用户名: 密码: 验证码:
磷石膏基水泥的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏是磷化工企业湿法生产磷酸的工业副产品,每1吨磷酸将产生5吨磷石膏。随着我国磷化工业的快速发展,每年副产磷石膏已经超过4000万吨,累计堆积磷石膏超过2亿吨。由于种种原因,目前我国磷石膏的资源化利用率不足10%,剩余部分作为固体废弃物采用堆积或者填埋等方式处理,磷石膏堆积不但占用了大量土地,而且对周围环境造成严重污染,加快对磷石膏的资源化利用已经刻不容缓。
     本文通过大量试验,以未经煅烧处理的磷石膏为主要原料,通过添加钢铁工业的高炉水淬矿渣和少量碱性激发剂,开发出一种新型低能耗的水硬性胶凝材料——磷石膏基水泥,并通过组分设计和制备工艺优化对提高磷石膏水泥的性能进行了研究。结果表明:使用45%的磷石膏与35%-45%的矿渣复合,添加10%钢渣或者4%的硅酸盐水泥作为碱性激发剂,可以制备出28d抗压强度超过40MPa的水硬性胶凝材料。尽管该水泥凝结慢、早强低,但在水中养护强度能不断增长。在钢渣激发的磷石膏基水泥中添加1%的NaOH,能显著缩短水泥的凝结时间和提高早期强度,用超细粉磨的硅酸盐水泥做碱性激发剂,磷石膏基水泥的3d抗压强度超过12MPa,接近于32.5复合硅酸盐水泥。
     通过XRD、SEM等对磷石膏基水泥的水化产物、水化机理、水化过程及微观结构的发展进行了研究。结果表明:磷石膏基水泥的水化产物是C-S-H凝胶和钙矾石,磷石膏在水化过程中一部分参与水化形成水化产物钙矾石,剩余部分被水化产物所包裹起集料填充作用。磷石膏基水泥水化时,矿渣在碱性激发下溶解,并与溶解在液相中的石膏形成水化产物钙矾石和C-S-H凝胶,钙矾石和C-S-H凝胶交织在一起填充空隙,硬化浆体结构逐渐密实,强度不断发展。早期水化形成的钙矾石,起到填充空隙作用,和C-S-H凝胶一起构成硬化浆体的骨架,有利于促进水泥凝结和提高早期强度。当硬化浆体的致密性达到一定程度后,如果还形成大量结晶粗大的钙矾石,水化产物中结晶相过多,并不利于浆体结构致密度的提高,严重时还会因钙矾石的结晶压力使浆体结构产生破坏,造成水泥的后期强度降低甚至膨胀开裂。由于磷石膏基水泥中石膏是过剩的,通过控制磷石膏基水泥中碱性激发剂的适当掺量,可避免膨胀性钙矾石所造成的破坏。
     通过试验对磷石膏基水泥的长期强度、体积稳定性、抗碳化性能、耐水性、抗硫酸盐性能等耐久性进行了研究,结果表明:
     1、磷石膏基水泥在水中长期养护时,强度能不断发展,增加到一定程度时趋于稳定,其强度发展时间和所能达到的最终强度随着矿渣掺量的增加而增加。
     2、钢渣激发磷石膏基水泥在水中养护时,具有微膨胀性,膨胀到一定程度后趋于稳定,膨胀量的大小随着水泥强度的提高而减少,在空气中养护时,与普通硅酸盐水泥一样,体积出现收缩,收缩量约为普通硅酸盐水泥的一半。硅酸盐水泥激发磷石膏基水泥在水中养护时,水泥掺量少的试样出现了收缩,水泥掺量多的试样具微膨胀性,膨胀量低于钢渣激发磷石膏基水泥。
     3、磷石膏基水泥的抗碳化性能劣于普通硅酸盐水泥,在碳化箱中人工碳化28d后,磷石膏基水泥的抗压强度为未碳化时的65%-84%,降低幅度与未碳化时的强度有关,强度越高的试样,碳化后降低的比例越少。碳化时碳酸与磷石膏基水泥的水化产物C-S-H凝胶和钙矾石反应,形成了方解石和石膏,使浆体结构疏松化,是磷石膏基水泥碳化后强度降低的主要原因。
     4、磷石膏基水泥水化产物中含有大量剩余石膏,早期水化结构还未发展致密时,浸泡在水中有部分石膏溶解,但随着水化进行,石膏被水化产物钙矾石和C-S-H凝胶包裹紧密,溶解越来越慢最终停止,因此具有很好的耐水性。
     5、磷石膏基水泥具有很好的抗硫酸盐性能,这是因为其水化过程中一直是在石膏过剩的条件下进行,水化产物的碱度较低,硬化浆体的结构致密,硫酸盐侵蚀介质难以与水泥的水化产物发生化学反应形成石膏或钙矾石。
Phosphogypsum (PG) is a byproduct of manufacturing phosphate acid by wet process in fertilizer industry. Five tons PG is generated for every 1000 kg phosphate acid produced. The annual production of PG is more than 40 million tons with the rapid development of China's phosphate industry, and total accumulation of PG is more than 200 million tons in China. Due to various reasons, less than 10% PG is reused and the rest is deposited as solid waste. The deposited PG not only occupies a lot of land, but also causes serious environment pollution. It is urgent to expedite the utilization of PG.
     In this study, a new type of low energy consumption hydraulic binder phosphogypsum-based-cement (PBC) had been developed by mainly utilizing PG and ground granulated blast-furnace slag (GGBFS) with small addition of alkaline activator, and experiments of component design and production process optimization were conducted to improve the property of PBC. The results show that, the 28d compressive strength of PBC made with 45%PG,35-40%GGBFS and 10%steel salg or 4%portland cement as alkaline activator was over 40 MPa when cured in water. Although the setting time of PBC was slow and the early strength was low, but its strength increased continuously cured in water. The early strength was increased and the setting time was shortened by adding 1%NaOH in steel slag activated PBC. The 3d strength of PBC was up to 12 MPa by using super fine ground portland cement as alkaline activator which is close to that of 32.5 portland blended cement.
     The hydration products, hydration mechanism and process, and microstructure development of PBC were studied by XRD and SEM analyses. The main hydration products of PBC were C-S-H gel and ettringite. Partial PG reacts with GGBGS and alkaline activator to form ettringite, the rest PG was enclosed by the hydration products to act as filler. At the hydration of PBC, GGBFS was dissolved into pore solution by alkaline activation, which then reacted with gypsum to form hydration products ettringite and C-S-H gel. Ettringite and C-S-H gel mingled together to fill the porous space. As a result, the microstructure of hardened paste became increasingly denser, and the strength of PBC developed continuously. Ettringite formed during early hydration filled the porous space, which contributed together with C-S-H gel to shorten the setting time and to improve the early strength of cement. If large amount of ettringite formed after the density of the hardened paste reached to a certain degree, the excessive crystalline phase from hydration was harmful to density improvement of the microstructure; it may cause damage to microstructure due to the ettringite crystallization pressure, which resulted in the deterioration of strength development or even expansive cracks. Because the gypsum was excess in PBC, the damage of expansive ettringite could be avoided by controlling the dosage of alkaline activator.
     The durability properties of PBC, including long term strength, volume stability, carbonation resistance, water resistance and sulfate resistance were also studied. The results show that:
     1. The strength of PBC increased continuously when cured in water and stabilized at about one year. The final strength of PBC was higher at higher dosage of GGBFS.
     2. When cured in water, steel slag activated PBC showed small expansion at beginning, and its volume was stable after a certain amount of expansion. The amount of expansion was decreased with increase of PBC strength. When cured in air, the PBC shrank like portland cement, but its shrinkage was about half of that of portland cement. Portland cement activated PBC shrank if cement dosage less than 3% and swell if cement dosage more than 3% when cured in water.
     3. Carbonation resistance of PBC was inferior to that of portland cement. After carbonated for 28d in carbonation test box, the compressive strength of PBC was retained 65-84%. The strength decrease was related to the strength of the specimens before carbonation, the higher the strength before carbonation the less the strength decreased. Carbonate acid reacted with hydration products C-S-H gel and ettringite of PBC and formed calcite and gypsum, which made the PBC microstructure less cohesive and was the main reason for strength loss after carbonation.
     4. The hydration products of PBC contained large amount of residual gypsum. At early hydration, the microstructure was not dense enough and when immersed in water some gypsum was dissolved. But as hydration continued, gypsum was wrapped by hydration products of C-S-H gel and ettringite, dissolution became more difficult and finally stopped. As a result, PBC showed very good water resistance.
     5. PBC was also resistant to sulphate because its hydration process was under the condition of saturation of gypsum, the alkalinity of hydration products was low, and its microstructure was dense. Consequently, it was difficult for sulphate erosion media to react with the hydration products of PBC and form ettringite and gypsum.
引文
[1]Rutherford, P.M., Dudas, M.J., Arocena, J.M. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Science of the Total Environment,1996, 180 (3):201-209.
    [2]Bolivar, J.P., Garcia-Tenorio, R., Vaca, F. Radioecological study of an estuarine system located in the south of Spain. Water Research,2000(34):2941-2950.
    [3]Lysandrou, M., Pashalidis, I.Uranium chemistry in stack solutions and leachates phophogypsum disposed at a coastal area in Cyprus. Journal of Environmental Radioactivity, 2008(99):359-366
    [4]杨瑞,邓跃全,张强,徐光亮等.川西磷石膏成分以及氡和放射性分析研究[J].非金属矿,2008,31(2):19-20
    [5]冯玉英,董师元,周平利,杨玉密.磷石膏建筑材料的放射性水平调查[M],全国天然辐射照射与控制研讨会论文汇编,2000年11月27日,北京
    [6]Reijnders, L., Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials, A review [J]. Building and Environment,2007,42 (2), 1036-1042.
    [7]Haridasan, P.P., Maniyan, C.G., Pillai, P.M.B., Khan, A.H.. Dissolution characteristics of 226Ra from phosphogypsum. Journal of Environmental Radioactivity,2002(62):287-294.
    [8]Azouazi, M., Ouahibi, Y., Fakhi, S., Andres, Y., Abee, J.C.H., Benmansour, M. Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco [J]. Journal of Environmental Radioactivity,2001(54):231-242.
    [9]Burnett, W.C., Elzerman, A.W. Nuclide migration and the environmental radiochemistry of Florida phosphogypsum [J]. Journal of Environmental Radioactivity 2001(54):27-51.
    [10]Al-Masri, M.S., Amin, Y, Ibrahim, S., Al-Bich, F. Distribution of some trace metals in Syrian phosphogypsum. Applied Geochemistry [J],2004(19):747-753.
    [11]陈永松,毛健全,磷石膏中污染物可溶磷的溶出特性实验研究[J].贵州工业大学学报,2007,36(1):99-102
    [12]吴兆正.我国资源化磷石膏的若干建议[J].第三届石膏生产与应用技术交流大会论文集.2008年6月,中国,青岛
    [13]吴道丽.磷石膏作为水泥缓凝剂的应用研究[J].环境科学导报,2008,17(6):76-77
    [14]吕洁.改性磷石膏对水泥性能的实验研究[J].水泥,2008,9:4-6
    [15]杨敏,钱觉时等.磷石膏中杂质对其应用性能的影响[J].材料导报,2007,21(6):104-106
    [16]杨敏,彭英.化学预处理磷石膏用于水泥缓凝剂的研究[J].兰州理工大学学报,2007,33(6):57-60
    [17]彭家惠,彭志辉,张建新等.磷石膏中可溶磷形态、分布及其对性能影响机制的研究[J].硅酸盐学报,2000,28(4):309-313
    [18]彭家惠,万体智,汤玲等.磷石膏中的有机物、共晶磷机器对性能的影响[J].建筑材料学报,2003,6(3):221-226
    [19]周丽娜,周明凯等.不同改性处理方法对磷石膏水泥调凝剂性能的影响[J].水泥,2007(8):16-18
    [20]杨淑珍,宋汉唐,杨新亚等.磷石膏改性机器做水泥缓凝剂研究[J].武汉理工大学学报.2003,25(1):23-25
    [21]Manjit, S., Garg, M., Rehsi, S.S.,. Purifying phosphogypsum for cement manufacture [J]. Construction and Building Materials,1993,7 (1):3-7.
    [22]Manjit, S., Mridul, G., Verma, C.L., Handa, S.K., Rakesh, K. An improved process for the purification of phosphogypsum [J]. Construction and Building Materials,1996,10 (8):597-600.
    [23]Manjit, S.. Treating waste phosphogypsum for cement and plaster manufacture [J]. Cement and Concrete Research,2002,32 (7),1033-1038.
    [24]Al-Jabbari, S., Faisal, F., Ali, S., Nasir, S. Journal of Building Research, Scientific Research Council, Baghdad,1988(7):49.
    [25]M.A. Taher. Influence of thermally treated phosphogypsum on the properties of Portland slag cement [J]. Resources Conservation and Recycling,2007(52):28-38
    [26]I. Aki Altum, Yesim Sert. Utilization of weathered phosphogypsum as set retarder in Portland cement [J].Cement and Concrete Research,2004(34):677-680
    [27]J.H.Potgieter,S.S Howell-Potgieter. A Plant Investigation into the Use of Treated Phosphogypsum as a Set-retarder in OPC and OPC/Fly ash blend [J]. Minerals Engineering, 2001,14 (7):791-795
    [28]汪瑛玲.对辊造粒机及其应用于磷石膏造粒的技术[J].磷肥与复肥,2007,22(6):57-58
    [29]骆吉林,胡厚美.添加胶凝材料改质磷石膏作水泥缓凝剂的新工艺[J].磷肥与复肥,2006,21(5):62-63
    [30]沈卫国,聂纪强,周明凯.磷石膏水泥缓凝剂的研究[J].磷肥与复肥,2005,20(5):21-23
    [3l]黄新,王海帆.我国磷石膏制硫酸联产水泥的现状[J].硫酸工业,2000,(3):10-14
    [32]宋海武.磷石膏联产水泥、硫酸烧成工艺的热耗分析[J].水泥工程,1997,(1):13-16.
    [33]张茜,刘少文等.磷石膏制酸新工艺热力学分析[J].化学工程,2007,35(10):72-74
    [34]李建锡,余苏等.石膏预分解的热分析研究[J].环境工程学报,2009,(10):1861-1864
    [35]席美云.磷石膏的综合利用[J].环境科学与技术,2001,95(3):10-13
    [36]高惠民,荆正强.磷石膏制备β-半水石膏粉试验研究[J].化工矿物与加工,2007,(3):9-11
    [37]段庆奎,王立明.闪烧法生产工艺——磷石膏最有效的资源化利用途径[C]∥中国硅酸盐学会房建材料分会2006年学术年会固体废弃物在城镇房屋建筑材料的应用研究论文集.杭州:中国硅酸盐学会,2006:313-321
    [38]彭家惠,吴丽等.磷石膏建筑腻子的配制与性能研究[J].新型建筑材料,2002,(1):25-27
    [39]彭志辉,彭家惠等.二水磷石膏粉煤灰符合胶结材料研究[J].粉煤灰综合利用.2001(1):3-6
    [40]周万良,龙靖华等.粉煤灰-氟石膏-水泥复合胶凝材料性能的深入研究[J].建筑材料学报,2008,11(2):179-182
    [4l]黎良元,石宗利,艾永平.石膏-矿渣胶凝材料的碱性激发作用[J].硅酸盐学报,2008,36(3):405-410
    [42]Manjit Singh, Mridul Garg. Cementitious binder from fly ash and other industrial wastes [J]. Cement and concrete research,1999(29):309-314
    [43]Manjit, S., Mridul, G..Making of anhydrite cement from waste gypsum [J].Cement and Concrete Research,2000,30 (4):571-577
    [44]Manjit, S., Mridul, G. Study on anhydrite plaster from waste phosphogypsum for use in polymerised flooring composition[J]. Construction and Building Materials.2005,19 (1):25-29.
    [45]Mridul, G, Manjit, S., Rakesh, K.. Some aspects of the durability of a phosphogypsum-lime-fly ash binder[J]. Construction and Building Materials,1996.10 (4):273-279.
    [46]Mridul Garg, Neerai Jain, Manjit Singh. Development of alpha plaster from phosphogypsum for cementitious binders [J]. Construction and Building Materisls,2009(23):3138-3143
    [47]Min, Y., Jueshi, Q., Ying, P.,Activation of fly ash-lime systems using calcined phosphogypsum[J]. Construction and Building Materials,2008(22):1004-1008.
    [48]Sunil, K.. A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development [J]. Construction and Building Materials.2002,16 (8):519-525.
    [49]Degirmenci, N.. Utilisation of phosphogypsum as raw and calcined material in manufacturing of building products[J].Construction and Building Materials,2008(22):1857-1862.
    [50]Degirmenci, N.. The using of waste phosphogypsum and natural gypsum in adobe stabilization [J]. Construction and Building Materials,2008(22):1220-1224.
    [51]Weiguo Shen, Mingkai Zhou, Qinglin Zhao. Study on lime-fly ash-phosphogypsum binder [J]. Construction and Building Materials,2007(21):1480-1485
    [52]Weiguo Shen, Mingkai Zhou, etl. Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material [J]. Journal of Hazardous Materials, 2009(164):99-104.
    [53]Guo, T., Malone, R.F., Rusch, K.. Stabilized phosphogypsum:Class C fly ash:Portland II cement composites for potential marine applications [J]. Environmental Science and Technology, 2001(35):3967-3973.
    [54]Kelly, A.R., Tingzong, G, Roger, K.S.. Stabilization of phosphogypsum using class C fly ash and lime:assessment of the potential for marine applications [J]. Journal of Hazardous Materials,2002,93 (2):167-186.
    [55]Jiakuan Yang, Wanchao Liu, Lili Zhang etl. Preparation of load-bearing building materials from autoclaved phosphogypsum [J]. Construction and building materials.2009(23):687-693
    [56]T. Kuryatnyk, C. Angulski da Luz, J. Ambroise, etl. Valorization of phosphogypsum as hydraulic binder [J]. Journal of Hazardous Materials,2008,160(2):681-687
    [57]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J]硅酸盐学报,1996,24(2):209-215
    [58]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报,1996,24(4):459-464
    [59]Wang Fu-sheng, Sun Rui-lian, Cui Ying-jing. Study of modification of the high- strength slag cement materials [J]. Cement and Concrete Research,2005,35,1344-1348
    [60]M. Codina, C. Cau-dit-Coumes, P. le Bescop, etl. Design and characteriazation of low-heat and low-alkalinity cements [J]. Cement and Concrete Research,2008(38):437-448
    [61]F. Bellmann, J. Stark. Activation of blast furnace slag by a new method [J]. Cement and Concrete Research,2009(39):644-650
    [62]Quanlin Niu, Naiqian Feng, Jing Yang, etl. Effect of superfine slag powder on cement properties [J]. Cement and Concrete Research,2002(32):615-621.
    [63]J. I. Escalante, L.Y. Gomez, K. K. Johal, etl. Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions [J]. Cement and Concrete Research,2001,31 (10):1403-1409
    [64]A. R. Brough, A. Atkinson. Sodium silicate- based, alkali- activated slag mortars Part I. hydration and microstructrue [J]. Cement and Concrete Research,2002(32):865-879
    [65]Fernando Pacheco-Torgal, Joao Castro- Geomes, Said Jalali. Alkali- activated binders:A review:Part 1. Historical background, terminology, reaction mechnisums and hydration products [J]. Construction and Building Materials,2008,22(7):1305-1314
    [66]Fernando Pacheco-Torgal, Joao Castro-Geomes, Said Jalali. Alkali-activated binders:A review. Part 2. About materials and binders manufacture [J].2008,22(7):1315-1322
    [67]Shao- Dong Wang, Karen L. Scrivener, P.L. Pratt. Factors affecting the strength of alkali-activated slag [J]. Cement and Concrete Research,1994,24(6):1033-1043
    [68]Shao-Dong Wang, Karen L. scrivener. Hydration products of alkali activated slag cement [J]. Cement and Concrete Research.1995,25(3):561-571
    [69]王峰,张耀君,宋强等.NaOH碱激发矿渣地质聚合物的研究[J].非金属矿.2008,31(3):9-11
    [70]Valdimir Zivica. Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures [J]. Construction and Building Materials,2007(21): 1463-1469
    [71]A. Fernandez-Jimenez, F. puertas. Alkali- activated slag cements:kinetic studies [J]. Cement and Concrete Research.1997,27(3):359-368
    [72]K. J. Mun, W. K. Hyoung, C. W. Lee, et al. Basic properties of non- sintering cement using phosphogypsum and waste lime as activator [J]. Construction and building materials.2007(21): 1342-1350
    [73]侯桂华,李伟峰,郭伟等.转炉钢渣的显微形貌和矿物相[J].硅酸盐学报,2008,36(4):436-442
    [74]L.J. Buckley, M.A. Carter, M.A. Wilson and J.D. Scantlebury. Methods of obtaining pore solution from cement pastes and mortars for chloride analysis [J]. Cement and Concrete research. 2007,37(11):1544-1550
    [75]V. Rasanen and V. Penttala. The pH measurement of concrete and smoothing mortar using a concrete powder suspension [J]. Cement and Concrete Research.2004,34(5):813-820
    [76]袁润章.胶凝材料学(第二版)[M].武汉理工大学出版社.1996,10.16-17
    [77]J. Bensted, P. Barnes. Structure and performance of cements (Second Edition) [M].化学工业出版社,北京,2009,l:217-221
    [78]J. Bijen and E. Niel. Supersulphated cement from blastfurnace slag and chemical gypsum available in the Netherlands and neighbouring countries [J]. Cement and Concrete research, 1981,11(3):307-322
    [79]A. Gruskovnjak, B. Lothenbach, F. Winnefeld, etl. Hydration mechanisms of super sulphated slag cement [J]. Cement and Concrete Rearch,2008,38 (7):983-992
    [80]N. Voglis, G Kakali, E. Chaniotakis and S. Tsivilis. Portland-limestone cements. Their properties and hydration compared to those of other composite cements [J]. Cement and Concrete Research,2005,27(2):191-196
    [81]Chloup-Bondant M, Evrard O. Tricalcium aluminate and silicate hydration. Effect of limestone and calcium sulfate. In:Colombet P, editor. Proceedings of the 2nd international conference on nuclear magnetic resonance spectroscopy of cement-based materials. Berlin: Springer Verlag; 1998. p.295-308.
    [82]Pe'ra J, Husson S, Guilhot B. Influence of finely ground limestone on cement hydration [J]. Cement and Concrete Composite,1999,21(2):99-105.
    [83]Tsivilis S, Kakali G, Chaniotakis E, Souvaridou A. A study of the hydration of Portland limestone cement by means of TG [J]. Therm Anal,1998(52):863-870.
    [84]Bonavetti VL, Rahhal VF, Irassar EF. Studies on the carboaluminate formation in limestone filler-blended cements [J]. Cement and Concrete Research,2001,31 (6):853-862.
    [85]Bentz DP. Modelling the influence of limestone filler on cement hydration using CEMHYD 3D [J]. Cem Concr Comp 2006,28(2):124-133.
    [86]Seishi Goto, Kiyoshi Akazawa, Masaki Daimon. Solubility of silica-alumina gels in different pH solutions Discussion on the hydration of slags and fly ashes in cement [J]. Cement and Concrete Research.1992,22(6):1216-1223
    [87]H.Y. Ghorab, E.A. Kishar, S.H. abou Elfetouh. Stdies on the stability of the calcium slfoaluminate hydrates. Part Ⅱ:Effect of alite, lime, and monocarboaluminate hydrate [J]. Coment and Concrete Research.1998,28(1):53-61
    [88]丁佩民,张其林.水泥处理的沉积淤泥膨胀试验及其矿物机理分析[J].同济大学学报.2002,30(9):1083-1086
    [89]梁耀,刘宝举,杨元霞.早期保湿及后期浸水对氟石膏-粉煤灰-水泥(FFC)胶结材试件强度的影响[J].粉煤灰.2006,18(3):23-26
    [90]A. M. Cody, H. Lee, R. D. Cody and P. G Spry. The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3·26H2O [J]. Cement and Concrete Research.2004,34(5):869-881
    [91]Sujin Song, Hamlin M. Jennings. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag [J]. Cement and Concrete Research,1999,29(2):159-170
    [91]I. Odler, and J. Colan-Subauste.Investigations on cement expansion associated with ettringite formation [J].Cement and Concrete Research,1999,29(5):731-735.
    [92]Cecilie Evju, and Staffan Hansen.The kinetics of ettringite formation and dilatation in a blended cement with β-hemihydrate and anhydrite as calcium sulfate [J]. Cement and Concrete Research,2005,35(12):2310-2321
    [93]Kamile Tosun. Effect of SO3 content and fineness on the rate of delayed ettringite formation in heat cured Portland cement mortars [J]. Cement and Concrete Composites,2006, 28(9):761-772
    [94]Sadananda Sahu, Niels Thaulow. Delayed ettringite formation in Swedish concrete railroad ties [J]. Cement and Concrete Research, Volume 34, Issue 9, September 2004, Pages 1675-1681
    [95]X. Brunetaud, L. Divet, D. Damidot. Impact of unrestrained Delayed Ettringite Formation-induced expansion on concrete mechanical properties [J]. Cement and Concrete Research,2008,38(11):1343-1348
    [96]H. Lee, R. D. Cody, A. M. Cody, P. G. Spry. The formation and role of ettringite in Iowa highway concrete deterioration [J]. Cement and Concrete Research,2005,35(2):332-343
    [97]Y. Shao, C. J. Lynsdale, C. D. Lawrence, J. H. Sharp. Deterioration of heat-cured mortars due to the combined effect of delayed ettringite formation and freeze/thaw cycles [J]. Cement and Concrete Research,1997,27(11):1761-1771
    [98]H. F. W. Taylor, C. Famy, K. L. Scrivener. Delayed ettringite formation [J]. Cement and Concrete Research,2001,31(5):683-693
    [99]M.D. Cohen. Theories of expansion in sulfoaluminate-type expansive cements:Schools of thought [J]. Cement and Concrete Research.1983,13,809-818.
    [100]S. Diamond. Delayed ettringite formation-processes and problems [J]. Cem. Concr. Compos,1996(18):205-215.
    [101]P.K. Mehta, Mechanism of expansion associated with ettringite formation. Cem. Concr. Res.1973(3):1-6.
    [102]P.K. Mehta and S. Wang, Expansion of ettringite by water adsorption. Cem. Concr. Res. 1982(12):121-122.
    [103]Ei-ichi Tazawa, Shingo Miyazawa and Tetsurou Kasai. Chemical shrinkage and autogenous shrinkage of hydration cement paste [J]. Cement and Concrete Research,1995,25 (2):288-292
    [104]E.A.B. Koenders, K. van Breugel. Numberical modeling of autogenous shringkage of hardening cement paste [J]. Cement and Concrete Research,1997,27(10):1489-1499
    [105]Dale P. Ben, Edward J. Garboczi, Claus J. Haecker, et al. Effects of cement particle size distribution on performance properties of Portland cement-based materials [J]. Cement and Concrete Research,1999(29):1663-1671
    [106]Arnon Bentur, Shin-ichi Igarashi, Konstantin Kovler. Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates [J]. Cement and Concrete Research,2001(31):1587-1591
    [107]Pietro Lura, Klaas van Breugel, Ippei Maruyama. Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete [J]. Cement and Concrete Research, 2001(31):1867-1872
    [108]S. igarashi, M. Kawamura. Effects of microstructure on restrained autogenous shrinkage behaviour in high strength concretes at early ages [J]. Materials and Structures,2002(35):80-84
    [109]Pietro Lura, Ole Mejlhede Jensen, Klaas van Breugel. Autogenous shrinkage in high-performance cement paste:An evalution of basic mechanisms [J]. Cement and Concrete Research,2003(33):223-232
    [110]Semion Zhutovsky, Konstantin Kovler, Arnon Bentur. Influence of cement paste matrix properties on the autogenous curing of high-performance concrete [J]. Cement and Concrete Composites,2004(26):499-507
    [111]D.P. Bentz, O.M. Jensen. Mitigation strategies for autogenous shrinkage cracking [J]. Cement and Concrete Composites,2004(26):677-685
    [112]Zhen He, Zongjin Li. Influence of alkali on restrained shrinkage behavior of cement-based materials [J].2005(35):457-463
    [113]Zhengwu Jiang, Zhenping Sun, Peiming Wang. Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes [J]. Cement and Concrete Research, 2005(35):1539-1545
    [114]Laurent Barcelo, Micheline Moranville, Bernard Clavaud. Autogenous shrinkage of concrete:a balance between autogenous swelling and self-desiccation [J]. Cement and Concrete Research,2005(35):177-183
    [115]Christian Pichler, Roman Lackner, Herber A. Mang. A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement based materials [J]. Engineering Fracture Mechanics,2007(74):34-58
    [116]Daniel Cusson, Ted Hoogeveen. An experimental approach for the analysis of early-age behaviour of high-performance concrete strctures under restrained shrinkage [J]. Cement and Concrete Research,2007(37):200-209
    [117]D.P. Bentz. A review of early-age properties of cement-based materials [J]. Cement and Concrete Research,2008(38):196-204
    [118]Vjorn Johannesson, Peter Utgenannt. Microstrctural changes caused by carbonation of cement mortar [J]. Cement and Concrete Research,2001,31(6):925-931
    [119]K.K. Sideris, A.E. Sawa, J. Papayianni. Sulfate resistance and carbonation of plain blended cements [J]. Cement and Concrete Composites,2006,28(1):47-56
    [120]T. Bakharev, J.G. danjayan, Y.B. Cheng. Resistance of alkali-activated slag concrete and carbonation [J].2001,31(9):1277-1283
    [121]T. Nishikawa, K.Suziki, S.Ito, et al. Decompositeion of synthesized ettringite by carbonation [J]. Cement and Concrete Research,1992,22(1):6-14
    [122]Manu Santhanam, Menashi D. Conhen, Han Olek. Sulfate attack research-whither now? [J]. Cement and Concrete Research,2001,31(6):845-851
    [123]Adam Neville. The confused world of sulfate attack on concrete [J]. Cement and Concrete Research,2004,34(8):1275-1296
    [124]Manu Santhanam, Menashi D. Cohen, Jan Olek. Mechanism of sulfate attack:A fresh look: Part1:Summary of expremental results [J]. Cement and Concrete Research,2002, 32(16):915-921
    [125]Manu Saanthanam, Menashi D. Cohen, Jan Olek. Mechanism of sulfate attack:a fresh look: Part 2. Proposed mechanisms [J]. Cement and Concrete Research,2003,33(3):341-346
    [126]D.D. Higgins, N.J. Crammond. Resistance of concrete containing ggbs to the thaumasite form of sulfate attack [J]. Cement and Concrete Composites,2003,25(8):921-929
    [127]N.J. Crammond. The thaumasite form of sulfate attack in the UK [J]. Cement and Concrete Composites,2003,25(8):809-818
    [128]Neil Loudon. A review of the wxperience of thaumasite sulfate attack by the UK highways Agency [J]. Cement and Concrete Research,2003,25(8):1051-1058
    [129]T. Bakharev, J. G. Sanjayan, Y. B. Cheng. Sulfate attack on alkali-activated slag concrete [J]. Cement and Concrete Research,2002,32(2):211-216
    [130]Kyong Yun Year, Eun Kyum Kim. An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag [J]. Cement and Concrete Research,2005, 35(7):1391-1399
    [131]Hanifi Binici, Orhan Aksogan. Sulfate resistance of plain and Blended cement [J]. Cement and Concrete Composite,2006,28(1):39-46
    [132]H. T. Cao L. Bucea, A. Ray, et al. The effect of cement compositon and pH of environment on sulfate resistance of Portland cements and blended cements [J]. Cement and Concrete Composites,1997,19(2):161-171
    [133]Salah U. Al-Dulaijan. Sulfate resistance of plain and blended cements exposed to magnesium sulfate solution [J]. Construction and Building Materials,2007,21(8):1792-1802
    [134]Mas, J.L., San Miguel, E.G., Bolvar, J.P., Vaca, F., Perez-Moreno, J.P.. An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the south-west of Spain [J]. Science of the Total Environment 2006(364):55-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700