用户名: 密码: 验证码:
沸石分子筛的形貌控制与催化吸附功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔分子筛具有丰富的孔道结构,大的比表面积,较窄的孔径分布,高的热与水热稳定性以及超强的吸附能力,这些优异的性能使微孔分子筛成为工业界最重要的一类催化剂。分子筛的应用性能与其形貌有着密切的关系,例如大尺寸分子筛晶体在研究分子在分子筛内吸附、扩散机理以及加工成光学器件等方面有着重要应用,而小尺寸分子筛晶体由于反应物与产物更易扩散从而表现出良好的催化活性与使用寿命,在分子筛膜的研究工作中则需要粒径均一的纳米级分子筛晶体,并且要求分子筛晶体有特定的空间排列方向。可见分子筛的形貌控制工作无论是在基础理论研究方面还是从实际应用角度来说都极具意义。
     本论文试图通过选择不同的沸石分子筛合成体系与不同的添加剂,并经过优化合成条件,如添加剂用量、添加剂加入时间、晶化温度、晶化时间,从而得到具有不同形貌的沸石分子筛产品。同时本论文对所得到分子筛产品的合成机理与催化吸附性能进行了全面系统的研究。
     微孔MFI结构钛硅分子筛TS-1自从1983年被意大利Enichem公司开发出来以后,就以其良好的催化活性与稳定性而受到人们的广泛重视。特别需要提到的是,TS-1分子筛在催化氧化反应中更是表现出极高的催化活性,这些氧化反应包括烯烃的环氧化反应,芳香烃的羟化反应,烷烃、胺、醇、硫化物以及醚的氧化反应,在这些氧化反应中均需要用到对环境友好的H202作为氧化剂。TS-1的催化活性强烈依赖于其晶体尺寸。如果TS-1晶体尺寸为纳米级别(小于0.3微米),那么其在氧化反应中如苯酚羟化反应就会有很好的活性,相反若TS-1晶体的尺寸较大(大于1.0微米),其活性就会非常低。这主要是因为纳米级别分子筛的孔道长度比大晶体的孔道长度要短,反应物和产物分子在纳米分子筛中的传输与扩散更加容易,另外纳米分子筛的活性位暴露的也要更多,这同样有利于纳米分子筛的高活性。但是纳米分子筛尺寸小,往往在分离时就必须采用高速离心技术,这种分离方法大大增加了生产成本,在工业大规模生产也很难实现。为了克服以上问题,Xiao F S等人利用钛硅前驱体与三嵌段共聚物进行自组装,进而得到有序介孔钛硅材料MTS-9。MTS-9尺寸较大可以通过抽滤方法实现有效分离,但是MTS-9中钛物种的热稳定性相对较低,这个缺点严重影响了MTS-9在一系列催化反应中的催化性能。近些年来研究人员通过大量的研究工作使钛物种的热稳定性得到显著的提高,但是得到的钛硅材料的催化活性与纳米TS-1比起来还是要低许多。由此可见,一种既具有纳米TS-1的高催化活性同时又能够通过简单的抽滤方法实现分离的催化材料对于工业生产来说极具意义。我们通过在纳米TS-1合成体系内加入无机添加剂H2O2成功得到一种由纳米TS-1晶体聚集的大块状TS-1颗粒(Bulky-TS-1),这种大块状颗粒产品的尺寸可达到几十微米,通过简单抽滤方法就能够实现有效分离。由于大块状颗粒由纳米晶体聚集而成,因而保持了纳米TS-1的高催化活性,在苯酚羟化反应中大块状产品表现出与纳米TS-1相似的高活性。
     我们知道,MFI型分子筛骨架结构为各向异性,两种类型的十员环孔道相互交叉,它们分别是平行于b-轴方向的十员环直孔道(5.3×5.6(?)),平行于a-轴方向的之字型十员环孔道(5.1×5.5(?))。由于直孔道的孔径尺寸更大,因此动力学半径尺寸较大的分子在直孔道内的传输与扩散要更加容易,如环己酮肟与对二甲苯(动力学半径为5.8(?))。而对于之字型孔道来说,由于其尺寸相对较小,较大尺寸分子在其内部的扩散与传输就要更加的困难。对于MFI型分子筛,更短的b-轴长度就意味着分子在分子筛内部具有更高的吸附与扩散速率,因而通过控制MFI分子筛晶体形貌,控制b-轴长度就可以有效控制MFI型分子筛的吸附与催化等性能。通过控制MFI型分子筛如ZSM-5或TS-1的形貌生长进而控制其性能的工作之前有过一些报道。例如Hwang等人在微波辐射加热条件下,成功得到分子筛晶体沿着b-轴方向相互连接的纤维状形貌TS-1产品,他们所得到的纤维状TS-1具有更高的催化活性,而且在二甲苯选择性吸附实验中,纤维状TS-1同样表现出优异的择形吸附性能。Ryoo R等人利用一种特殊的表面活性剂C22H45-N1(CH3)2-C6H12-N1(CH3)2-C6H13成功得到b-轴方向非常薄的MFI型分子筛,他们得到的产品只有两个MFI晶胞的厚度,这种非常薄的结构对于化学反应中的反应物与产物在其内部的扩散非常有利,在大分子催化反应中其产品表现出明显高于传统MFI分子筛的催化活性与更长的使用寿命。到目前为止,分子筛的形貌控制工作虽然取得了很大进展,但是多数工作需要非常苛刻的合成条件与非常昂贵的有机模板剂,并且合成过程复杂,这些问题限制了它们在工业生产中的实际应用。因此,根据特定的需要,利用价格低廉的原料并通过简单的合成过程实现对分子筛形貌的有效控制就成为一项极具意义的工作。我们通过在传统TS-1合成体系内添加价格低廉的有机添加剂并利用一步水热合成法,成功实现了对TS-1分子筛的形貌控制。我们利用尿素作为添加剂得到b-轴方向非常薄的片层状TS-1 (TS-1-S),而利用氟碳表面活性剂FC-4作为添加剂我们成功得到b-轴方向非常长的链状TS-1 (TS-1-C)。通过改变实验条件,我们可以在80纳米至5微米长度范围内对TS-1的b-轴方向长度进行有效控制。我们得到的不同b-轴长度TS-1产品在催化贝克曼重排反应以及二甲苯异构体的选择性吸附实验中表现出优异的性能。
     Y型沸石具有三维畅通的骨架结构、非常高的热稳定性与水热稳定性,在石油炼制及化学工业生产中,尤其是在流动床催化裂化(FCC)反应中表现出不可替代的作用。作为吸附剂,Y沸石对挥发性有机物同样表现出优良的吸附性能。Y沸石的催化性能与吸附性能与其骨架的硅铝摩尔比有着非常密切的关系。例如,当提高Y沸石的骨架硅铝比值时,其热稳定性与水热稳定性会随之提高,这将有利于制备出性能优异的FCC反应催化剂。一般情况下,常规Y型沸石需要在100℃左右晶化制备,而得到产品的摩尔硅铝比值为5.0-5.3,为了得到具有更高骨架硅铝比值的Y沸石产品,人们做了大量研究工作。二次后处理法是目前制备高硅铝比Y沸石应用比较广泛的一种方法。例如有人在高温条件下利用水蒸气处理常规Y沸石,Y沸石骨架中的铝会被部分脱除,骨架结构则会得到较好的保持,得到的产品具有很高的硅铝比,水热稳定性非常高,催化活性可以得到大幅度提升。二次法合成高硅铝比Y沸石虽然能够得到具有较高骨架硅铝比的产品,但是合成过程过于复杂,生产成本也较高,因而采用一步法直接合成高硅铝比Y沸石,就成为一项具有重要实际意义的工作。人们发现,较高的晶化温度对于得到高硅铝比Y沸石是有利的,但是较高的晶化温度往往会导致Y沸石产品的转晶。当前,Y沸石的合成大多是在110℃以下采取水热合成。虽然有人报道能够在高温条件(110-150℃)合成出Y型沸石,但是在这些合成中必须要用到有机模板剂,有机模板剂的加入一方面大大提高了生产成本,另一方面会使合成过程变得复杂。我们则在不添加有机模板剂的条件下,仅仅通过在Y沸石合成体系内加入少量甲基三乙氧基硅烷,在高晶化温度140℃条件下,水热法一步合成出具有六方片层状形貌的Y型沸石产品。与传统Y沸石相比,我们得到的产品具有更高的骨架硅铝比以及更小的晶体尺寸,同时对有机挥发物表现出明显高于传统Y沸石的吸附性能。
Zeolites are regarded as the most important heterogeneous acid catalyst in industry due to their rich channel structure, large surface area, narrow pore size distribution, high thermal and hydrothermal stabilities and high adsorption capacity. The service performance of zeolites are closely related to their morphology, for example, large size zeolites have an important application in studying the adsorption and diffusion mechanism of organic molecules or designing optical devices. Small size zeolites show excellent catalytic performance owes to good adsorptive and diffusive property of reactants and products, while in the fields of zeolites film, small and uniform zeolite crystals are necessary and these crystals need to be arranged in preferred orientation. Thus, the morphology control of zeolites is very meaningful not only for basic research but also for practical application.
     The present project try to obtain zeolites with different morphology by choosing different zeolites synthesis system and different additives and the synthesis conditions such as amount of additives, adding order of additives, crystallization temperature, crystallization time also need to be optimized. The crystallization mechanism and the catalytic and adsorptive properties of the products are also studied systematically in present project.
     Microporous titanosilicate zeolite with MFI structure (TS-1), discovered by Enichem Company in 1983, obtains great attention for its excellent catalytic activity and stability. Especially, TS-1 shows superior catalytic properties in a series of oxidations such as epoxidation of linear olefins, hydroxylation of aromatics, oxidations of linear alkanes, amines, alcohols, sulfur compounds and ethers in the presence of environmentally benign oxidant of H2O2. The catalytic activities of TS-1 zeolite is dramatically dependent on the crystal sizes. For example, TS-1 nanocrystals (less than 0.3μm) show good activity in the hydroxylation of phenol, while the crystals larger than 1μm are almost inactive. For TS-1 nanocrystals, the transmission and diffusion of reactants and products are much more easier and there are more active sites exposed. The preparation of TS-1 crystals with small sizes (<0.3μm) usually required a centrifugation route for the separation of TS-1 nanocrystals from a slurry system, which is not suitable for the production of TS-1 zeolite in a large scale for industrial process. To overcome these problems, the self-assembly of preformed titanosilicate precusors with triblock copolymers has been employed by Xiao F.-S., giving ordered mesoporous titanosilicates (MTS-9). In this case, MTS-9 was easily obtained from a normal industrial route of filtration. However, the thermal stability of titanium in MTS-9 is relatively low, which strongly influences its catalytic properties in a series of oxidations. Despite of encouraging progresses for the thermal stability of titanium species in recent years, the catalytic performances of the current titanosilicate materials are yet generally lower than those of TS-1 nanocrystals. Therefore, the preparation of TS-1 zeolite with good properties in catalytic oxidations by a simple filtration route is strongly desirable. We demonstrate here a facile filtration methodology for preparation of stable bulky-particles of TS-1 zeolite with good catalytic activities (Bulky-TS-1) in the presence of H2O2. Bulky-TS-1 exhibits comparable properties in catalytic phenol hydroxylation with TS-1 nanocrystals collected from a high-speed centrifugation.
     MFI-type zeolite possesses an anisotropic framework with two intersecting 10-membered ring channels including straight channels (5.3x5.6 A) parallel to b-axis and zig-zag channels (5.1x5.5 A) parallel to a-axis. The straight channels are favorable for diffusion and formation of relatively large products such as cyclohexanone oxime and p-xylene (kinetic diameter ca.5.8 A), while the zig-zag channels are difficult for the adsorption of these molecules due to the shape selectivity. The MFI zeolites with shorter b-orientation mean higher diffusive and adsorptive rates for molecules. Therefore, by controlling crystalline length along b-axis, catalytic and adsorptive properties over MFI crystals could be significantly adjusted. There are successful examples for preferential growth of ZSM-5 (aluminosilicate MFI-type) and TS-1 crystals. Hwang et al. show microwave fabrication of MFI zeolite crystals with a fibrous morphology and the product they got shows excellent catalytic and adsorptive property. Ryoo R et al produced MFI zeolites with very short b-axis by empoying a kind of special surfactant C22H45-N1(CH3)2-C6H12-N1(CH3)2-C6H13. The thickness of the product is as thin as two crystal cell and the short b-oriented length is favorable for the catalytic reaction. Despite of encouraging progresses for the zeolite morphology control in recent years, most need complex procedure and expensive template and these are not suitable for industrial process. Thus, the morphology control of zeolite by employing cheap raw materials and simple synthesis process is a meaningful work. We report an one-pot growth of TS-1 crystals with various b-oriented length by introducing organic additives in the starting titanosilicate gels. After addition of urea in the starting gel, TS-1 crystals with sheet-like morphology designated as TS-1-S have been successfully synthesized. After addition of surfactant FC-4, TS-1 with chain-like morphology designated as TS-1-C have also been successfully obtained. By optimizing the synthesis conditions,b-oriented length of the TS-1 crystals can be varied from 80 nm to 5μm. The TS-1 products we obtained exhibit quite distinguishable catalytic activities in the Beckmann rearrangement of cyclohexanone oxime and good adsorptive properties for xylenes.
     Zeolite Y possesses a three dimensional channel structure and high thermal and hydrothermal stability, in chemical industry especially for FCC reaction, zeolite Y shows excellent catalytic property. As a adsorbent, zeolite Y also shows good adsorptive property towards volatile organic compounds. The Si/Al ratio of framework is very important for zeolite Y. As increasing the Si/Al ratio, the stability of Y can be improved, this is favorable for FCC reaction. Generally, the crystallization temperature of Y is 100℃and the Si/Al ratio of the framework is about 5.0-5.3. So far, researchers have made lots of efforts to increase the Si/Al ratio of zeolite Y. Post treatment is a popular method for preparing zeolite Y with higher Si/Al ratio. For example, high temperature steam can be employed to dealuminize zeolite Y and the framework can be maintained, thus high Si/Al ratio Y can be obtained. Although post treatment method is effective to prepare high Si/Al ratio Y, the synthesis procedure is complex and the cost is high. If high Si/Al ratio Y can be synthesized by one-pot method, it will be a very meaningful work for industry. We know high crystallization temperature is favorable for synthesizing high Si/Al ratio Y, but high crystallization temperature sometimes leads to the phase transition of zeolite crystals. Up to now, crystallization temperature of Y zeolite is mainly lower than 110℃, although some reached 110-150℃, the expensive organic templates must be employed and the addition of template will make the synthesizing process more complex. Here, without using organic template, just by adding a little methyltriethoxysilane (MTS), we have successfully obtained sheet-like zeolite Y crystals in high crystallization temperature (140℃) through one-pot hydrothermal synthesis. Compared with conventional Y zeolite, Y product we got own higher Si/Al ratio of the framework, smaller crystal size and better adsorptive property towards organic volatile compounds.
引文
[1]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [2]Everett D H. IUPAC manual of symbols and terminologyManual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix Ⅱ:Definitions, Terminology and Symbols in Colloid and Surface Chemistry [J]. Pure Appl. Chem,1972,31:578-638.
    [3]Cronstedt A F. Ron och beskrifning om en obekant barg art, som kallas zeolites. Kongl. Vetenskaps Acad [J]. Handl. Stockholm,1756,17:120-123.
    [4]Barrer R M. Syntheses and reactions of mordenite [J]. J. Chem. Soc.,1948,10: 2158-2163.
    [5]Wilson S T, Lok B M, Flanigen E M. U.S. patent 4,310,440 (1982).
    [6]Davis M E, Saldarriaga C, Montes C, et al. A molecular sieve with eighteen-membered rings [J]. Nature,1988,331:698-699.
    [7]Occelli M.L. U.S. Patent 5,374,349 (1994).
    [8]Martens J A, Souverijns W, Verrelst W, et al. Selective Isomerization of Hydrocarbon Chains on External Surfaces of Zeolite Crystals [J]. Angew. Chem. Int. Ed.,1995,34:2528-2530.
    [9]Huybrechts W, Thybaut J W, De Waele B R, et al. Bifunctional catalytic isomerization of decane over MTT-type aluminosilicate zeolite crystals with siliceous rim [J]. J. Catal.,2006,239:451-459.
    [10]Sheldon R A, Kochi J K. Metal-Catalyzed Oxidations of Organic Compounds [M]. New York: Academic Press,1981.
    [11]Corma A, Esteve P, Martinez A, Valencia S. Oxidation of Olefins with Hydrogen Peroxide and tert-Butyl Hydroperoxide on Ti-Beta Catalyst [J]. J. Catal.,1995, 152:18-24.
    [12]Pannov G I, Sobolev V I, Kharitonov A S. The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed [J]. J.Mol. Catal.,1990,61:85-97.
    [13]Perez-Ramirez J. Active iron sites associated with the reaction mechanism of N2O conversions over steam-activated FeMFI zeolites [J]. J. Catal.,2004,227: 512-522.
    [14]Lai Z P, Bonilla G, Diaz I, et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation [J]. Science,2003,300:456-460.
    [15]Bonilla G, Diaz I, Tsapatsis M, et al. Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents [J]. Chem. Mater.,2004,16: 5697-5705.
    [16]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism [J]. Nature,1992,359:710-712.
    [17]Beck J S, Vartuli J C, Roth W J, et al. A-New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates [J]. J Am Chem Soc, 1992,114:10834-10843.
    [18]陈逢喜,黄茜丹,李全芝.中孔分子筛研究进展[J].科学通报,1999,44:1905-1526.
    [19]Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates-Nanoscopic reactors coming of age [J]. Adv Mater,2000,12: 1403-1419.
    [20]Davidson A. Modifying the walls of mesoporous silicas prepared by supramolecular-templating [J]. Curr Opin Colloid Interface Sci,2002,7:92-106.
    [21]袁志庆,慎炼,刘华彦等.中孔硅基分子筛的催化应用研究进展[J].化工生产与技术,2001,34:35-38.
    [22]Kozhevnikov I V, Sinnema A, Jansen R J J, et al. New Acid Catalyst Comprising Heteropoly Acid on a Mesoporous Molecular-Sieve MCM-41 [J]. Catal Lett, 1995,30:241-252.
    [23]Raimondo M, Perez G, Sinibaldi N, et al. Mesoporous M41S materials in capillary gas chromatography [J]. Chem Commun,1997,1343-1344.
    [24]Huang H Y, Yang R T, Chinn D, et al. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas [J]. Ind. Eng. Chem. Res,2003,42:2427-2433.
    [25]Xu X H, Song C S, Andresen J M, et al. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 [J]. Microp. Mesop. Mater.,2003,62: 29-45.
    [26]徐应明,李军幸,戴晓华等.介孔分子筛表面功能膜的制备及对水体中铅汞镉的去除作用[J].应用化学,2002,19:941-945.
    [27]Zhang L X, Zhang W H, Shi J L, et al. A new thioether functionalized organic-inorganic mesoporous composite as a highly selective and capacious Hg2+adsorbent [J]. Chem Commun,2003,210-211.
    [28]谭欣,王榕树,霍爱群.载银介孔分子筛HMS(Ag)对大肠杆菌灭菌作用初探化学通报网络版[J].1999,99030.
    [29]Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science,1998, 281:538-540.
    [30]Davis K E, Russel W B, Glantschnig WJ. Disorder-to-Order Transition in Settling Suspensions of Colloidal Silica-X-Ray Measurements [J]. Science,1989, 245:507-510.
    [31]vanBlaaderen A, Ruel R, Wiltzius P. Template-directed colloidal crystallization [J]. Nature,1997,385:321-324.
    [32]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating [J]. Nature,1997,389:948-951.
    [33]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silicasurfactant mesophases [J]. Nature,1997,385: 420-423.
    [34]Ogasawara W, Shenton W, Davis S A, et al. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix [J]. Chemistry of Materials,2000,12:2835-2837.
    [35]Bennett J M, Cohen J M, Artioli G, et al. Crystal structure of AlPO4-21, a framework aluminophosphate containing tetrahedral phosphorus and both tetrahedral and trigonal-bipyramidal aluminum in 3-,4-,5-, and 8-rings [J]. Inorg. Chem.,1985,24:188-193.
    [36]Parise J B, Day C S. The structure of trialuminium tris(orthophosphate) hydrate, AlPO4-21, with clathrated ethylenediamine, Al3(PO4)3.C2H8N2.H2O, and pyrrolidine, A13(PO4)3.C4H9N.H2O [J]. Acta Crystallogr.,1985,41:515-520.
    [37]Davis M E, Saldarriaga C, Montes C, et al. A molecular sieve with eighteen-membered rings [J]. Nature,1988,331:698-699.
    [38]Davis M E, Saldarriaga C, Montes C, et al. VPI-5:The first molecular sieve with pores larger than 10 angstroms [J]. Zeolites,1988,8:362-439.
    [39]McCusker L B, Baerlocher Ch, Jahn E, et al. The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5 [J]. Zeolites,1991,11: 308-313.
    [40]Baerlocher Ch, Meier W M, Olson D H. Atlas of zeolite framework types [M]. Amsterdam:Elsevier,2001.
    [41]Newsam J M. The zeolite cage structure [J]. Science,1989,231:1093-1099.
    [42]Bibby D M, Dale M P. Synthesis of Silica-sodalite from Non-aqueous Systems [J]. Nature,1985,317:157-158.
    [43]Xiao F S, Qiu S L, Pang W Q, et al. New Developments in Microporous Materials [J]. Adv. Materials,1999,11:1091-1099.
    [44]Chen J S, Pang W Q, Xu R R. Mixed-bonded Open Framework Aluminophosphates and Related Layered Materials [J]. Topics in Catalysis,1999, 9:93-103.
    [45]Slangen P M, Jansen J C, Bekkum H Van. The Effect of Ageing on the Microwave Synthesis of Zeolite NaA [J]. Microp. Mater.,1997,9:259-265.
    [46]Kim D S, Kim S M, Chang J S, et al. Rapid and Mass Production of Porous Materials Using a Continuous Micropwave Equipment [J]. Stud. Surf. Sci. Catal., 2001,135:333-335.
    [47]Kunii K, Narahara K, Yamanaka S. Template-free Synthesis of AIPO4-H1-H2 and -H3 by microwave Heating [J]. Microp. Mesop. Mater.,2002,52:159-167.
    [48]Kessler H, Patarin J, Schott-Darie C. Synthesis of High-Silica Zeolites and Phosphate-based Materials in the Presence of Fluoride [J]. Stud. Surf. Sci. Catal., 1994,85:75-113.
    [49]庞文琴,裘式纶,周凤歧.杂原子分子筛合成研究进展[J].吉林大学自然科学学报,1992年特刊(化学):78-84.
    [50]Kerr G T, Shipman G F. Reaction of hydrogen zeolite Y with ammonia at elevated temperatures [J]. J. Phys. Chem.,1968,72:3071-3072.
    [51]Beyor H K, Belurykaya I M, Hange F. Preparation of High-Silica Faujasite by Treatment with Silicon Tetrachlonide [J]. J. Chem. Soc. Faraday Trans.,1985, 1.8L:2889-2901.
    [52]Kiricsi I, Shimizu S, Kiyozumi Y, et al. Catalytic Activity of a Zeolite disc Synthesized through Solid State Reactions [J]. Microp. Mesop. Mater.,1998,21: 453-459.
    [53]He Y J, Nivarthy G S, Eder F, et al. Synthesis, Characterization and Catalytic Activity of the pillared Molecular Sieve MCM-36 [J]. Microp. Mesop. Mater., 1998,25:207-224.
    [54]Yanagisawa T, Shimizu T, Kuroda K, et al. The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials [J]. Bull Chem. Soc. Jpn.,1990,63:988-992.
    [55]Rao P, Prasad R H, Leon Y, et al. Synthesis of BEA by Dry Gel Conversion and Its Characterization [J]. Microp. Mesop. Mater.,1998,21:305-313.
    [56]Huo Q S, Xu R R. A New Route for the Synthesis of Molecular Sieves-Crystallization of AIPO4-5 at High Temp [J]. J. Chem. Soc. Chem. Commun.,1992:168-169.
    [57]Jandeleit B, Schaefer D J, Powers T S, et al. Combinatorial Materials Science and Catalysis [J]. Angew. Chem. Intl. Ed.,1999,38/17:2495-2532.
    [58]Breck D W, Flanigen E M. Molecular Sieves [M]. London:Society of Chemical Industry,1968.
    [59]Xu W, Li J, Li W, et al. Nonaqueous Synthesis of ZSM-35 and ZSM-5 [J]. Zeolites,1989,9:468-473.
    [60]Kerr G T. Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A [J]. J. Phys. Chem.,1966,70:1047-1050.
    [61]Ozin G A, Kuperman A, Stein A. Advanced Zeolite, Materials Science [J]. Angew. Chem. Intl. Ed.,1989,28:359-376.
    [62]Stucky G D, Mac Dougall J E. Quantum Confinement and Host/Guest Chemistry: Probing a New Dimension [J]. Science,1990,247:669-678.
    [63]Caro J, Finger G, Kornatowski J, et al. Aligned molecular sieve crystals [J]. Adv. Mater.,1992,4:273-276.
    [64]Ozin G A. Nanochemistry:Synthesis in diminishing dimensions [J]. Adv. Mater., 1992,4:612-649.
    [65]Kuperman A, Nadimi S, Oliver S, et al. Non-aqueous synthesis of giant crystals of zeolites and molecular sieves [J]. Nature,1993,365:239-242.
    [66]Shimizu S, Hamada H. Synthesis of Giant Zeolite Crystals by a Bulk-Material Dissolution Technique [J]. Angew. Chem. Int. Ed.,1999,38:2725-2727.
    [67]Gao F, Zhu G, Li X, et al. Synthesis of a High-Quality Host Material:Zeolite MFI Giant Single Crystal from Monocrystalline Silicon Slice [J]. J. Phys. Chem. B,2001,105:12704-12708.
    [68]Sun J, Zhu G, Chen Y, et al. Synthesis, surface and crystal structure investigation of the large zeolite beta crystal [J]. Micropor. Mesopor. Mater.,2007,102: 242-248.
    [69]Charnell J F. Gel growth of large crystals of sodium A and sodium X zeolites [J]. J. Crystal Growth,1971,8:291-294.
    [70]Tosheva L, Valtchev V P. Nanozeolites:Synthesis, Crystallization Mechanism, and Applications [J]. Chem. Mater.,2005,17:2494-2513.
    [71]Mintova S, Olson N H, Bein T. Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids [J]. Angew. Chem. Int. Ed., 1999,38:3201-3204.
    [72]Holmberg B A, Wang H, Norbeck J M, et al. Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide [J]. Microp. Mesop. Mater., 2003,59:13-28.
    [73]Mintova S, Olson N H, Valtchev V, et al. Mechanism of Zeolite A Nanocrystal Growth from Colloids at Room Temperature [J]. Science,1999,283:958-960.
    [74]Serrano D P, Aguado J, Escola J M, et al. Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds [J]. Chem. Mater.,2006,18:2462-2464.
    [75]Vuong G T, Do T O. A New Route for the Synthesis of Uniform Nanozeolites with Hydrophobic External Surface in Organic Solvent Medium [J]. J. Am. Chem. Soc.,2007,129:3810-3811.
    [76]Madsen C, Jacobsen C J H. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis [J]. Chem. Commun.,1999, 673-674.
    [77]Schmidt I, Madsen C, Jacobsen C J H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites [J]. Inorg. Chem.,2000,39:2279-2283.
    [78]Jacobsen C J H, Madsen C, Janssens T V W, et al. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy [J]. Microp. Mesop. Mater., 2000,39,393-401.
    [79]Beck L W, Davis M E. Alkylammonium polycations as structure-directing agents in MFI zeolite synthesis [J]. Microp. Mesop. Mater.,1998,22:107-114.
    [80]Diaz I, Kokkoli E, Terasaki O, et al. Surface Structure of Zeolite (MFI) Crystals [J]. Chem. Mater.,2004,16:5226-5232.
    [81]Bonilla G, Diaz I, Tsapatsis M, et al. Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents [J]. Chem. Mater.,2004,16: 5697-5705.
    [82]Corma A. Materials chemistry:Catalysts made thinner [J]. Nature,2009,461: 182-183.
    [83]Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts [J]. Nature,2009,461:246-249.
    [84]Verboekend D, Realpe R C, Bonilla A, et al. Properties and Functions of Hierarchical Ferrierite Zeolites Obtained by Sequential Post-Synthesis Treatments [J]. Chem. Mater.,2010,22:4679-4689.
    [85]de Jong K P, Zecevic J, Friedrich H, et al. Zeolite Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts [J]. Angew. Chem. Int. Ed.,2010,49: 10074-10078.
    [86]Groen J C, Bach T, Ziese U, et al. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals [J]. J. AM. CHEM. SOC., 2005,127:10792-10793.
    [87]Jacobsen C J H, Madsen C, Houzvicka J, et al. Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc.,2000,122:7116-7117.
    [88]Schmidt I, Boisen A, Gustavsson E, et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J]. Chem. Mater.,2001,13:4416-4418.
    [89]Boisen A, Schmidt I, Carlsson A, et al. TEM stereo-imaging of mesoporous zeolite single crytals [J]. CHEM. COMMUN.,2003,958-959.
    [90]Xiao F, Wang L, Yin C, et al. Catalytic Properpties of Hierarchical Mesoporous Zeolite Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationid Polymers [J]. Angew. Chem. Int. Ed.,2006,45:3090-3093.
    [91]Wang H, Pinavaia T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores [J]. Angew. Chem. Int. Ed.,2006,45:7603-7606.
    [92]Park D H, Kim S S, Wang H, et al. Selective Pereoleum Refining Over a Zeolite Catalyst with Small Intracrystal Mesopores [J]. Angew. Chem. Int. Ed.,2009,48: 7645-7648.
    [93]Choi M, Cho H S, Srivastava R et al.Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J]. Nat. Mater.,2006,5: 718-723.
    [94]Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical struture for retardation of catalyst deactivation [J]. Chem.Commun.,2006,4489-4491.
    [95]Hwang Y K, Chang J S, Park S E, et al. Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications [J]. Angew. Chem. Int. Ed.,2005,44:556-560.
    [96]Xu C H, Jin T H, Jhung S H, et al. Hydrophobicity and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating [J]. Catalysis Today,2006,111:366-372.
    [97]Shan Z C, Wang H, Meng X J, et al. Designed Synthesis of TS-1 Crystals with Controllable b-Oriented Length [J]. Chem. Commun.,2011,47: 1048-1050..
    [98]Wang R W, Liu W T, Ding S, et al. Mesoporous MFI zeolites with self-stacked morphology templated by cationic polymer [J]. Chem. Commun.,2010,46: 7418-7420.
    [99]Walsh D, Kulak A, Aoki K, et al. Preparation of Higher-Order Zeolite Materials by Using Dextran Templating [J]. Angew. Chem. Int. Ed.,2004,43:6691-6695.
    [100]Lee G S, Lee Y J, Ha K, et al. Preparation of Flexible Zeolite-Tethering Vegetable Fibers [J]. Adv. Mater.,2001,13:1491-1495.
    [101]Lee G S, Lee Y J, Choi S Y, et al. Self-Assembly of B-Glucosidase and D-Glucose-Tethering Zeolite Crystals into Fibrous Aggregates [J]. J. Am. Chem. Soc.,2000,122:12151-12157.
    [102]Lee J S, Lee Y J, Tae E L, et al. Synthesis of Zeolite As Order Multicrystal Arrays [J]. Science,2003,301:818-821.
    [103]Lai Z P, Bonilla G, Diaz I, et al. Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation [J]. Science,2003,300:456-460.
    [104]Tosheva L, Mihailova B, Valtchev V, et al. Zeolite beta spheres [J]. Microp. Mesop. Mater.,2001,48:31-37.
    [105]Yoo W C, Kumar S, Penm R L, et al. Growth Patterns and Shape Development of Zeolite Nanocrytals in Confined Syntheses [J]. J. AM. CHEM. SOC.,2009, 131:12377-12383.
    [106]Song J W, Ren L M, Yin C Y, et al. Stable, Porous, and bulky Particles with High External Surface and Large Pore Volume from Self-assembly of Zeolite Nanocrystals with Cationic Polymer [J]. J. Phys. Chem. C,2008,112: 8609-8613.
    [107]Shan Z C, Lu Z D, Wang L, et al. Stable Bulky Particles Formed by TS-1 Zeolite nanocrystals in the Presence of H2O2 [J]. ChemCatChem,2010,2: 407-412.
    [108]Bouizi Y, Diaz I, Rouleau L, et al. Core-Shell Zeolite Microcomposites [J]. Adv. Funct. Mater.,2005,15:1955-1960.
    [109]Bouizi Y, Rouleau L, Valtchev V P. Bi-phase MOR/MFI-type zeolite core-shell composite [J]. Microp. Mesop. Mater.,2006,91:70-77.
    [110]Deng Y H, Deng C H, Qi D W, et al. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization fo Trypsin [J]. Adv. Mater.,2009,21:1377-1382.
    [111]Chen X Y, Qiao M H, Xie S H, et al. Self-Construction of Core-Shell and Hollow Zeolite Analcime Icositetrahedra: A Reversed Crystal Growth Process via Oriented Aggregation of Nanocrystallites and Recrystallization from Surface to Core [J]. J. AM. CHEM. SOC.,2007,129:13305-13312.
    [112]Dong A, Wang Y, Tang Y, et al. Hollow Zeolite Capsules:A Novel Approach for Fabrication and Guest Encapsulation [J]. Chem. Mater.,2002,14: 3217-3219.
    [1]Sheldon R A, Kochi J K. Metal-Catalyzed Oxidations of Organic Compounds [M]. New York: Academic Press,1981.
    [2]Mallat T, Baiker A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts [J]. Chem. Rev.,2004,104:3037-3058.
    [3]Selvam T, Ramaswamy A V. A new catalytic method for the selective oxidation of aniline to nitrosobenzene over titanium silicate molecular sieves, TS-1, using H2O2 as oxidant [J]. Chem. Commun.,1996,1215-1216.
    [4]a) Taramasso M, Perego G, Notari B. US Patent No.4410501 (1983); b) Notari B. Microporous crystalline titanium silicates [J]. Adv. Catal.,1996,41:253-334.
    [5]Wahlen J, Moens B, De Vos D E, et al. Titanium Silicalite 1 (TS-1) Catalyzed Oxidative Transformation of Furan Derivatives with Hydrogen Peroxide [J]. Adv. Syn. Catal.,2004,346:333-338.
    [6]Corma A. State of the art and future challenges of zeolites as catalysts [J]. J. Catal., 2003,216:298-312.
    [7]Fan W, Duan R, Yokoi T, et al. Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species [J]. J. Am. Chem. Soc.,2008,130:10150-10164.
    [8]a) Shima H, Tatsumi T, Kondo JN. Direct FT-IR observation of oxidation of 1-hexene and cyclohexene with H2O2 over TS-1 [J]. Micropor. Mesopor. Mater., 2010,135:13-20; b) Zhou J, Hua Z L, Cui X Z, et al. Hierarchical mesoporous TS-1 zeolite:a highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6-trimethylphenol [J]. Chem. Commun.,2010,46:4994-4996.
    [9]a) Bravo-Suarez J J, Bando K K, Fujitani T, et al. Mechanistic study of propane selective oxidation with H-2 and O-2 on Au/TS-1 [J]. J. Catal.,2008,257:32-42; b) Bianchi D, D'Aloisio R, Bortolo R, et al. Oxidation of mono-and bicyclic aromatic compounds with hydrogen peroxide catalyzed by titanium silicalites TS-1 and TS-1B [J]. Appl. Catal. A:General,2007,327:295-299; c) Ma S Q, Li G, Wang X S. The direct synthesis of hydrogen peroxide from H-2 and O-2 over Au/TS-1 and application in oxidation of thiophene in situ [J]. Chemistry Letters, 2006,35:428-429.
    [10]Serrano D, Sanz R, Pizarro P, et al. Turning TS-1 zeolite into a highly active catalyst for olefin epoxidation with organic hydroperoxides [J]. Chem. Commun., 2009,1407-1409.
    [11]Klemn E, Dietzsch E, Schwarz T, et al. Direct Gas-Phase Epoxidation of Propene with Hydrogen Peroxide on TS-1 Zeolite in a Microstructured Reactor [J]. Ind. Eng. Chem. Res.,2008,47:2086-2090.
    [12]a) Wells D H Jr, Delgass W N, Thomson K T. Evidence of Defect-Promoted Reactivity for Epoxidation of Propylene in Titanosilicate (TS-1) Catalysts:A DFT Study [J]. J. Am. Chem. Soc.2004,126:2956-2962; b) Wells D H Jr, Joshi A M, Delgass W N, et al. A Quantum Chemical Study of Comparison of Various Propylene Epoxidation Mechanisms Using H2O2 and TS-1 Catalyst [J]. J. Phys. Chem. B.,2006,110:14627-14639.
    [13]Kerton O J, McMom P, Bethell D, et al. Effect of structure of the redox molecular sieve TS-1 on the oxidation of phenol, crotyl alcohol and norbornylene [J]. Phys. Chem. Chem. Phys.,2005,7:2671-2678.
    [14]Wan Y S S, Yeung K L, Gavriilidis A. TS-1 oxidation of aniline to azoxybenzene in a microstructured reactor [J]. Appl. Catal. A:General,2005,281: 285-293.
    [15]Kong L Y, Li G, Wang X S. Mild oxidation of thiophene over TS-1/H2O2 [J]. Catal. Today.,2004,93-5:341-345.
    [16]Robinson D J, Davies L, McGuire N, et al. Oxidation of thioethers and sulfoxides with hydrogen peroxide using TS-1 as catalyst [J]. Phys. Chem. Chem. Phys., 2000,2:1523-1529.
    [17]Van der Pol A J H P, Verduyn A J, van Hooff J H C. Why are some titanium silicalite-1 samples active and others not? [J]. Appl. Catal. A:General,1992,92: 113-130.
    [18]Wang X, Guo X, Wang L. Quick synthesis of nano-scale TS-1 and its catalytic properties [J]. Studies in Surface Science and Catalysis,2004,154,2589-2595.
    [19]Xiao F S, Han Y, Yu Y, et al. Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites [J]. J. Am. Chem. Soc.,2002, 124:888-889.
    [20]Meng X, Fan W, Kubota Y, et al. Improvement in thermal stability and catalytic activity of titanium species in mesoporous titanosilicates by addition of ammonium salts [J]. J. Catal.,2006,244:192-198.
    [21]Yang X, Han Y, Lin K, et al. Ordered meosporous titanosilicates with catalytically stable and active four-coordinated titanium sites [J]. Chem. Commun.,2004,2612-2613.
    [22]Li C, Xiong G, Xin Q, et al. UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite [J]. Angew. Chem. Int. Ed., 1999,38:2220-2222.
    [23]Ke X B, Xu L, Zeng C F, et al. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine [J]. Micropor. Mesopor. Mater.,2007,106:68-75.
    [24]Zhuang J Q, Ma D, Yan Z M, et al. Solid-state MAS NMR detection of the oxidation center in TS-1 zeolite by in situ probe reaction [J]. J. Catal.,2004,221: 670-673.
    [25]Goa Y, Wu P, Tatsumi T. Influence of fluorine on the catalytic performance of Ti-beta zeoltie [J]. J. Phys. Chem. B.,2004,108:4242-4244.
    [26]Wilkenhoner U, Duncan W L, Moller K P, et al. Intracrystalline diffusivity of hydroxybenzenes in TS-1 and Al-free Ti-beta [J]. Micropor. Mesopor. Mater., 2004,69:181-186.
    [27]Ikeue K, Yamashita H, Anpo M, et al. Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts:Effect of the hydrophobic and hydrophilic properties [J]. J. Phys. Chem. B.,2001,105:8350-8355.
    [28]Tuel Z. Synthesis, characterization, and catalytic properties of the new TiZSM-12 zeolite [J]. Zeolite,1995,15:236-242.
    [29]Adam W, Garcia H, Mitchell C M, et al. The selective catalytic oxidation of silanes to silanols with H2O2 activity by the Ti-beta zeolite [J]. Chem. Commun., 1998,2609-2610.
    [30]De Cremer G, Roeffaers M B J, Bartholomeeusen E, et al. High-Resolution Single-Turnover Mapping Reveals Intraparticles Diffusion Limitation in Ti-MCM-41-Catalyed Epoxidation [J]. Angew. Chem. Int. Ed.,2010,49: 908-911.
    [31]Mori K, Araki T, Shironita S, et al. Supported Pd and PdAu Nanoparticles on Ti-MCM-41 Prepared by a Photo-assisted Deposition Method as Efficient Catalysts for Direct Synthesis of H2O2 from H-2 and O-2 [J]. Catal. Letter.,2009, 131:337-343.
    [32]Tanev P T, Pinnavaia T J. A Neutral Templating Route to Mesoporous Molecular Sieves [J]. Science,1995,267:865-867.
    [33]Maschmeyer T, Rey F, Sankar G, et al. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica [J].Nature,1995,378: 159-162.
    [34]Luan Z, Bae J Y, Kevan L. Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines [J]. Chem. Mater.,2000,12: 3202-3207.
    [35]Baerlocher C, Meier W M, Olson D H. Atlas of Zeolite Frameork Types Sixth Revised Edition [M]. Amsterdam:Elsevier,2007.
    [36]Landau M V, Tavor D, Regev O, et al. Colloidal Nanocrystals of Zeolite β Stabilized in Alumina Matrix [J]. Chem. Mater.,1999,11:2030-2037.
    [37]Schmidt I, Madsen C, Jacobsen C J H. Confined Space Synthesis. A Novel Route to Nanosized Zeolites [J]. Inorg. Chem.,2000,39:2279-2283.
    [38]Mintova S, Holzl M, Valtchev V, et al. Closely Packed Zeolite Nanocrystals Obtained via Transformation of Porous Amorphous Silica [J]. Chem. Mater. 2004,16:5452-5459.
    [39]Xu R, Pang W, Yu J, et al. Chemistry of Zeolite and Related Porous Materials [M]. Singapore:Wiley,2007.
    [40]Wu P, Tatsumi T, Komatsu T, et al. A Novel Titanosilicate with MWW Structure: Ⅱ. Catalytic Properties in the Selective Oxidation of Alkenes [J]. J. Catal.,2000, 202:245-255.
    [1]Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reaction [J]. Chem. Rev.,1995,95:559-614.
    [2]a) Taramasso M, Perego G, Notari B. US Patent No.4410501 (1983); b) Notari B. Titanium silicalites [J]. Catal. Today,1993,18:163-172; c) Notari B. Microporous crystalline titanium silicates [J]. Adv. Catal.,1996,41:253-334.
    [3]a) Huybrechts D R C, De Bruycker L, Jacobs P A. Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite [J]. Nature,1990,345: 240-242; b) Wahlen J, Moens B, De Vos D E, et al. Titanium Silicalite 1 (TS-1) Catalyzed Oxidative Transformation of Furan Derivatives with Hydrogen Peroxide [J]. Adv. Syn. Catal.,2004,346:333-338.
    [4]Corma A. State of the art and future challenges of zeolites as catalysts [J]. J. Catal., 2003,216:298-312.
    [5]Fan W, Duan R, Yokoi T, et al. Synthesis, Crystallization Mechanism, and Catalytic Properties of Titanium-Rich TS-1 Free of Extraframework Titanium Species [J]. J. Am. Chem. Soc,2008,130:10150-10164.
    [6]a) Thangaraj A, Kumar R, Ratnasamy P. Direct catalytic hydroxylation of benzene with hydrogen peroxide over titanium-silicate zeolites [J]. Appl. Catal.,1990,57: L1-L3; b) Laha S C, Kumar R. Highly Selective Epoxidation of Olefinic Compounds over TS-1 and TS-2 Redox Molecular Sieves Using Anhydrous Urea-Hydrogen Peroxide as Oxidizing Agent [J]. J. Catal.,2002,208:339-344.
    [7]Capel-Sanchez M C, Campos-Martin J M, Fierro J L G. Impregnation treatments of TS-1 catalysts and their relevance in alkene epoxidation with hydrogen peroxide [J]. Appl. Catal. A:General,2003,246:69-77.
    [8]a) Serrano D, Sanz R, Pizarro P, et al. Turning TS-1 zeolite into a highly active catalyst for olefin epoxidation with organic hydroperoxides [J]. Chem. Commun., 2009,1407-1409; b) Zhou J, Hua Z L, Cui X Z, et al. Hierarchical mesoporous TS-1 zeolite:a highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6-trimethylphenol [J]. Chem. Commun.,2010,46:4994-4996.
    [9]Klemn E, Dietzsch E, Schwarz T, et al. Direct Gas-Phase Epoxidation of Propene with Hydrogen Peroxide on TS-1 Zeolite in a Microstructured Reactor [J]. Ind. Eng. Chem. Res.,2008,47:2086-2090.
    [10]a) Wells D H Jr, Delgass W N, Thomson K T. Evidence of Defect-Promoted Reactivity for Epoxidation of Propylene in Titanosilicate (TS-1) Catalysts:A DFT Study [J]. J. Am. Chem. Soc.2004,126:2956-2962; b) Wells D H Jr, Joshi A M, Delgass W N, et al. A Quantum Chemical Study of Comparison of Various Propylene Epoxidation Mechanisms Using H2O2 and TS-1 Catalyst [J]. J. Phys. Chem. B.,2006,110:14627-14639.
    [11]Panyaburapa W, Nanok T, Limtrakul J. Epoxidation Reaction of Unsaturated Hydrocarbons with H2O2 over Defect TS-1 Investigated by ONIOM Method: Formation of Active Sites and Reaction Mechanisms. J. Phys. Chem. C.,2007, 111:3433-3441.
    [12]Cheng W, Wang X, Li G, et al. Highly efficient epoxidation of propylene oxide over TS-1 using urea+hydrogen peroxide as oxidizing agent. J. Catal.,2008,255: 343-346.
    [13]Wan Y S S, Chau J L H, Gavriilidis A, et al. TS-1 zeolite microengineered reactor for 1-pentene epoxidation [J]. Chem. Commun.,2002,878-879.
    [14]Robinson D J, Davies L, McGuire N, et al. Oxidation of thioethers and sulfoxides with hydrogen peroxide using TS-1 as catalyst [J]. Phys. Chem. Chem. Phys., 2000,2:1523-1529.
    [15]Bravo-Suarez J J, Bando K K, Fujitani T, et al. Mechanistic study of propane selective oxidation with H-2 and O-2 on Au/TS-1 [J]. J. Catal.,2008,257:32-42.
    [16]Shima H, Tatsumi T, Kondo JN. Direct FT-IR observation of oxidation of 1-hexene and cyclohexene with H2O2 over TS-1 [J]. Micropor. Mesopor. Mater., 2010,135:13-20.
    [17]a) Xiao F S, Han Y, Yu Y, et al. Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites [J]. J. Am. Chem. Soc.,2002, 124:888-889; b) Meng X, Li D, Yang X, et al. Synthesis, Characterization, and Catalytic Activity of Mesostructured Titanosilicates Assembled from Polymer Surfactants with Prepormed Titanosilicate Precursors in Strongly Acidic Media [J]. J. Phys. Chem. B.,2003,107:8972-8980.
    [18]Yang X, Han Y, Lin K, et al. Ordered meosporous titanosilicates with catalytically stable and active four-coordinated titanium sites [J]. Chem. Commun.,2004,2612-2613.
    [19]Sheldon R A, Arends I, Hanefeld U. Green Chemistry and Catalysis [M]. Weinheim:Wiley,2007.
    [20]Na K, Park W, Seo Y, et al. Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores [J]. Chem. Mater.,2011,23: 1273-1279.
    [21]Reddy J S, Kumar R, Ratnasamy P. Titanium silicalite-2:Synthesis, characterization and catalytic properties [J]. Appl. Catal.,1990,58:L1-L3.
    [22]Hwang Y K, Chang J S, Park S E, et al. Microwave Fabrication of MFI Zeolite Crystals with a Fibrous Morphology and Their Applications [J]. Angew. Chem. Int. Ed.,2005,44:556-560.
    [23]Lai Z P, Bonilla G, Diaz I, et al. Micro structural Optimization of a Zeolite Membrane for Organic Vapor Separation [J]. Science,2003,300:456-460.
    [24]Lee J S, Lee Y J, Tae E L, et al. Synthesis of Zeolite As Order Multicrystal Arrays [J]. Science,2003,301:818-821.
    [25](a) Li S, Wang X, Beving D, et al. Molecular Sieving in a Nanoporous b-Oriented Pure-Silica-Zeolite MFI Monocrystal Film [J]. J. Am. Chem. Soc., 2004,126:4122-4123; (b) Yuan W, Lin Y, Yang W S. Molecular Sieving MFI-Type Zeolite Membranes for Pervaporation Separation of Xylene Isomers [J]. J. Am. Chem. Soc.,2004,126:4776-4777; (c) Fan W B, Fan B B, Shen X H, et al. Effect of ammonium salts on the synthesis and catalytic properties of TS-1 [J]. Micro. Meso. Mater.,2009,122:301-308.
    [26]Choi M, Na K, Kim J, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts [J]. Nature,2009,461:246-249.
    [27]Baerlocher C, Meier W M, Olson D H. Atlas of Zeolite Frameork Types Sixth Revised Edition [M]. Amsterdam:Elsevier,2007.
    [28]Ke X B, Xu L, Zeng C F, et al. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine [J]. Micropor. Mesopor. Mater.,2007,106:68-75.
    [29]Li C, Xiong G, Xin Q, et al. UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite [J]. Angew. Chem. Int. Ed., 1999,38:2220-2222.
    [30]a) Li G H, Jones C A, Grassian V H, et al. Selective catalytic reduction of NO2 with urea in nanocrystalline NaY zeolite [J]. J. Catal.,2005,234:401-413; b) Sullivan J A, Keane O. The role of Bronstead acidity in poisoning the SCR-urea reaction over FeZSM-5 catalysts [J]. Appl. Catal. B:Env.,2005,61:244-252; c)卫伟,段连运,谢有畅.尿素在斜发沸石上的自发单层分散[J].物理化学学报,2000(16):472-475.
    [31]a) Lin C X, Yuan P, Yu C Z, et al. Cooperative self-assembly of silica-based mesostructures templated by cationic fluorocarbon/hydrocarbon mixed-surfactants [J]. Micro. Meso. Mater.,2009,126:253-261; b) Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature,2008,453:638-641.
    [1]Breck D W. Zeolite Molecular Sieves [M]. New York: John Wiley & Son,1973.
    [2]Smirniotis P G, Davydov L, Ruckenstein E. Composite zeolite-based catalysts and sorbents [J]. Catalysis Reviews-Science and Engineering.,1999,41 (1):43-113.
    [3]Al-Khattaf S. The influence of Y-zeolite unit cell size on the performance of FCC catalysts during gas oil catalytic cracking [J]. Appl. Catal. A:General,2002,231: 293-306.
    [4]Sato K, Nishimura Y, Honna K, et al. Role of HY Zeolite Mesoporous in Hydrocracking of Heavy Oils [J]. J. Catal.,2001,200:288-297.
    [5]Berger C, Glaser R, Rakoczy R A, et al. The synthesis of large crystals of zeolite Y re-visited [J]. Micropor. Mesopor. Mater.,2005,83:333-334.
    [6]周灵萍,邓量,寇元,李宣文.改性Y分子筛的酸碱性能及吸附性能的研究[J].物理化学学报,2002,18:142-146.
    [7]a) Lim W T, Seo S M, Wang L Z, et al. Single-crystal structure of highly NH4+-exchanged, fully deaminated, and fully Tl+-exchanged zeolite Y(FAU, Si/Al=1.56), all fully dehydrated [J]. Micropor. Mesopor. Mater.,2010,129: 11-21; b) Lim W T, Seo S M. Six Single-Crystal Structures Showing the Dehydration, Deamination, Dealumination, and Decomposition of NH4+-Exchanged Zeolite Y (FAU) with Increasing Evacuation Temperature. Identification of a Lewis Acid Site [J]. J. Phys. Chem. C.,2007,111: 18294-18360.
    [8]Martins L, Holderich W, Cardoso D. Methylammonium-FAU zeolite: Investigation of the basic sites in base catalyzed reactions and its performance [J]. J. Catal.,2008,258:14-24.
    [9]唐颐,华伟明,高滋.改性Y沸石的孔结构与催化性能[J].物理化学学报,1992,8:595-601.
    [10]Cheng Z L, Gao E Q, Wan H L. Novel synthesis of FAU-type zeolite membrane with high performance [J]. Chem. Commun.,2004,1718-1719.
    [11]Kiricsi I, Tasi Gy, Forster H, et al. Adsorption of neopentane on HnaY-FAU zeolite studied by IR spectroscopy [J]. J. Mol. Struct.,1994,317:33-37.
    [12]Jansang B, Nanok T, Limtrakul J. Structure and Reaction Mechanism of Alkylation of Phenol with Methanol over H-FAU Zeolite:An ONIOM Study [J]. J. Phys. Chem. C.,2008,112:540-547.
    [13]a) Delprato F, Delmotte L, Guth J L, et al. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates [J]. Zeolites.,1990,10:546-552; b) Dougnier F, Patarin J, Guth J L. Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ehers as templates [J]. Zeolites.,1992,12:160-166; c) Chatelain T, Patarin J, Soulard M, et al. Synthesis and characterization of high-silica EMT and FAU zeolites prepared in the presence of crown-ehters with either ethylene glycol or 1,3,5-trioxane [J]. Zeolites.,1995,15:90-96.
    [14]Scherzer J. The Preparation and Characterization of Aluminum Deficient Zeolite. "Catalytic Materials" [J]. ACS Symposium Series,1984,248:157-200.
    [15]Kerr G T, Shipman G F. Reaction of hydrogen zeolite Y with ammonia at elevated temperatures [J]. J. Phys. Chem.,1968,72:3071-3072.
    [16]Skeels G W, Breck D W. Zeolite Chemistry V Substitution of Silicon for Aluminum in Zeolite Via reaction with Aqueous Fluorosilicate [C]. Proc.6th International Zeolite Conf. (Butter months),1984,87-96.
    [17]He Y G, Li C Y, Min E Z. A Mechanism Study of Framework Si-Al Substitution in Y Zeolite Dring aq (NH4)2SiF6 Treatment [J]. Stud. Surf. Sci. Catal.,1989, 49A:189-197.
    [18]Beyor H K, Belurykaya I M, Hange F. Preparation of High-Silica Faujasite by Treatment with Silicon Tetrachlonide [J]. J. Chem.. Soc. Faraday Trans.,1985, 1.8L:2889-2901.
    [19]a) Kacirek H, Lechert H. Growth of the zeolite type NaY [J]. J. Phys. Chem., 1975,79:1589-1593; b) Kacirek H, Lechert H. Rates of crystallization and a model for the growth of sodium-Y zeolites [J]. J. Phys. Chem.,1976,80: 1291-1296.
    [20]马淑杰,李连生,徐如人,叶朝辉.沸石转晶的研究(Ⅲ)—NaY型沸石的稳定性及NaPc型沸石的结构[J].高等学校化学学报,1985,6:951-956.
    [21]Ogura M, Kawazu Y, Takahashi H, et al. Aluminosilicate Species in the Hydrogel Phase Formed during the Aging Process for the Crystallization of FAU Zeolite [J]. Chem. Mater.,2003,15:2661-2667.
    [22]Yang S Y, Navrotsky A, Phillips B L. An in situ calorimetric study of the synthesis of FAU zeolite [J]. Micropor. Mesopor. Mater.,2001,46:137-151.
    [23]Tao Y S, Kanoh H, Kaneko K. Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating [J]. J. Phys. Chem. B.,2003,107:10974-10976.
    [24]Guillou F, Rouleau L, Pimgruber G, et al. Synthesis fo FAU-type zeolite membrane:An original in situ process focusing on the rheological control of geo-like precursor species [J]. Micropor. Mesopor. Mater.,2009,119:1-3.
    [25]Gu X H, Dong J H, Nenoff T M. Synthesis of Defect-Free FAU-Type Zeolite Membranes and Separation for Dry and Moist CO2/N2 Mixtures [J]. Ind. Eng. Chem. Res.,2005,44:937-944.
    [26]Holmberg B A, Wang H T, Norbeck J M, et al. Controlling size and yield of zeolite Y nanocrystals using tetramethylammonium bromide [J]. Micropor. Mesopor. Mater.,2003,59:13-28.
    [27]Pacheco P M, Alvarez F, Bucio L, et al. Synthesis and Structural Properties of Zeolitic Nanocrystals II:FAU-Type Zeolites [J]. J. Phys. Chem. C.,2009,113: 2247-2255.
    [28]Lim W T, Seo S M. Six Single-Crystal Structures Showing the Dehydration, Deamination, Dealumination, and Decomposition of NH4+-Exchanged Zeolite Y(FAU) with Increasing Evacuation Temperature. Identification of a Lewis Acid Site [J]. J. Phys. Chem. C.,2007,111:18294-18306.
    [29]Do T O, Vunong G T. A New Route for the Synthesis of Uniform Nanozeolites with Hydrophobic External Surface in Organic Solvent Medium [J]. J. AM. CHEM. SOC.,2007,129:3810-3811.
    [30]Gu F N, Wei F, Yang J Y, et al. New Strategy to Synthesis of Hierarchical Mesoporous Zeolites [J]. Chem. Mater.,2010,22:2442-2450.
    [31]Baerlocher C, Meier W M, Olson D H. Atlas of Zeolite Frameork Types, Sixth Revised Edition [M]. Amsterdam:Elsevier,2007.
    [32]Xu R, Pang W, Yu J, et al. Chemistry of Zeolite and Related Porous Materials [M]. Singapore:Wiley,2007.
    [33]Sohn J R, DeCanio S J, Lunsford J H, et al. Determination of framework aluminium content in dealuminated Y-type zeolites:a comparison based on unit cell size and wavenumber of i.r. bands [J]. Zeolites.,1986,6:225-227.
    [34]Flanigen E M, Khatami H, Szymanski H A, et al. Molecular Sieve Zeolites [J]. I, Adv. Chem. Ser.,1971, No.101:pp 201-203.
    [35]Pouchert C J. The Aldrich Library of Infrared Spectra, EDITION Ⅲ [M]. Milwaukee:Aldrich Chemical Co.,1981.
    [36]Corma A, Domine M, Gaono J A, et al. Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41 [J]. Chem. Commun.,1998,2211-2212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700