用户名: 密码: 验证码:
具有再生再利用/循环的水网络设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水资源的日益匮乏和环境污染的日益严重,过程工业的节水减排研究更突显出它的重要性并备受关注。用水系统集成是节水减排的重要技术之一,该技术将所有与水有关的过程作为一个有机整体来考虑,通过废水再利用、废水再生利用和废水再生循环利用来实现新鲜水消耗最小化及废水排放最小化。与再利用相比较、废水的再生再利用和再生循环利用能更大程度地降低新鲜水消耗和废水排放,而且,若再生浓度足够低,可以实现用水系统的零排放。因此,再生再利用/循环水网络设计对于过程工业具有重要的现实意义。本论文在总结相关研究成果的基础上,提出了过程水流综合浓度势的概念和基于此概念的水流浓度排序法,同时,本文研究了具有再生过程的水网络设计,提出一种通用性强的迭代设计方法。本论文的主要内容有以下几点:
     首先,研究了多杂质水网络设计中的水流浓度排序法、源水流分配量的计算方法及再利用设计新方法。在Liu等(Liu Z-Y, et al. AIChE J. 2009, 55: 374–382)提出的浓度势概念的基础上,提出了过程水流综合浓度势(OCPD)的概念,水流的综合浓度势反映了各水流在整个用水系统中浓度的相对大小,因此,可由水流的OCPD值顺序得到水流的的浓度顺序,解决了需求水流和源水流之间的浓度比较问题。提出了平衡杂质负荷方法和移除过程杂质负荷方法,用于解决源水流分配量的计算问题。运用提出的基于过程水流综合浓度势(OCPD)概念的水流浓度排序法和源水流分配量的计算方法来设计只考虑再利用的水网络。在设计步骤中,综合浓度势最低的过程首先执行,在对某一执行过程进行用水匹配时,虚拟分配量最大的当前源水流优先回用。
     其次,提出一种用于考虑再生再利用/循环的单杂质水网络设计的迭代法。再生过程模型分为杂质移除率及固定再生后浓度两种形式。该方法既可以用于给定再生过程杂质移除率(RR再生模型)问题,又可以设计固定再生浓度问题。对于RR再生模型问题,首先根据水网络及再生过程的特点估算出再生浓度,再生水流的量待定,将再生水流看作系统内的新增水源,运用Liu等人(Liu Zhiyong, et al.. Chinese Journal of Chemical Engineering. 2009, 17(3) 445-453)提出的只考虑再利用的单杂质多水源水网络的设计方法设计考虑再生再利用/循环的单杂质水网络,只需几次迭代即可得到最终设计;对于固定再生浓度问题,则只需一次迭代就能得到最终的设计结果。该设计方法同时考虑了影响水网络设计总费用的新鲜水用量、再生水用量和杂质再生负荷三个主要目标值。
     再次,提出一种基于浓度势概念的迭代法用于解决多杂质水网络的再生再利用/循环的设计问题。该方法是将第三章中处理考虑再生再利用/循环的单杂质水网络设计问题的迭代法推广到多杂质水网络的设计,不同之处是本章需采用多杂质多水源水网络的再利用设计方法。本章将Liu等人(Liu Z-Y, et al. AIChE J. 2009, 55: 374–382)提出的多杂质用水系统基于浓度势势概念的再利用设计方法进行适当改进并用于设计,是新方法解决多杂质系统设计问题的关键。同时,本章提出了确定再生水流的初始浓度及迭代过程中再生水流浓度更新的方法。
     最后,提出一种解决只考虑再生再利用水网络设计问题的新方法。该方法将Liu等人(AIChE J, 2009; 55: 374-382)提出的浓度势方法及第四章提出的解决再生再利用/循环水网络设计问题的迭代法推广到只考虑再生再利用水网络的设计。对于只考虑再生再利用的水网络,为了确定用于再生的源水流,将整个水网络分为PNCRs(the process non-connected with the regenerated water)和PCRs(the process connected with the regenerated water)两部分,并假设PNCRs仅包含FEPs(Freshwater essential process),而再生水量未知。再生浓度确定后,可运用Liu等人(AIChE J, 2009; 55: 374-382)提出的浓度势方法来设计只考虑再生再利用的水网络。对于已知再生浓度的水网络,通过一次迭代可得到最终设计;对于已知再生过程杂质移除率的水网络,可通过几次迭代得到最终设计。提出的方法能减小反映再生循环水网络特点的以下几个物理量:新鲜水用量、再生水用量和再生水流的再生前浓度。
     提出的新的再利用设计方法和迭代法对各自相关文献中几个实例进行研究,结果表明,运用新方法得到的设计与文献中的设计相当,且计算十分简捷,而设计步骤比文献中的简单。另外,提出的迭代法既能用于考虑再生再利用/循环水网络的设计,又能较好地用于只考虑再生再利用水网络的设计;既能用于RR再生模型问题的设计,又能用于固定再生浓度问题的设计;既能用于单杂质系统,又能用于多杂质系统。说明提出的迭代法具有较好的通用性和可行性。
With the scarcity and stricter environmental regulations on industrial effluents underlie the growing emphasis on freshwater minimization, water system integration becomes the research focus, which are mainly embodied in three aspects: wastewater reuse, regeneration reuse and regeneration recycle. The water-using networks involving regeneration reuse/recycling can reduce the freshwater consumption and wastewater discharge significantly. Besides, the zero wastewater discharge can be achieved if the regeneration concentration is low enough. Therefore, it is very important to research the design of the water-using networks involving regeneration reuse/recycling. In this paper, water system integration is investigated. The main contents are listed as follows:
     In chapter 1, this thesis presents a brief review for the synthesis approaches of water-using networks.
     In chapter 2, a new method for design of water-using networks is proposed, which includes the determination of the process-performing order and allocation of the process streams. Based on the concentration potential concepts proposed by Liu et al. (AIChE J, 2009; 55: 374-382), a new concept, overall concentration potential of demand (OCPD) for the process stream is proposed. The OCPD of a stream reflects the concentration order of the stream compared to all the other streams (including both demand streams and source streams). In the design, the process performing order is determined by the values of OCPDs of the demand streams. The process with the lowest inlet OCPD is performed first. When satisfying a demand stream of the process being performed, the source with the largest quasi-allocation amount, which is defined in this paper, is used first. A few literature examples are investigated. The results show that the amounts of freshwater consumptions are very close to the minimum freshwater targets, the structures of the designs obtained in this work are not complex compared to that obtained in the literature, and the calculation of the proposed method is very simple.
     In chapter 3, an iterative method is proposed for the design of water-using networks with single contaminant involving regeneration reuse/recycling, which can be used for the regeneration models with the given regeneration concentration and that with the given removal Ratio (RR). For the models with the given Removal Ratio (RR), the initial concentration(s) of the Sreg should be estimated first, and the flowrate of the Sreg are unknown. The final design of the network involving regeneration reuse/recycling can be obtained after several iterations by using the design method proposed for the network involving reuse only(Liu et al.,CIESC J, 2009; 17(3): 445-453). For the networks with the given regeneration concentration, the final design can be obtained with one iteration. This paper considers the targets of the freshwater consumption, regenerated water flowrate, and the mass load for regeneration, which can reflect the total cost of the network. The structures of the designs obtained in this work are not complex compared to that obtained in the literature, and the calculation of the proposed method is very simple.
     In chapter 4, an iterative method is proposed for the design of water-using networks with multiple contaminants involving regeneration recycling. The regeneration models can be classified into the given regeneration concentration and that with the given removal Ratio (RR). For the networks with the models of Removal Ratio (RR), the concentration(s) of the Sreg should be estimated first, and the flowrate of the Sreg are unknown. Then the design of the network involving regeneration recycling can be obtained after several iterations by using the design method proposed for the network involving reuse only (Liu et al., AIChE J, 2009; 55: 374-382). For the networks with the models of given regeneration concentration, the final design can be obtained with one iteration. This paper considers the targets of the freshwater consumption, regenerated water flowrate, and the mass load for regeneration, all of them can reflect the total cost of the network. The structures of the designs obtained in this work are not complex compared to that obtained in the literature, and the calculation of the proposed method is very simple.
     In chapter 5, an iterative method to design the networks involving regeneration reuse/recycling based on the methodology proposed by Liu et al. (AIChE J, 2009; 55: 374-382) is proposed. For the network involving regeneration reuse only, to determine the concentration(s) of the regenerated source, the whole network is divided into two parts: PNCRs(the process non-connected with the regenerated water) and PCRs (the process connected with the regenerated water), and it is assumed that the PNCRs include FEPs(Freshwater essential process)only. The flowrate of the regenerated stream is unknown. After the regenerated concentrations are determined, the water network involving regeneration reuse can be designed by using a modified method of Liu et al. (AIChE J, 2009; 55: 374-382). The final designs can be obtained in one iteration for the networks with known regenerated concentrations, and in a few iterations for the networks with removal ratios of the contaminants. The method proposed can reduce the following parameters simultaneously: the consumptions of freshwater and the regenerated water, and the concentrations of the before-regeneration stream, which reflect the quality of the design of the network involving regeneration recycling. The results of a few literature examples show that the designs obtained in this work are comparable to that obtained in the literature, and the proposed method is simple and effective.
引文
[1]马永庆.《黄河水及水资源论文集(一)》.黄河水利出版社, 1999, 6.
    [2] WCED. Sustainable Development and Water. Statement on the WCED Report“Our Common Future”. Water International, 1989, 14 (3): 151~152.
    [3]徐冬梅,胡仰栋,华贲,等.含再生再利用的用水网络的优化设计[J].高等化学工程学报, 2004, 18 (2): 202-207
    [4]王东明,杨凤林,张兴文.过程工业用水网络设计方法研究进展[J].化工进展, 2004, 23 (10): 1103-1106.
    [5] Li B H(李保红), Fei W Y(费维扬).The speedy design of water-using network with multiple contaminants by gradual liner programming method[J]. Journal of Chemical Industry and Engineering(化工学报), 2005, 56 (2): 285-291.
    [6]郑雪松,冯霄,沈人杰.具有最简结构水回用网络结构的优化[J].高校化学工程学报, 2006, 20 (4): 622-627
    [7]周彤.污水回用决策与技术[M].北京:化学工业出版社, 2002
    [8]侯春梅,张志强,迟秀丽《.联合国世界水资源开发报告》呼吁加强水资源综合管理.地球科学进展, 2006, 21(11):1211~1214.
    [9]张凯.水资源循环经济理论与技术[M].北京:科学出版社, 2007
    [10]郑雪松.不同结构水网络数学模型的建立与优化[D]: [硕士学位论文].西安:西安交通大学, 2005
    [11]任伯帜,熊正为.水资源利用与保护[M].北京:机械工业出版社, 2007
    [12]世界水论坛:讨论全球水资源严峻现状[J].给水排水动态, 2006, (6): 22
    [13]李广贺.水资源利用与保护[M].北京:中国建筑工业出版社, 2002. 15
    [14]高志强.我国水资源短缺状况[J].四川统一战线, 2006, (2): 12
    [15]宋丽丽.水分配网络优化设计方法研究[D]: [硕士学位论文].大连:大连理工大学, 2006
    [16]王绍光.过程工业用水最小化问题的研究[D]: [硕士学位论文].青岛:青岛科技大学, 2006
    [17]姜文来. 21世纪中国水资源安全战略研究,中国水资源论坛
    [18]杨友麒.从管理节水走向系统节水[J],现代化工, 2005, 25 (12): 5–10.
    [19] Wang YP, Smith R. Wastewater Minimisation[J]. Chemical Engineering Science,1994, 49 (7): 981-1006.
    [20] Wang, Y. P.; Smith, R. Wastewater Minimization with Flowrate Constraints[J]. Chem. Eng. Res. Des. 1995, 73 :889–904.
    [21] Dunn R F, Wenzel H. Process integration design methods for water conservation and wastewater reduction in industry[J]. Part 1: Design for single contaminant. Clean Prod. Process, 2001, 3:307-318.
    [22] El-Halwagi M M, Gabriel F, Harell D. Rigorous graphical targeting for resource conservation via material recycle / reuse networks[J]. Ind Eng Chem Res.2003, 42: 4319–4328.
    [23] Manan ZA, Tan YL, Foo DCY. Targeting the minimum water flowrate using water cascade analysis technique[J]. AIChE J. 2004, 50 (12): 3169-3183.
    [24] Prakash R, Shenoy UV. Targeting and design of water networks for fixed flowrate and fixed contaminant load operations[J]. Chemical Engineering Science. 2005, 60 (1): 255-268.
    [25] Olesen SG, Polley GT. A simple methodology for the design of water networks handling single contaminants[J]. Transactions of the Institute of Chemical Engineering, 1997, 75 (Part A): 420-426.
    [26] Sorin M, Be′dard S. The global pinch point in water reuse networks[J]. Transactions of the Institute of Chemical Engineering, 1999, 77 (Part B): 305-308.
    [27] Polley GT, Polley HL. Design better water networks[J]. Chemical Engineering and Processing, 2000, 96 (2): 47-52.
    [28] Feng X, Seider W D. A new structure and design methodology for water networks [J]. Ind Eng Chem Res, 2001, 40 (26): 6140-6146
    [29] Kuo WJ, Smith R. Designing for the interactions between water-use and effluent treatment[J]. Transactions of the Institute of Chemical Engineering A, 1998, 76: 287–301.
    [30] Linhoff B, Smith R. Recent development in pinch analysis. In Paper presented at process system engineering, 1994.
    [31] Manan ZA, Wan Alwi SR, Ujang Z. Water pinch analysis for an urban system: A case study on the Sultan Ismail Mosque at the Universiti Teknologi Malaysia (UTM). Desalination, 2006, 194: 52–68.
    [32] Doyle S J and Smith R. Targeting water reuse with multiple contaminants[J]. Transactions of International Chemical Engineering, 1997, 75 (B3): 181-189.
    [33] Bagajewicz MJ, Rivas M, Savelski MJ. Algorithmic procedure to design water utilization systems featuring a single contaminant in process plants[J]. Chemical Engineering Science, 2001, 56: 1897–1911.
    [34] Huang CH, Chang CT, Ling HC, et al. A mathematical model for water usage and treatment network design[J]. Industrial and Engineering Chemistry Research, 1999, 38: 2666–2679.
    [35] Prakotpol D, Srinophakun T. GAPinch: Genetic algorithm toolbox for water pinch technology[J]. Chemical Engineering and Processing, 2004, 43: 203–217.
    [36] Savelski M, Bagajewicz M. On the necessary conditions of optimality ofwater utilizations systems in process plants with multiple contaminants[J]. Chemical Engineering Science, 2003, 58: 5349-5362.
    [37] Liu Z-Y, Yang Y, Wan L-Z, Wang X, Hou K-H. A heuristic design procedure for water-using networks with multiple contaminants[J]. AIChE J. 2009, 55: 374–382.
    [38] Cao D, Feng X, Duan X. Design of Water Network with Internal Mains for Multi-Contaminant Wastewater Regeneration Recycle[J]. Chemical Engineering Research and Design, 2004, 82 (A10): 1331-1336
    [39]王东明,杨凤林,张兴文.具有中水道的过程工业水网络设计方法[J].化工学报, 2005, 56 (6): 1051-1056
    [40] Ma H, Feng X and Cao K. A rule-based design methodology for water networks with internal water mains[J]. Chemical Engineering Research and Design. 2007: 431-444.
    [41] Liu Y Z, Duan H T, Feng X. The design of water-reusing network with a hybrid structure through mathematical programming[J]. Chinese Journal of Chemical Engineering, 2008, 16 (1): 1-10.
    [42]冯霄,沈人杰,余新江.具有中间水道的废水再生循环水网络的优化[J].化工学报, 2008, 59 (8): 2046-2051
    [43]曹殿良,王斌,冯霄.中间水道水系统集成技术在催化剂厂的应用[J].计算机与应用化学, 2004, 21 (3): 437-439
    [44] Savelski M, Bagajewicz M J. Design of water utilization systems in process plants with a single contaminants [J].Waste Management, 2000, 20 (8): 659-664
    [45] Savelski M, Bagajewicz M. Algorithmic procedure to design water utilization systems featuring a single contaminant in process plants [J]. Chemical Engineering Science, 2001, 56 (5): 1897-1911
    [46] Liu Zhi-Yong, Yang Yu-Zhen, Li Yan-Mei. Targeting the freshwater for water networks with single contaminant [J]. Computer Aided Chemical Engineering, 2007, 24: 1349-1354
    [47] Bagajewicz MJ, Rivas M and Savelski MJ. A robust method to obtain optimal and sub-optimal design and retrofit solutions of water utilization systems with multiple contaminants in process plants[J]. Computers and Chemical Engineering. 2006, 24: 1461-1466.
    [48] Bagajewicz M, Rivas M, Savelski M. A new approach to the design of water utilization systems with multiple contaminants in process plants [J]. Computers and Chemical Engineering, 2000, 24: 2093-2113.
    [49] Kuo W C J, Smith R. Design of water-Using system involving regeneration[J]. Transactions of International Chemical Engineering, 1998, 76 (B): 94-114.
    [50] Wang, Y. P.; Smith, R. Design of Distributed Effluent Treatment Systems[J]. Chem. Eng. Sci. 1994, 49 (18), 3127–3145.
    [51] Kuo W C J, Smith R. Effluent treatment system design[J]. Chemical Engineering Science. 1997, 52 (23): 4273-4290.
    [52] Mann JG, Liu Y A. Industrial water reuse and wastewater minimization. McGraw-Hill, New York. 1999.
    [53] Hallale N. A new graphical targeting method for water minimization[J]. Adv Environ Res, 2002, 6 (3): 377-390
    [54] Detchasit Prakotpol, Thongchai Srinophakun. GAPinch: genetic algorithm toolbox for water pinch technology[J]. Chemical Engineering and Processing, 2004, 43: 203-217
    [55] Takama N, Kuriyama T, Shiroko K, et al. Optimal water allocation in a petroleum refinery[J]. Computers and Chemical Engineering, 1980, 4: 251-258
    [56] Yang Y H, Lou H H and Huang Y L. Synthesis of an optimal wastewater reuse network[J]. Waste Management, 2000, 20 (4): 311- 319.
    [57] Xu D M(徐冬梅), Hua B(华贲), Hu Y D(胡仰栋), Wang X L(王修林). Progressively unliner programming method for wastewater minimization with multiple contaminants[J]. Computers and Chemical Engineering(计算机与应用化学). 2003, 20 (6): 790-792.
    [58] Zheng S Q(郑世清), Zou L(邹亮), Yang X(杨霞). The improvement and comparation for the design of the water-using network with multiple contaminants[J]. Computers and Chemical Engineering(计算机与应用化学). 2007, 24 (11): 1497-1500.
    [59] Liu Q(刘强), Guang X(光绪), Shao H(绍辉). The optimal design of the water-using network with multiple contaminants—Quality analysis and mathematical programming[J]. Journal of Chemical Industry and Engineering (化工学报), 2008, 59 (6): 1441-1447.
    [60] Jo?o Teles, Pedro M Castro, Augusto Q Novais. LP-based solution strategies for the optimal design of industrial water networks with multiple contaminants[J]. Chemical Engineering Science, 2008, 63: 376-394
    [61] Feng X, Shen RJ, Cao DL. Water system integration technology and its research progress[J]. Modern Chemical Industry(现代化工). 2004,24 (2):99-100.
    [62] Savelski M, Bagajewicz M. On the optimality conditions of water utilization systems in process plants with single contaminants [J]. Chemical Engineering Science, 2000, 55: 5035-5048
    [63] Savelski M, Bagajewicz M. A new algorithmic design procedure for the design of water utilization systems in refineries and process plants[C]. Proceedings of Press, 99 Meeting, Budapest, 1999
    [64] Liu ZY, Zhang ZS, Hu LN, et al. Wastewater Minimization Using a Heuristic Procedure[J].International Journal of Chemical Reactor Engineering, 2004, 2: A25.
    [65] Liu Z Y, Li Y M, Liu Z H, et al. A Simple Method for Design of water-using networks with multiple contaminant involving regeneration reuse[J]. AIChE J. , 2009, 55 (6): 1628-1633
    [66] Gomes JFS, Queiroz EM, Pessoa F P. Design Procedure for water/wastewater minimization: single contaminant. Clean. Prod. 2007, 15: 474-485.
    [67] Foo DCY. Water Cascade Analysis for Single and Multiple Impure Fresh Water Feed[J]. Chemical Engineering Research and Design. 2007, 85: 1169-1177.
    [68] Almutlaq AM, El-Halwagi MM. An Algebraic Targeting Approach to Resource Conservation via Material Recycle/Reuse[J]. Int. J. EnViron. Pollut. 2007, 29 (1/2/3): 4-18.
    [69] Liu Zhiyong, Li Yanmei, Zhang Guanglin and Yang Yuzhen. Simultaneously Designing and Targeting for Networks with Multiple Resources of Different Qualities[J]. Chinese Journal of Chemical Engineering. 2009, 17(3) 445-453.
    [70] Bagajewicz M. A review of recent design procedures for water networks in refineries and process plants[J]. Computers and Chemical Engineering, 2000, 24: 2093-2113.
    [71] Foo D C Y. State-of-the-Art Review of Pinch Analysis Techniques for Water Network Synthesis[J]. Industrial & Engineering Chemistry Research.2009, 48: 5125-5159.
    [72] Wang Y P and Smith R. Time pinch analysis[J]. Chemical Engineering Research and Design, 1995, 73: 905-914.
    [73] Kuo W C J ,Smith R. Effluent t reatment system design[J] . Chemical Engineering Science ,1997 ,52 (23) :4 273~4 290
    [74] Yang YH,Lou HH and Huang YL.Synthesis of an optimal wastewater reuse network.Waste Management,2000,20(4):311一319.
    [75] Wang B, Feng X and Zhang Z. A design methodology for multiple-contaminant water networks with single internal water main[J]. Computers Chemical Engineering, 2003, 27 (7): 903-911.
    [76] Liu Yongzhong, Duan Haitao, Feng X. The Design of Water-reusing Network with a Hybrid Structure Through Mathematical Programming[J]. Chinese Journal of Chemical Engineering, 2008,16(1) ,1-10.
    [77] Zheng X, Feng X, Shen R, et al. Design of optimal water-using networks with internal water mains[J]. Industrial & Engineering Chemistry Research, 2006, 45: 8413-8420.
    [78] Alva-Argáez A, Kokossis A, and Smith R. The design of water-using system inpetroleum refining using a water-pinch decomposition[J]. Chemical Engineering Journal. 2007; 128: 33-46.
    [79] Feng X, Bai J, Zheng XS. On the use of graphical method to determine the targets of single-contaminant regeneration recycling water systems[J]. Chemical Engineering Science. 2007;62:2127–2138.
    [80] Bagajewicz M. On the use of linear models for the design of water utilization systems in process plants with a single contaminant[J]. Transactions of Institute of Chemical Engineers. 2001;79(Part A):600–610.
    [81] Koppol A, Bagajewicz M, Dericks B and Savelski M. On zero water discharge solutions in the process industry[J]. Advances in Environmental Research, 2003, 8: 151-171.
    [82] Feng X, and Chu K. Cost optimization of industrial wastewater reuse systems[J]. Process Safety and Environmental Protection, 2004, 82 (B3), 249-255.
    [83] Gunaratnam M, Alva-Argaez A, Kokossis A, Kim J-K, Smith R. Automated design of total water systems[J]. Industrial & Engineering Chemistry Research. 2005;44:588–599.
    [84] Foo DCY, Manan ZA, Tan YL. Use Cascade Analysis to Optimize Water Networks. Chem[J]. Eng. Progress 2006, 102 (7), 45–52.
    [85] Ng DKS, Foo DCY, Tan RR, Tan YL. Ultimate Flowrate Targeting with Regeneration Placement[J]. Chem. Eng. Res. Des. 2007, 85 (A9), 1253–1267.
    [86] Bai J, Feng X, Deng C. Graphical Based Optimization of Single-Contaminant Regeneration Reuse Water Systems[J]. Chem. Eng. Res. Des. 2007, 85 (A8), 1178–1187.
    [87] Deng C, Feng X, Bai J. Graphical Based analysis of water system with zeroliquid discharge[J]. Chem. Eng. Res. Des. 2008, 86, 165–171.
    [88] Bandyopadhyay S,Cormos CC. Water Management in Process Industries Incorporating Regeneration and Recycle through a Single Treatment Unit[J]. Ind. Eng. Chem. Res. 2008, 47, 1111–1119.
    [89] Liu Z-Y, Yang Y-Z, Zhang Y. Determining the pinch point and calculating the freshwater target for water-using systems with single contaminant[J]. Chem Eng Res Des. 2007;85:1485–1490.
    [90] Karuppiah R, Grossmann IE. Global optimization for the synthesis of integrated water systems in chemical processes[J]. Comput Chem Eng. 2006;30:650–673.
    [91] Galan B, Grossmann IE. Optimal design of distributed wastewater treatment networks[J]. Ind Eng Chem Res. 1998;37:4036–4048.
    [92] Xu DM(徐冬梅). Study on the optimization design of water-using network[D]. Ocean University of China, Shandong, China, 2004.
    [93] Feng X, Bai J, Wang H and Zheng XS. Grass-roots design of regeneration recycling water networks[J]. Computers and Chemical Engineering, 2008, 32: 1892–1907.
    [94]胡仰栋,徐冬梅,华贲.逐步线性规划法求解废水最小化问题.化工学报,2002,53(1):66-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700