用户名: 密码: 验证码:
改性锂渣硅铝酸盐混凝土研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的硅铝酸盐混凝土是以含无定型的SiO_2、Al_2O_3为主要成份的锂渣,通过适当的物理化学改性工艺以改变锂渣酸性渣体的性质,得到以非稳定态(无定型及亚结晶态)的硅酸盐、铝酸盐及硅铝酸盐为主的改性粉体,以适宜的碱组分激发,制成水硬性胶凝材料的通称。主要研究三类硅铝酸盐混凝土:石灰—物理改性锂渣轻质硅铝酸盐混凝土(LWEC),碱矿渣—化学改性锂渣硅铝酸盐混凝土(JHEC)和硅铝酸盐碱加气混凝土(AHEC)。
     采用物理化学两种方法,对锂渣进行改性。物理改性为:通过加入适量石灰,及钙盐外加剂改善锂渣碱性和粉磨效果,通过机械粉磨,得到改性粉体。采用常压干湿热养护,将得到的物理改性粉体作为胶凝材料制作成轻质硅铝酸盐混凝土(LWEC)。
     锂渣化学改性工艺采用:加入改性剂,经1000℃左右煅烧,急速冷却后,进而粉磨成一定细度的化学改性粉体。微观研究表明,绝大部分粉体颗粒呈细分散状态非晶质玻璃体,颗粒较细呈类球状,分布均匀,整体呈蜂窝状结构。和原状锂渣相比,已经完全改变了微观形貌和化学成分。将该化学改性粉体加入碱矿渣砂浆中(JHEC),能明显改善碱矿渣砂浆的性能。也可以作为碱矿渣加气混凝土主要组分之一,制备硅铝酸盐加气混凝土(AHEC)。
     本文主要研究结果如下:
     ①LWEC在干湿热带模养护条件下,抗压强度可达到40~50MPa左右,抗折强度可达9~11Mpa左右,试件表干密度为1600kg/m~3左右。最佳养护制度:升温速度30℃/h,恒温温度180℃,恒温时间4h。与同等级强度蒸压养护的轻质灰砂硅酸盐混凝土试件能耗方面比较,常压干湿热养护比蒸压湿热养护要节省45%以上的能源,表干密度降低11%左右。
     ②高温化学改性锂渣最佳的工艺参数:煅烧温度1000℃,煅烧时间45min。煅烧后粉体经过急速冷却,粉磨15min后得到化学改性粉体。其比表面积为7350cm~2/g~8348 cm~2/g,堆积密度为0.7g/cm~3~0.8g/cm~3,密度为2.1g/cm~3~2.3g/cm~3。
     ③在JHEC中掺入化学改性粉体AF3,能改善砂浆性能。当AF3掺入为10%~20%时,增强碱矿渣砂浆的强度,凝结时间延长。当AF3掺入30%时,28d强度发展比纯矿渣砂浆好,但是56d强度两者持平。随着掺量增加,超过40%后,砂浆强度开始下降。当AF3掺入60%,28d强度抗折,抗压强度强度等级与32.5波特兰水泥相当。经过实验发现,通过加入化学改性粉体能抵制碱矿渣胶凝材因干燥引起的收缩,起到了对碱矿渣胶凝材料的综合改性。
     ④通过X衍射和电镜扫描对JHEC净浆进行了微观分析,发现水化产物以沸石类矿物为主,从水化产物结晶度来看,加入AF3的JHEC净浆,使矿渣颗粒水化更加彻底,更利于胶凝材料形成一个整体。
     ⑤成功地制成了硅铝酸盐碱加气混凝土(AHEC),得出最佳的生产工艺参数。在实验中采用三种养护方式,蒸汽养护,热水养护和标准养护,分别得出了试件最佳的养护制度。通过实验发现经过蒸汽养护得到的试件性能较其它两种养护方式好。
     ⑥测试了经过蒸汽养护的AHEC试件干缩性能,吸水率,以及试件导热性能,得出性能指标均很好满足蒸压加气混凝土砌块国家标准(GB 11968-2006)。
     本工作主要研究如何高效利用酸性渣体,使大量堆积锂废渣,得到新的利用,提高经济附加值。总结了关于典型酸性渣体改性方法及其应用的规律性结果,对工业酸性废渣的开发和应用具有指导作用。因而具有良好的实用意义。
This paper studies that lithium slag with main ingredients of amorphous silica, alumina, through appropriate physical and chemical modification process to change the nature of lithium acid residue, to be modified powder with non-steady state (amorphous and crystalline - state) silicate, aluminate and silicate, appropriate to the Alkali activation,be made hydraulic cementitious materials.Three major studies of alumino- silicate concrete : the light alumino- silicate concrete of lime-physical modification (LWEC); alkali alumino- silicate concrete of slag-chemical modification of lithium slag(JHEC); alkali alumino- silicate aerated concrete (AHEC).
     Using two methods of physical and chemical, the residue of lithium is to be modified. Modification of the physical: adding some lime, and calcium additive to improve the alkaline and reform effect by mechanical grinding is to be modified powder.Using atmospheric dry cured, the physical modified powder as a cementitious material is made to produced light silicate concrete (LWEC).
     Chemical modification: by modifier to Li slag, after high calcining temperature 1000℃modified, then rapidly cooling and grinding, has to be modified chemical powder. Microscopic observations show: particles are smaller and spherical category, Overall show honeycomb structure. Compareing with Li slag, has been a complete change in the morphology. Chemical modification powder drop alkali slag mortar, can significantly improve the performance of alkali slag mortar (JHEC).Chemical modification powder can be used as the main components ,to prepared alkali alumino- silicate aerated concrete (AHEC).
     Results of this study are as follows:
     ①Lightweight high strength concrete of lithium aluminate of the physical modification of the lithium slag in the atmospheric dry-curing conditions, compressive strength can achieve about 40~50MPa , flexural strength up about 9~11Mpa. Finally prepared lightweight high strength concrete is about 1600kg/m~3 dry density. The optimum parameters: the heating rate of 30℃per hour, the lasting temperature of 180℃, the lasting temperature for 4 hours. Initial energy consumption Calculation, with the same level of intensity autoclaved light gray sand concrete , atmospheric dry -wet cured than autoclaved cured to save more than 45% of energy, lower around 11% dry density.
     ②Experimental results show that Calcined modified lithium slag optimum process parameters is, calcination temperature of 1000℃, calcination time of 45min,after rapid cooling and grinding 15min to be modified products. The powder is fine, specific surface area 7350cm~2/g~8348 cm~2/g.Powder packing density is 2.1 g/cm~3~2.3g/cm~3, density of 2.4g/cm~3 -2.6 g/cm~3.
     ③Chemical modification powderAF3 by adding alkaline slag mortar(JHEC), the mortar can improve performance. When the incorporation of modification powder from 10% to 20%, it will boost alkaline slag mortar strength and extend time. When the incorporation of 30% modified powder, the concrete 28d strength development better than pure alkaline slag mortar, but almost 56d strength of the development. The modification powder increased gradually more than 40%, the mortar strength begin to decline. While the incorporation of 60% modification powder , bending and compressive strength is low 46.2%,38.4% than the pure mortar slag. But specimens strength is with strength32.5 grade Portland cement.The study found that the powder can significantly inhibited dry shrinkage, caused by dry slag cementitious materials. By calcinations, the modified powder reached the right synthetic modification slag cementitious materials.
     ④Through X-ray Diffraction and Scanning Electron Microscopy to view, it find that in the JHEC paste the hydration product is most zeolite minerals. From the crystallization, in the JHEC paste, slag particles hydration is more thoroughly and more conducive cementing to form a whole.
     ⑤Successfully the work is make to get the alkali silicate Aerated Concrete (AHEC),to get the optimum process parameters. In the experiment steam conservation, water conservation and standards conservation is used as three conservation approaches in the experiment and is drawn three optimization conservation parameters approaches. It found that steam conservation is best than the other two.
     ⑥After testing, it shows that shrinkage properties, water absorption, water conductivity and thermal properties of the steam conservation specimen are meet the autoclaved aerated concrete block national standard (GB 11968-2006).
     The main study how efficient to use acidic residue, accumulation a large number of lithium is to new use, improve the added economic value.Sum up the typical acidic residue on the modified method and its application of the law, Guidance on acidic industrial waste to the development and application. So it has a good practical significance
引文
[1] 陈剑雄. 绿色生态建筑材料与材料科学及工程进展. 自编教材. 2004.11
    [2] 石宁. 碱—矿渣—锂渣胶凝材料研究. 重庆建筑大学硕士论文. 2002
    [3] 格鲁荷夫斯基,鲁诺娃,马克苏诺夫著.蒲心诚译. 接触硬化胶凝材料及复合材料. 重庆大学出版社. 2004.9
    [4] 马鸿文. 杨静. 任玉峰. 凌发科. 矿物聚合物材料:研究现状与发展前景. 地学前沿,2002 ,9(4):398~407
    [5] 蒲心诚. 甘昌成等 碱矿渣(JK)混凝土构件的性能. 硅酸盐通报. 1989.8(5):5~10
    [6] 陈剑雄. 蒲心诚等. 碱矿渣(JK)混凝土构件结构性能实验研究. 工业建筑。 1989(11):39~43
    [7] 袁鸿昌,江饶忠. 地质聚合物材料的发展及其在我国的应用前景. 硅酸盐通报,1998,17(2):46~51
    [8] 倪文. 对绿色奥运建筑体系中关键材料的几点认识. 新材料产业,2002,(7):12~17
    [9] 吴清仁,吴善编,生态建材与环保. 化学工业出版社,2003.12
    [10] 马云萍. 利用废弃物生产绿色建筑材料.广东建材.2003(6)
    [11] 王培铭等,绿色建材德研究与应用. 混凝土与水泥制品. 2002(6):46~48
    [12] 陈荣昆,可持续发展—人类必然选择,建材地质,1996,88(6):2~5
    [13] 杨立信. 国外碱性粉煤灰胶结料研究. 粉煤灰综合利用. 1996(4):49~52
    [14] J.Davidovits.Geopolymers : Inorganic polymeric new materials .J.Therm.Anal. (1991)1611~1656
    [15] J.Davidovits.Inorganic polymeric new material. J.Mater.Educ. (1994)91~139
    [16] Van Jaarsveld J.G..S,Van Deventer J.S.J. and Lukey G.C. The characterisition of source materials in fly ash—based geopolymers.Materials Letters 2003,(67):1272~1280
    [17] 代新祥,文梓芸,土壤聚合物水泥. 新型建筑材料,2001,(6):34~35
    [18] Van Jaarsveld J.G.S. Van Deventer J.S.J. and Schwartzman : The potential use of geopolymeric materials to immobilize toxic materials : part2. material and leaching characteristics. Minerals Engineering,1999,(12):75~91
    [19] 汪澜,崔元生. 地质聚合物水泥和混凝土的研究.第三届中国商品粉煤灰、磨细矿渣及煤矸石加工与应用技术交流大会论文集合,2005,(8):1~5
    [20] 王栋民,李俏,左彦峰,龙俊余,高昱,陈良程,粉煤灰组成、特性和活性激发方式. 的三届中国商品粉煤灰、磨细矿渣及煤矸石加工与应用技术交流大会论文集,2005,(8):62~71
    [21] Foden A J,Balaguru P,Lyon R E. Mechanical properties and fire response of geopolymer structural composites [J]. Int Sampe Symp Exhib,1996,41:748~758
    [22] Hua Xue,Van Deventer J.S.J. The geopolymerisation of alumino—silicate minerals. International Journal of Mineral Processing,2000(59):297
    [23] Malone P G,Kirkpatrick T,Randall C A. Poterntial Applicationgs of Alkali—Activated Alumino—Silicate Binders in Military Operation [R].Report WES/MP/GL-85-15,US Army Corps of Engineers,Vicksburg,ML 1986
    [24] 刘斌,加气混凝土砌块应用钟的若干问题. 广东建材. 2005.5
    [25] 高连玉,郭富胜,加气混凝土应用及其关键技术. 房材与应用. 2002(2)
    [26] 杨立信,乌克兰在碱性粉煤灰胶结料方面的研究. 硅酸盐通报. 1992(6):42~45
    [27] 徐彬,蒲心诚,碱矿渣水泥混凝土研究进展,西南工学学报,1994.(6),Vol9(2),65~74
    [28] 蒸压粉煤灰加气混凝土若干问题的研究. 武汉建筑材料工业学院. 1979 粘全国新型建材及实验性建筑技术经验交流会资料选编
    [29] 加气混凝土在建筑尚的应用.北京市建筑设计院. 东北建筑设计院. 中国建筑工业出版社. 1983.1
    [30] Caijun Shi , RobertL.Day , Some fanctors affecting early hydraction of alkali-slag cements,Cement and Concrete Research,Vol.26,No.3,1996,424~435
    [31] Davidovita J.The Ancient Egyptian Pyranmids—Concrete or Rock. Concrete International,1987,9(12):28~39
    [32] ZhouHuanhai,WuXuequan,Xu hongzi,Tang Mingshu. Kinetic Study on Hy—dration of Alkali—activated Slag. Cement and Concrete Research,1993(4):1253~1258
    [33] F.M.李著,唐明述,杨南茹,胡道和,闵盘荣译. 水泥和混凝土化学(第三版).北京:中国建筑工业出版社. 1980:231~237
    [34] 杜仁明,胡平.锂盐渣混凝土(砂浆) 研制及应用.成都:四川大学出版社,2000:85~8
    [35] 胡平,甘艳华. 锂盐渣混凝土性能研究及应用. 四川水力发电. 1999(3):87~92
    [36] [苏] ∏.波任诺夫 著,吕昌高 译,陈振基 校,蒸压材料工艺学,中国建筑工业出版社,1985 年。
    [37] 彭小芹,吴礼贤. 灰砂混凝土促硬剂研究.重庆建筑大学学报.1994,16(1):39~46
    [38] 蒲心诚,赵镇浩,灰砂硅酸盐建筑制品。北京:中国建筑工业出版社,1980
    [39] 蒲心诚,唐路平,高碱性灰砂硅酸盐混凝土整压制度、抗压强度和能耗之间的关系[J]. 硅酸盐建筑制品,1987,(3):5~7
    [40] 韩跃新,印万钟,王泽红,袁致涛. 矿物材料. 北京.科学出版社.2006:12~13
    [41] 吴庵熬,发展加气混凝土的经济效果研究,新型建材跨世纪发展战略研究,1995(8):16~19
    [42] 秦华虎,新型墙体材料发展的探讨,新型建材,1999(10):22~25
    [43] 王善拨,关于提高加气混凝土制品质量的几个问题,广东建材,1998(4)15~17
    [44] 徐清,刘育成,碱矿渣加气混凝土适宜的养护方式及养护制度研究,云南建材,1999(4):13~15
    [45] 张继能,顾同曾编,加气混凝土工业丛书. 加气混凝土生产工艺. 武汉工业大学出版社. 1990
    [46] 王树茜,提高加气混凝土性能的研究,硅酸盐建筑制品.1994(4)
    [47] 袁润章等,矿渣结构与水硬活性及其激发机理.武汉工业大学技术成果选编. 1978~1988
    [48] 吴礼贤等,碱矿渣混凝土的微观结构研究. 四川建材. 1989.3
    [49] 程麟,钟白茜,杨南茹,活化粉煤灰的研制,南京化工大学学报,1996(18)61~64
    [50] 杨东生,水泥工艺实验. 北京:中国建筑工业出版社,1986
    [51] Caijun Shi,Robert L.Day chemical activation of blended cements made with lime and natural pozzolans. Cement and Concrete Research,1993,,23(6):1389
    [52] 程小英等. 煤系高岭土煅烧加工工艺流程与设备. 非金属矿,1998.18~19
    [53] Method for producing high brightness low abrasion kaolin pigment. US05516364
    [54] 刘新锦等. 高岭土活化研究. 硅酸盐通报,1998(1):37
    [55] 郑水林. 粉体表面改性. 中国建材出版社,1999:133~135
    [56] 李春红,费文斌,锂渣在水泥工业中的应用研究,水泥技术,2001(5):48~52
    [57] 柴星腾,矿渣粉的制备及应用,水泥技术,2003(1):50~56
    [58] 李春红,费文斌,浅谈锂渣在建材工业中的研究与应用,世界有色金属,2000(10):21~24
    [59] 郭玉华,用锂渣左混合材生产水泥,水泥[J],2000(7):36~39
    [60] 费文斌,利用锂渣代替粘土制作水泥粉体的实验,水泥[J],1999(1):4~6
    [61] 吴学权. 工业废渣利用的新途径—碱矿渣水泥的现状与展望. 江苏建材.1990(2):9~11
    [62] 曾祖亮. 锂渣的来源和锂渣混凝土的增强抗渗机理探讨. 四川有色金属. 2000(4)
    [63] 马保国等,NaOH-nNa2SiO3 激发制备碱-双渣胶凝材料研究,武汉理工大学学报,2001(5):8~10
    [64] 粉煤灰性质对蒸压粉煤灰制品性能及水化产物的影响. 1979 粘全国新型建筑材料及实验性建筑技术经验交流会资料选编
    [65] Johan.Relatios between structure and mechanical properties of autoclaved aerated concrete. Cenment and Concrete Rearch. 1979(7)
    [66] 刘学峰译,混凝土制品热养护节能新技术,建筑材料,2001(2):3~4
    [67] 龙广成,谢友均,李建,热养护条件下活性矿物质粉末的强度效应,建筑材料学报,2005(5):508~510
    [68] 龙广成,活性粉末混凝土的组成,结构与性能研究[D],上海,同济大学材料科学与工程学院,2003
    [69] 吴卫国,灰砂砖如何利用好蒸压余汽,砖瓦,2005(4):29
    [70] 吴会军,刘笑笑,朱东生,向兰,於祯,热水反应法制备纳米粉体的研究进展,现代化工,2003(23):37~40
    [71] Roy R. Crystal Chemistry in Research on Ionic Solids,Gordon and Breach[M]. New york:Science Publishers,1963:45~76
    [72] Roy R,Tuttle O F. Investigation Under Hydrothermal Condition,Physics and Chemistry of the Earth[M]. Oxfod:Pergamon Press,1956,:138~180
    [73] Knudsen G A,Suciu E N Inc. Process for the preparation of dialkyltio dialkoide from alkyl carbmate and alcohol[P]. US 5759941,1998:6~8
    [74] Catalytic Distillation Technologies. Process and catalyst for making dialkyl carbonates[P]. US 6392078,2002(5):21
    [75] Qian X F,Zhang X M,Wang C,et al.[J].Microporous Materials,1997(5):59~60
    [76] 王成云,苏庆德,钱逸泰,[J]. 化学研究与应用,2001(4):402~405
    [77] 李涵敏,高峰,加气混凝土与含水率之间关系德探讨. 房才与应用. 2004.4
    [78] 何水清,高层建筑中加气混凝土砌块框架填充墙裂缝原因及措施,砖瓦.2005(1):45~47
    [79] Glukhovsky, V.D., et al. Slag-alkaline Cements and Concrete-Structure, Properties, Technological and Economical aspects of use. Silic. Ind,1983,48(10):197~200
    [80] 陈剑雄,蒲心诚,甘昌成,吴礼贤. 碱矿渣混凝土构件结构性能研究. 工业建筑. 1989(11),39—43
    [81] 张兰芳,陈剑雄,李世伟等,用各种渣体配制环境混凝土. 硅酸盐通报.2006(1).94—97
    [82] 张兰芳. 碱激发复合渣体(AAW)混凝土的性能研究。重庆建筑大学博士论文.2006
    [83] 蒲心诚等. 高强碱矿渣水泥与混凝土缓凝问题研究. 水泥. 1992(10)
    [84] 杨南茹. 碱胶凝材料形成的物理化学基础(I). 硅酸盐学报. 1996(3)
    [85] 杨南茹. 碱胶凝材料形成的物理化学基础(II). 硅酸盐学报. 1996(3)
    [86] 夏春, 粉煤灰—锂盐渣掺和料水泥石微观特征与活性机理,粉煤灰,2004(6):12~15
    [87] 谭凯旋,张哲儒,王中刚,矿物溶解德表面化学动力学机理,矿物学报,1994.9(3)
    [88] Helgeson, K,G and Wolery,T.J. Dependence of albite dissolution kinetics on PH and time at 25 ℃ and 70 ℃ , Geochim. Cosmochim. Acta, 1986,50:2481~2497
    [89] .彭小芹,灰砂混凝土德强度及孔结构与蒸压制度德关系,重庆建筑大学学报,1999(1):32~34
    [90] 马保国,钟开红等,轻质加气混凝土干燥收缩德研究,新型墙材,2003(12):21~23
    [91] 郭玉顺,陆爱萍,郭自力,多孔混凝土成分、孔结构与力学性能关系德研究,1996(8):44~49
    [92] 陈长熊,赵若鹏,孔结构对材料强度的影响何发气混凝土强度公式的探讨. 第一届全国混凝土学术交流会资料,1981
    [93] Mangat P, Elkhatib J M. Influence of initial curing on pore structure and porosity of blended cement concrete. Fly Ash, silica Fume and other Mineral By—products in concrete,1992:532~833
    [94] 金孝杰,张丽敏,加气混凝土导热系数测试方法的讨论,住宅科技,1996(10):31~35
    [95] 重庆建筑工程学院建筑物理实验室. 加气混凝土导热系和导温系数实验方法的调查研究报告. 1980
    [96] 孙抱真等,加气混凝土孔结构与强度的数学关系式. 硅酸盐建筑制品,1983(5)
    [97] 张玮,张海波等,轻质加气混凝土性能特性研究,混凝土与水泥制品. 2003(6):44~46
    [98] 马保国,钟开红等,轻质加气混凝土干燥收缩的研究,新型建材.2003(12):20~23
    [99] Halina Ziembicka.Effect of micropore structure on cellular concrete shrinkage. Cement and Concrete Research.1977,Vol7
    [100] Georgiades,J.Marions, Effect of micropore structure on AAC Shrinkage. Cement and Concrete Research.1991(7)
    [101] N.Narayanan,K.Ramamurthy. Structure and Properties of aerated concrete:a review. Cement and Concrete Composites 2000(22):321~329
    [102] 戴念中. 重庆市建筑科学研究所. 加气混凝土砌块的力学特性. 硅酸盐建筑制品.1981(6):26~27
    [103] 刘海峰,高键明等,掺矿渣微粉混凝土的微观性能实验研究,混凝土与水泥制品,2003(6):16~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700