用户名: 密码: 验证码:
磷渣粉对混凝土性能影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为电炉法制取黄磷时的工业副产品,我国每年都要产生大量的磷渣。我国多数黄磷生产企业将磷渣作为废渣堆放,这不利于社会和环境的可持续发展。磷渣具有潜在活性,可以作为混凝土掺合料,这是实现磷渣大量有效利用的一种较好的技术途径,具有很高的环境效益、社会效益以及经济效益。
     磷渣粉掺合料对混凝土的性能有一定影响,目前关于其对水泥水化以及混凝土耐久性,特别是氯离子渗透性能方面研究还较少。本文以四川川辅新材料有限公司磷渣为研究对象,主要研究了磨细磷渣粉对水泥水化、混凝土力学性能、氯离子渗透性能及孔结构的影响。研究结果表明:
     ①磷渣粉延缓了水泥水化。磷渣粉掺入降低了早期的水化热和化学结合水量,减缓了水化放热速率。掺磷渣粉后浆体的水化产物与水泥水化产物类似,但Ca(OH)_2含量降低;
     ②磷渣粉是一种优良的混凝土掺合料,在提高混凝土56d强度方面,其效应要低于矿渣,优于粉煤灰;
     ③磷渣粉的掺入能够显著提高混凝土的抗氯离子渗透性能。在0.55、0.45、0.37水胶比下,磷渣粉掺量在40%以内时,混凝土抗氯离子渗透能力随磷渣粉掺量增大而提高;磷渣粉比表面积在274~453m~2/kg范围内时,56d龄期后,混凝土抗氯离子渗透能力随磷渣粉细度增大而提高;
     ④磷渣粉分别与粉煤灰、矿渣按1:1复掺时可提高混凝土的抗氯离子渗透能力;
     ⑤磷渣粉的掺入有利于细化水泥石平均孔径,提高浆体中﹤20nm微孔的比例,改善混凝土孔结构。
As a kind of by-products by yellow phosphorus industry through electric furnace process, large amounts of phosphorous slag are produced every year in our country. Phosphorous slag is piled as waste residue in most yellow phosphorus company in our country, which is harmful to the sustainable development of society and environment. Phosphorous slag can be used as mineral admixture because of its hydraulic potential, which is a good way to reusing it largely. At the same time, there are high environment, society and economic benefit if the phosphorous slag is reused recycling.
     Phosphorus slag has certain influence on the performance as a kind of mineral admixtures. At present, there are very few researches on the influence of phosphorous slag on hydration of cement and durability of concrete, especially on the properties of chloride ion penetration. In this paper, the effect of phosphorous slag produced in Sichuan ChuanFu New Building Materials Co., Ltd on hydration of cement, mechanics properties, properties of chloride ion penetration and pore structure of concrete are studied. The main results show that:
     ①The hydration of cement was delayed as mixing with phosphorous slag. The hydration heat and the non-evaporable water are decreased; meanwhile, the exothermic rate of hydration is been slower when mixing with phosphorous slag. After mixing with phosphorus slag, the hydration products are similar with the hydration products of cement, but the Ca (OH)_2 decreased.
     ②Phosphorus slag is a good kind of mineral admixture of concrete. As a mineral admixture to increase the 56d compressive strength of concrete, the effect of phosphorus slag is lower than blast furnace slag, better than fly ash.
     ③The permeability resistance of concrete against chloride ion penetration increases significantly by adding phosphorus slag. When the water to binder ratio of the mixes are 0.55, 0.45, 0.37 and the content of phosphorus slag within 40%, the permeability resistance of concrete against chloride ion penetration increase as the content of phosphorus slag increase. The resistance to chloride ion penetration of concrete increases with the fineness of phosphorus slag increases after 56d ages when the surface area of phosphorus slag is in the range of 274~453m~2/kg.
     ④The resistance to chloride ion penetration of concrete increases by mixing phosphorus slag with fly ash or blast furnace slag according to 1:1.
     ⑤The pore structure of concrete has been improved by mixing phosphorus slag.The average pore diameter decreases and the percentage of the pores with diameter less than 20nm in concrete increases.
引文
[1]文梓芸,钱春香,杨长辉.混凝土工程与技术[M].武汉,武汉理工大学出版社,2008.
    [2]陈善继.我国黄磷工业现状与发展趋势[J].硫磷设计与粉体工程,2001(5):3-6.
    [3]匡国明.我国黄磷产业的出路———化“危”为“机”调整产业结构发展循环经济[J].硫磷设计与粉体工程,2009(5):22-24.
    [4]陶俊法.中国黄磷工业现状与发展前景[J].无机盐工业,2008,40(6):1-4.
    [5]陈善继.我国黄磷工业现状与发展趋势(续完)[J].硫磷设计与粉体工程,2001(6):22-24.
    [6]匡国明.我国黄磷工业现状和可持续发展方向[J].磷肥与复肥,2005,20(2):45-47.
    [7]陈善继.我国黄磷工业的发展前景[J].磷肥与复肥,2002,17(5):43-46.
    [8]冷发光,冯乃谦.磷渣综合利用的研究与应用现状[J].中国建材科技,1999(3):43-46.
    [9]刘冬梅,方坤河,吴凤燕.磷渣开发利用的研究[J].矿业快报,2005(3):21-25.
    [10] J.L. Alvarez,R.Geddes,J.E.Rice,et al.Elemental phosphorus slag exposure study in Southeastern Idaho,USA[C].International Congress Series 1225,2002:131-138.
    [11]刘世荣,肖金凯.贵州黄磷渣的成分特征[J].矿物学报,1997,17(3):329-336.
    [12]刘冬梅,方坤河,杨华山.磷渣掺合料及其对水泥水化性能的影响[J].水泥工程,2007(2):74-77.
    [13]翟红侠,廖绍锋.磷渣硅酸盐水泥水化反应机理研究[J].合肥工业大学学报(自然科学版),1998,21(2):132-136.
    [14]史才军.磷渣活性激发的研究[D].南京:南京工学院材料科学与工程系,1987.
    [15]李东旭,沈锦林,王玉江,等.外加剂对低钙玻璃态胶凝材料微观结构的影响[J].南京化工大学学报,2000,22(1):46-50.
    [16]程麟,盛广宏,皮艳灵.磷渣对硅酸盐水泥凝结时间的影响及机理[J].南京工业大学学报,2004,26(5):5-8.
    [17]王昕,颜碧兰,刘晨,等.多元钙质和硅铝质工业废渣复合激发磷渣活性的研究[J].北京工业大学学报,2009,35(9):1258-1266.
    [18]陈霞,易俊新,曾力.磷渣的活性机械激发试验及分析[J].粉煤灰综合利用,2006(4):16-18.
    [19]陈善继.我国制磷电炉炉渣的综合利用[J].磷肥与复肥,2006,21(3):41-44.
    [20]陈雁安.电热水淬磷渣的利用[J].建材工业信息,1994(12):3.
    [21]任素梅,孙湘,王秀云等.钢渣、磷矿渣、粉煤灰水硬性胶凝材料的研制[J].四川建材,1995,(3):16-17.
    [22]高培伟,张德成,冯乃谦.磷渣超细粉对高性能混凝土强度与耐久性的影响[J].山东建材学院学报,1998,12(S1):130-134.
    [23]刘冬梅,方坤河,石妍.磷渣对水泥浆体水化性能和孔结构的影响[J].硅酸盐学报,2007,35(1):109-113.
    [24]刘秋美,曹建新,杨林.磷渣粉对高性能混凝土性能影响的研究[J].混凝土,2007(6):54-55.
    [25]陈霞,易俊新,曾力,等.掺粉煤灰和磷渣粉混凝土的性能研究[J].粉煤灰综合利用,2006(1):22-23.
    [26]刘秋美,曹建新,杨林.磷渣粉对混凝土物理性能影响的研究[J].山西建筑,2007,33(21):175-177.
    [27]王绍东,赵镇浩.新型磷渣硅酸盐水泥的水化特性[J].硅酸盐学报,1990,18(4):379–384.
    [28]程麟,盛广宏,皮艳灵,等.磷渣对硅酸盐水泥的缓凝机理[J].硅酸盐通报,2005(4): 40–44.
    [29]梅国兴,刘伟宝.掺凝灰岩粉、磷矿渣粉水泥浆体水化的SEM分析[J].混凝土,2003(3):49-57.
    [30]吴秀俊.磷渣硅酸盐水泥的水化与硬化[J].新世纪水泥导报,2000(3):21-24.
    [31] Gao Peiwei,Lu Xiaolin,Yang Chuanxi,et al.Microstructure and pore structure of concrete mixed with superfine phosphorous slag and superplasticizer [J].Construction and Building Materials,2008(22):837-840.
    [32] Li Dongxu,Shen Jinlin,Mao Liangxi,et al.The influence of admixtures on the properties of phosphorous slag cement[J].Cement and Concrete Research,2000(30):1169-1173.
    [33] Li Dongxu, Shen Jinlin,Chen Lin,et al.The influence of fast-setting/early -strength agent on high phosphorous slag content cement[J].Cement and Concrete Research, 2001(31): 19-24.
    [34]宋军伟,方坤河,刘冬梅.压汞测孔评价磷渣-水泥浆体材料孔隙分形特征的试验[J].武汉大学学报(工学版),2008,41(6):41-45.
    [35]魏莹,李兆锋,李丙明等.磷渣对水泥混凝土性能的影响及机理探讨[J].硅酸盐通报,2008,27(4):822-826.
    [36]曹庆明.磷矿渣———新型混凝土掺合料的应用[J].水利水电科技进展,1999,19(2)61-63.
    [37]戈雪良,曾力,方坤河.磷渣粉对水工混凝土性能的影响[J].水力发电学报,2008,27(2):84-88.
    [38] Chen Xia , Zeng Li , Fang Kunhe . Anti-Crack Performance of Phosphorus Slag Concrete[J].Wuhan University Journal of Natural Sciences,2009,14(1):81-86.
    [39]冉璟,钟贻辉.磷渣作水工混凝土掺和料的试验研究[J].水电站设计,2008,24(3):57-59.
    [40]甄向贤,张惠敏,吴晓蓉.磷渣水泥耐海水侵蚀机理的研究[J].水泥,1996(4):1-6.
    [41]周麒雯,李光伟.磷渣抑制集料碱硅酸反应的试验研究[J].水利水电科技进展,2008,28(2):39-41.
    [42]单维源.水淬电炉磷渣对混凝土钢筋锈蚀的影响[J].水泥,1999(5):1-4.
    [43]元强.水泥基材料中氯离子传输试验方法的基础研究[D].湖南:中南大学,2009.
    [44]赵铁军.混凝土渗透性[M].北京:科学出版社,2005.
    [45]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北京,机械工业出版社,2009.
    [46] Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration(T259-80).American association of state highway and transportation officials,Washington D.C,U.S.A.,1904.
    [47] Nordtest Method:Accelerated Chloride Penetration into Hardened Concrete.Nordtest,Espoo,Finland,Proj,11,1995:54-94.
    [48] N.R.Buenfeld and J.Z.zhang.Chlorid diffusion through surface-trated specimens.Cemment and Concrete Research, 1998, 28(5):665-674.
    [49] NT Build 355.Concrete, Mortar and Cement Based Repair Materials: Chloride Diffusion Coefficient from Migration Cell Experiments, 1997.
    [50] AASHTO Designation T277-83.Standard Method of Test for Rapid Determination of the Chloride Permeability of Concrete.
    [51] ASTM C 1202-07,Standard test method for electrical indication of concrete's ability to resist chloride ion penetration[S].
    [52]中华人民共和国行业标准.JTJ275-2000《海港工程混凝土结构防腐蚀技术规范》[S].北京,人民交通出版社,2001.
    [53]中国工程建设标准化协会标准.CECS 207:2006《高性能混凝土应用技术规程》[S].北京,中国计划出版社,2006.
    [54]中国土木工程学会标准.CCES01-2004《混凝土结构耐久性设计与施工指南》[S].北京,中国建筑工业出版社,2005.
    [55] Lu Xinying, Application of the Nernst-Einstein equation to concrete.Cement and concrete Research. 1997, 27(2): 293-302.
    [56]路新瀛,李翠玲.混凝土渗透性的电学评价[J].混凝土与水泥制品,1999,(5):12-14.
    [57]唐明述.水泥混凝土与可持续发展[J].中国有色金属学报,2004,14(1):164-172.
    [58]冯乃谦,邢锋.高性能混凝土技术[M].原子能出版社,2000,2.
    [59]中华人民共和国国家标准.GB175-2007《通用硅酸盐水泥》[S].北京,中国标准出版社,2009.
    [60]陈霞,易俊新,曽力.磷渣的活性机械激发试验及分析[J].粉煤灰综合利用,2006,(4):16-18.
    [61]史才军.碱-激发水泥和混凝土[M].北京,化学工业出版社,2008.
    [62]重庆大学建材系编.建筑材料性能学[M].2000.
    [63] P.梅泰著,祝永年,沈威,陈志源译.混凝土的结构、性能与材料[M].上海,同济大学出版社,1991.
    [64]王培铭,丰曙霞,刘贤萍.水泥水化程度研究方法及其进展[J].建筑材料学报,2005,(6):646-652.
    [65]王冲,蒲心诚,陈科.超低水胶比水泥浆体材料的水化进程测试[J].材料科学与工程学报,2008,26(6):852-857.
    [66] Ya Mei Zhang,Wei Sun,Han Dong Yan.Hydration of high-volume fly ash cement pastes[J]. Cement & Concrete Composites, 22 2000,(22):445-452.
    [67]石明霞,谢友均,刘宝举.水泥-粉煤灰复合胶凝材料的水化性能研究[J].建筑材料学报,2002,5(2):114-119.
    [68]熊大玉,王小虹.混凝土外加剂[M].北京,化学工业出版社,2002.
    [69]张建军,魏海玉,任志强.硫酸铝钾热分解反应动力学模型[J].无机化学学报,2001,17(2):279-284.
    [70] N.Bouzoubaa,M.H.Zhang,V.M.Malhotra. Laboratory-produced high-volume fly ash blended cements Compressive strength and resistance to the chloride-ion penetration of concrete [J]. Cement and Concrete Research, 2000,(30):1037-1046.
    [71] Faguang Leng, Naiqian Feng, Xinying Lu. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete [J]. Cement and Concrete Research, 2000,(30) :989-992.
    [72] T.Cheewaket,C.Jaturapitakkul,W.Chalee. Long term performance of chloride binding capacity in fly ash concrete in a marine environment [J]. Construction and Building Materials,2010,(24):1352–1357.
    [73] P.Chindaprasirt ,C.Chotithanorm,H.T.Cao. Influence of fly ash fineness on the chloride penetration of concrete [J]. Construction and Building Materials,2007,(21):356–361.
    [74] Halit Yazici. The effect of silica fume and high-volume Class C fly ash on mechanical properties,chloride penetration and freeze-thaw resistance of self-compacting concrete[J]. Construction and Building Materials,2008,(22):456-462.
    [75] Vagelis G.Papadakis. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress [J]. Cement and Concrete Research, 2000(30):291–299.
    [76] Kazuyuki Torii,Mitsunori Kawamura. Pore Structure and Chloride Ion Permeability of Mortars Containing Silica Fume [J]. Cement&Concrete Composites,1994,(16):279-286.
    [77] Andrea Boddy,R.D.Hooton,K.A.Gruber. Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin[J]. Cement and Concrete Research, 2001(31):759-765.
    [78] S.C.Kou,L.Lam. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Construction and Building Materials,2006(20):858-865.
    [79] Zhang MH,Malhotra VM.High performance concrete incorporating rice husk ash as a supplementary cementing material.ACI Mater J,1996;93(6):629–36.
    [80]吴中伟,廉慧珍.高性能混凝土[M].北京,中国铁道出版社,1999.
    [81]王勇威.超高强高性能混凝土的组成、结构及其收缩与补偿的研究[D].重庆,重庆大学,2001.
    [82] H.F.W.Taylor. Do cement pastes contain substituted C-S-H? In: Advances in cement manufacture and use. Edited by E.Gartner. New York: Engineering Foundation, 1988.
    [83]叶建雄,李晓筝,廖佳庆等.矿物掺合料对混凝土氯离子渗透扩散性研究[J].重庆建筑大学学报,2005,27(3):89-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700