curr. Microbiol.,2007,17:115-20.
    Sriprang, R., Asano, K., Gobsuk, J., Tanapongpipat, S., Champreda, V., and Eurwilaichitr, L. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. J. Biotechnol,2006,126:454-462.
    Stebel, S. C., Gaida, A., Arndt, K. M., and Muller, K. M. Directed protein evolution. In:Protein and Cell Biomethods Handbook,2nd edition,2007,631-656.
    Stemmer, W. P. C. DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA.,1994a,91: 10747-10751.
    Stemmer, W. P. C. Rapid evolution of a protein in vitro by DNA shuffling. Nature,1994b,370: 389-391.
    Stephens, D. E., Rumbold, K., Permaul, K., Prior, B, A., and Singh, S. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. J. Biotechnol.,2007,127:348-354.
    Stephens, D. E., Singh, S., and Rumbold, K. Error-prone PCR ofa fungal xylanase for improvement of its alkaline and thermal stability. FEMS Microbiol. Lett.,2009,293:42-47.
    Sun, J. Y., Liu, M. Q., Weng, X. Y., Qian, L. C., and Gu, S. H. Expression of recombinant Thermomonospora fusca xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Food Chem.,2007,104:1055-1064.
    Sun, J. Y., Liu, M. Q., Xu, Y. L., Xu, Z. R., Pan, L., and Gao, H. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement. Protein Expres. Purif.,2005,42:122-130.
    Sunna, A., and Antranikian, G. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol.,1997,17:39-67.
    Teng, C., Jia, H., Yan, Q., Zhou, P., and Jiang, Z. High-level expression of extracellular secretion of a P-xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresour. Technol.,2011,102:1822-1830.
    Tomme, P., Van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vandekerckhove, J., Knowles, J., Teeri, T. and Claeyssens, M. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur. J. Biochem.,1988,170:575-581
    Torronen, A. and Rouvinen, J. Structural and functional properties of low molecular weight endo-l, 4-beta-xylanases. J. Biotechnol.,1997,57:137-149.
    Torronen, A., Harkki, A. and Rouvinen, J. Three-dimensional structure of endo-1,4-beta-xylanase Ⅱ from Trichoderma reesei:two conformational states in the active site. EMBO J.1994,13: 2493-2501.
    Turner, N. J. Directed evolution of enzymes for applied biocatalysis. Trend Biotechnol.,2003,21: 474-478.
    Van den Burg, B., Dijkstra, B. W., Vriend, G., Van der Vinne, B., Venema, G., and Eijsink, V. G. Protein stabilization by hydrophobic interactions at the surface. Eur. J. Biochem.,1994,220: 981-985.
    Van Petegem, F., Collins, T., Meuwis, M. A., Gerday, C., Feller, G. and Van Beeumen, J. Crystallization and preliminary X-ray analysis of a xylanase from the psychrophile Pseudoalteromonas haloplanktis. Acta Crystallogr. D:Biol. Crystallogr.2002,58:1494-1496.
    Vassileva, A., Chugh, D. A., Swaminathan, S., and Khanna, N. Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter. J. Biotechnol., 2001,88:21-35.
    Vazquez, M. J., Alonso, J. L., Dominguez, H., and Parajo, J. C. Xylooligosaccharides: manufacture and applications. Trends Food Sci. Technol.,2000,11:387-393.
    Viikari, L., Kantellinen A., Sundquist, J., and Linko, M. Xylanases in bleaching:From an idea to the industry. FEMS Micribiol. Rev.,1994,13:335-350.
    Von Heijne, G. Protein transport:Life and death of a signal peptide. Nature,1998,396:111-113.
    Wada, M., Hsu, C. C, Franke, D., Mitchell, M., Heine, A., Wilson, I, and Wong, C. H. Directed evolution of N-acetylneuraminicacid aldolase to catalyze enantiomeric aldol reactions. Bioorg. Med. Chem.,2003,11:2091-2098.
    Wang, Q., and Xia, T. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnol. Lett.,2008,30:937-944.
    Wang, Q., and Xia, T. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnol. Lett.,2008,30:937-944.
    Wang, Q., and Xia, T. Enhancement of the thermostability and hydrolytic activity f GH10 xylanase by module shuffling between Cellulomonas fimi Cex and Thermomonospora alba XylA. World J. Microbiol. Biotechnol.,2007,23:1047-1055.
    Wang, Y. R., Zhang, H. L., He, Y. Z., Luo, H. Y., and Yao, B. Characterization, gene cloning, and expression of a novel xylanase XYNB from Streptomyces olivaceoviridis Al. Aquaculture, 2007,267:328-334.
    Wassenberg, D., Schurig, H., Liebl, W., and Jaenicke, R. Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima:structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Protein Sci.,1997,6: 1718-1726.
    Watanabe, S., Kodaki, T., and Makino. K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem..2005.280:10340-10349.
    Watanabem, S., Kodaki, T., and Makino, K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem.,2005,280:10340-10349.
    Waterham, H. R., Digan, M. E., Koutz, P. J., Lair, S.V., and Cregg, J.M. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene,1997,186:37-44.
    Whistler, R. L. and Richards, and E. L. Hemi-celluloses. In:The Carbohydrates. Pigman, W. and Horton, D., Eds., Aca-demic Press, New York.1970,2:447-469.
    White, W. B., Bird, H. R., Sunde, M. L., Marlett, J. A., Prentice, N. A., and Burger, W. C. Viscosity of β-D-Glucan as a factor in the enzymatic improvement of barley for chicks. Poult.Sci.,1983,62:853-862.
    Williams, G. J., Domann, S., Nelson, A., and Berry, A. Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution. Proc. Natl. Acad. Sci. USA,2003,100: 3143-3148.
    Winterhalter, C., Heinrich, P., Candussio, A., Wich, G., and Liebl, W. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol. Microbiol.,1995,15:431-444.
    Wong, K. K. Y., Tan, L. U. L., and Saddler, J. N. Multiplicity of β-1,4-xylanase in microorganisms: function and applications. Microbiol. Rev.1988,52:305-317.
    Wu, J. M., Lin, J. C., Chieng, L. L., Lee, C. K., and Hsu, T. A. Combined use of GAP and AOX1 promoter to enhance the expression of human granulocyte-macrophage colony-stimulating factor in Pichia pastoris. Enzyme Microb. Technol.,2003,33:453-459.
    Yang, W. Z., Beauchemin, K. A., and Rode, L M. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J. Dairy Sci.,2000,83:2512-2520.
    Yano, T., Oue, S., and Kagamiyama, H. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. USA,1998,95:5511-5515.
    You, L. C, Arnold, F., H. Directed evolution of subtilisin E in Bacillus subilitis to enhance total activity in aqueous dimethylformamide. Protein. Eng.,1996,9:77-83.
    Zhang, S., Zhang, K., Chen, X., Chu, X., Sun, F., and Dong, Z. Five mutations in N-terminus confer thermostability on mesophilic xylanase. Biochem. Bbioph. Res. Co.,2010,395: 200-206.
    Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., and del Cardayre, S. B. Genome shuffing leads to rapid phenotypic improvement in bacteria. Nature,2002,415:644-646.
    Zhang, Z. G., Yi, Z. L., Pei, X. Q., and Wu, Z. L. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Bioresour. Technol.,2010,101:9272-9278.
    Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F. H. Molecular evolution by staggered extension process (STEP) in vitro recombination. Nat. Biotechnol.,1998,16:258-261.
    Zhu, H., Paradis, F. W., Krell, P. J., Phillips, J. P., and Forsberg, C. W. Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J. Bacteriol.,1994,176:3885-3894.
    白小佳,左志晗,王艳萍.增加ccaR基因剂量提高棒状链霉菌克拉维酸产量的研究.食品研究与开发.2008,29:67-70.
    段招军,王红艳.李武平,吕宏亮,赵军,魏开坤,马学良,侯云德.定向进化人α型干扰素基因家族的研究.病毒学报,2003,19:301-304.
    方柏山,洪燕,夏启容.酶体外定向进化(Ⅱ)——文库筛选的方法及其应用.华侨大学学报(自然科学版),2005,26:113-116.
    方柏山,郑媛媛.酶体外定向进化(Ⅰ)突变基因文库构建技术及其新进展.华侨大学学报(自 然科学版),2004,25:337-341.
    冯文英,李振岩,常清荣,梁改芹,朱静,严自正.木聚糖酶的制备及其在麦草浆漂白中的应用.中国造纸.2002,2:8-13.
    高春生,刘忠虎,肖传斌.木聚糖酶对草鱼生长性能和消化率的影响.饲料研究.2006,8:48-49.
    郭波,谢佩蓉,邹强,郑萍.酵母表面展示系统研究进展.生物化学与生物物理研究进展,2002,29:19-22.
    郝瑞英,高俊杰.植酸酶和木聚糖酶对仔猪钙磷代谢及骨骼发育的影响.饲料博览.2009,6:1-5.
    何云,崔金忠,郑素玲,王岩峰,张亮.木聚糖酶在水产养殖中的应用研究进展.广东农业科学.2008,10:100-101.
    洪枫,刘明山,房桂干,沈兆邦.木聚糖酶预处理对麦草化学机械浆可漂性及白度的改善.林业化学与工业.2001,1:21-28.
    胡奎娟,吴克,潘仁瑞,刘斌,蔡敬民.固态混合发酵提高木聚糖酶和纤维素酶活力的研究.菌物学报.2007,26:273-278.
    胡沂淮,邵蔚蓝.木聚糖酶.生命的化学.2002,23:281-285.
    怀文辉,何秀萍,郭文浩.微生物木聚糖降解酶研究进展及应用前景.微生物学通报.2000,27:137-139。
    黄峰,陈嘉翔,余家鸾.蔗渣硫酸盐浆木聚糖酶漂白及纤维素酶和螯合剂对漂白的影响.中国造纸学报.1998,1:44-52.
    江正强.微生物木聚糖酶的生产及其在食品工业中应用的研究进展.中国食品学报.2005,5:1-9.
    李里特,艾志录,江正强,朱运平,张宁.橄榄绿链霉菌E-86产木聚糖酶水解玉米芯汽爆液生产低聚木糖.食品科学.2004,25:87-90.
    李明,双宝,李海涛.枯草芽孢杆菌的研究与应用.东北农业大学学报.2009,40:111-114.
    李秀婷.微生物木聚糖酶及在食品工业中的应用.农业机械学报.2008,39:175-179.
    廖细古,冯定远,于旭华,汝应俊.木聚糖酶对生长肉鸭生产性能影响的研究.饲料工业.2006,27:44-45.
    刘亮伟,程洁,陈红歌.木聚糖酶碳水化合物结合结构域研究进展.生物工程学报.2010,26:290-296.
    刘亮伟,秦天苍,王宝,刘全军,刘新育,王明道.木聚糖酶的分子进化.视屏与生物技术学报.2007,26:110-116.
    刘明启,孙建义,翁晓燕,高慧.重组毕赤酵母产木聚糖酶条件的优化.浙江大学学报(农业与生命科学版).2006,32:222-226.
    刘明启.提高木聚糖酶热稳定性、催化活性和结合水解纤维素能力的研究.浙江大学博士学位论文.2007.指导教师:孙建义.
    龙英娜,刘焕奇,王明志.重组包涵体的纯化与复兴.黑龙江畜牧兽医.2008,4:70-71.
    娄瑞娟,罗利龙,张霞,张瑞刚,宋水山.巴斯德毕赤酵母表达系统的研究进展和前景展望.生物学杂志.2010,27:73-76.
    吕中原,钱江潮,储炬,郭美锦,王永红,庄英萍,张嗣良.同时利用AOX1和GAP启动子表达SAM合成酶促进重组毕赤酵母中S-腺昔甲硫氨酸积累.工业微生物.2008,4:24-30.
    聂国兴,明红,张玲,刘凯,周洪琪.外源木聚糖酶对尼罗罗非鱼消化器官消化酶活力及分布的影响.华北农学报.2006,21:123-130.
    彭清忠,张惟材,朱厚础.枯草杆菌表达系统的研究进展.生物技术通讯.2001,12:220-225.
    钱利纯.粘性多糖及多糖酶的研究进展.饲料工业.2003,24:23-25.
    沈卫锋,牛宝龙,翁宏飚.枯草芽孢杆菌作为外源基因表达系统的研究进展.浙江农业学报.2005,17:234-238.
    孙强明,刘红岩,戴长柏,马雁冰,孙茂盛,徐维明.huGM-CSF(9-127)-IL-6(29-184)融合蛋白的复性及纯化研究.生物工程学报.2002,18:291-294.
    唐语谦,叶茂,林影,韩双艳,郑泓,王小宁,梁世中.人源蛋白酶体α亚基6 (proteasome subunit alpha 6)在酿酒酵母表面展示.生物化学与生物物理研究进展,2007,34:984-990.
    田野,刘鹏,杨秀丽.纸浆生物漂白的研究进展.江苏造纸.2010,4:27-32.
    王海英,呙于明,袁建敏.小麦日粮中添加木聚糖酶对肉仔鸡生产性能的影响.饲料研究.2003,12:1-5.
    王晓霞,郑晨娜,王飞飞,方柏山.共表达木聚糖酶和木糖还原酶生产木糖醇的研究.食品与发酵工业.2007,33:26-29.
    王修启,陈杰,林东康,秦磊,常娟.皖麦38添加木聚糖酶对鸡表观代谢能值和氨基酸表观消化率的影响.华北农学报.2003,18:116-118.
    王艳萍,张宝持,孟琦,白小佳.基因剂量与溶氧对毕赤酵母工程菌发酵产BMP的影响研究.中国调味品.2010,6:50-53.
    吴华伟,戴军,邵蔚蓝.草菇中木糖苷酶的分离纯化及其酶学特性.无锡轻工业大学学报.2004,23:30-35.
    吴淑芳,尤纪雪,丁少军,李忠正.木聚糖酶对马尾松KP浆漂白的研究.西南造纸.1999,5:7-10.
    夏启容,方柏山,洪燕.酶体外定向进化(Ⅲ)——展示技术及其应用.华侨大学学报(自然科学版),2005,26:333-337.
    徐卉芳,张先恩,张治平,张用梅,Cass, A. E. G.大肠杆菌碱性磷酸酶的体外定向进化研究.生物化学与生物物理研究进展,2003,30:89-94.
    徐骏,袁华根,高峰.小麦日粮中添加木聚糖酶对肉仔鸡生长性能的影响.饲料研究.2007,4:70-72.
    杨浩萌,孟昆,罗会颖,王亚茹,袁铁铮,柏映国,姚斌,范云六.通过N端替换提高木聚糖酶的热稳定性.生物工程学报.2006,22:26-32.
    杨浩萌,王亚茹,伍宁丰,姚斌.N13D、S40E点突变提高木聚糖酶XYNB的热稳定性.微生物学通报.2007,34:533-536.
    勇强,尤纪雪,顾祺萍,刘超纲,余世袁.木聚糖酶的定性制备及其在制浆造纸工业中的应用.中国造纸学报.2004,19:44-47.
    余波,程安春,汪铭书.大肠杆菌中重组蛋白可溶性表达的研究进展及展望.黑龙江畜牧兽医.2008,10:19-21.
    俞沛初,徐建雄,张荣.低能量日粮中添加非淀粉多糖酶对仔猪生长性能的影响.中国饲料.2005,11:9-11.
    袁巧灵,张美丽.木聚糖酶对仔猪生长性能的影响.畜牧与饲料科学.2006,5:40-41.
    臧家涛,李淑慧,李鹏等.应用DNA shuffling及T7噬菌体展示技术定向进化并筛选鉴定sCD74突变体.第三军医大学学报.2008,30:694-697.
    张爱联,罗进贤,张添元,陈守才,官文俊.用GAP启动子在毕节酵母中组成型表达人血管抑制素.遗传学报(英文版),2004,31:552-557.
    张传亮.水稻木聚糖酶抑制剂基因rixi的克隆表达及其产物特性研究.浙江大学硕士学位论文.2009.指导教师:孙建义.
    张浩.定点突变技术的研究进展.免疫学杂志.2000,16:S108-S1 10.
    张金鑫,田沈,刘继开,张亚珍,杨秀山.代谢木糖产乙醇的酿酒酵母工程菌研究进展.微生物通报.2008,35:572-576.
    张玲,聂国兴,周洪琪.木聚糖酶对鲫鱼生长性能和小肠绒毛的影响.浙江海洋学院(自然科学版).2006,25:133-137.
    张小霞.外源蛋白质表达系统类型的研究进展.国外医学(卫生学分册).2004,31:203-208.
    周学飞,陈嘉翔,余家鸾.螯合剂与木聚糖酶预处理对桉木KP浆含氧漂白的影响.中国造纸学报.1997,12:53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700