用户名: 密码: 验证码:
氧化物多孔纳米固体气敏传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中,我们利用溶剂热压方法制备了ZnO、TiO_2、ZrO_2多孔纳米固体以及ZnO-TiO_2复合多孔纳米固体。在此基础上,我们首次以ZnO多孔纳米固体为原料,利用传统的厚膜制备工艺制备了ZnO多孔纳米固体厚膜气敏传感器,并对它的敏感性能进行了表征。为了进一步探索改善气敏传感器敏感性能的方法,我们又分别制备了ZnO-TiO_2、ZnO-SnO_2、ZnO-ZrO_2、ZnO-Ga_2O_3和ZnO-Co_3O_4复合多孔纳米固体厚膜气敏传感器,并对它们进行了测试分析,对有关现象进行了初步的解释。作为改善传感器性能的另一个尝试,本文还研究了水热预处理纳米粉对厚膜气敏传感器敏感性能的影响。
     (1)我们利用溶剂热压方法成功制备了ZnO、TiO_2和ZrO_2多孔纳米固体,并对其性能进行了测试分析。结果发现:改变溶剂的用量、种类以及实验过程中的热压压力,可以在一定范围内调控这些多孔纳米固体的孔径、孔容和比表面积,其中溶剂的种类影响最大。用去离子水制备的多孔纳米固体主孔径、孔容和比表面积都比较小,而用乙醇等制备的多孔纳米固体的主孔径、孔容和比表面积相对较大。此外,ZnO、TiO_2和ZrO_2多孔纳米固体都具有较高的热稳定性。
     为了给研制复合型多孔纳米固体气敏传感器作准备,我们制备了ZnO-TiO_2复合多孔纳米固体。从实验中我们发现:在纳米粉总量固定且溶剂用量相同的情况下,原料中TiO_2纳米粉的比例越大,ZnO-TiO_2复合多孔纳米固体的孔径、孔容和比表面积就越大,而且样品具有较高的热稳定性。
     (2)为了解决以ZnO纳米粉为原料制备厚膜气敏传感器时存在的本征电阻(传感器在空气中的电阻)过高、工作稳定性差等一系列问题,我们以ZnO多孔纳米固体为原料,利用传统的厚膜气敏传感器制备工艺制备了ZnO多孔纳米固体厚膜气敏传感器。测试结果表明:与直接用ZnO纳米粉制备的厚膜气敏传感器相比,用ZnO多孔纳米固体制备的厚膜气敏传感器的本征电阻Ra明显降低,器件工作的稳定性显著改善。同时,器件的最佳工作温度降低、对乙醇蒸气的选择性提高,响应时间和恢复时间也大大缩短。
     (3)为进一步改善ZnO厚膜气敏传感器的敏感性能,我们以前面研制的五种复合型多孔纳米固体为原料,同样利用传统的厚膜气敏传感器制备工艺制备了复
In this thesis, ZnO, TiO_2 and ZrO_2 porous nanosolids have been prepared by a unique solvothermal hot-press method, using several kinds of nanoparticles and solvents as the starting materials. Furthermore, ZnO porous nanosolid thick film gas sensors have also been fabricated from a novel ZnO nanosolid using conventional thick films preparation method, and the gas sensing properties of the ZnO sensors are tested. In order to improve the gas sensing performance of the sensors, five kinds of composite porous nanosolids thick film gas sensors (ZnO-TiO_2, ZnO-SnO_2, ZnO-ZrO_2, ZnO-Ga_2O_3 and ZnO-Co_3O_4) have been prepared and their gas sensing properties are tested and analyzed. For exploiting a new route of improving the gas sensing performance of sensors, the effect of hydrothermal pre-treatment on the gas sensing properties has also been studied.
    Firstly, ZnO, TiO_2 and ZrO_2 porous nanosolids have been prepared by a unique solvothermal hot-press method, and the properties of these nanosolids are systematically investigated. The results show that, the pore diameter, pore volume and specific surface area of the porous nanosolids can be adjusted by changing either the kind of solvent, the content of solvent or experimental hot-press pressure. Among these factors, the kind of solvent is an important one that dominating the above properties. For example, the primary pore diameter, pore volume and specific surface area is smaller when deionized water is used as the solvent, while those is larger when anhydrous ethanol is used, compared with that of the sample prepared by using other solvents in our experiments. Besides, the results of thermal analysis of the samples show that, the thermal stabilities of ZnO, TiO_2 and ZrO_2 porous nanosolids are all very high.
    In order to prepare composite porous nanosolid thick film gas sensors, ZnO-TiO_2 composite porous nanosolids have been prepared. It is found that the pore diameter, pore volume and specific surface area of ZnO-TiO_2 composite porous nanosolids
引文
1.龚建华.《走进纳米世界——21世纪一场震撼全球的技术革命》,广东经济出版社,2001,4:13-14.
    2.张立德,牟季美,《纳米材料和纳米结构》,科学出版社,2002,P2-6.
    3. W. Y. Wang, Y. P. Xu, D. F. Zhang, X. L. Chen. Synthesis and dielectric properties of cubic GaN nanoparticles, Mater. Res, Bull. 36 (2001) 2155-2162.
    4. Y. C. Lan, X. L. Chen, Y. P. Xu, Y. G. Cao, F. Huang. Syntheses and structure of nanocrystalline gallium nitride obtained from ammonothermal method using lithium metal as mineralizator, Mater. Res. Bull. 35 (2000) 2325-2330.
    5. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires, Appl. Phys. Lett. 78 (2001) 3304-3306.
    6. C. C. Tang, S. S. Fan, M. L. Chapelle, H. Y. Dang, P. Li. Synthesis of gallium phosphide nanorods, Adv. Mater. 12 (2000) 1346-1348.
    7. S. Iijima. Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
    8.李戈扬,张流强,辛挺辉,乌亮,李鹏兴.W/SiC纳米多层膜的制备及表征,真空科学与技术19(4)(1999)25-28.
    9. M. Schurr, J. Hassmann, R. KUgler, Ch. Tomaschko, H. Voit. Ultrathin layers of rare earth oxides from Langmuir-Blodgett films, Thin Solid Films 307 (1997) 260-265.
    10.王兴华,郑厚植,余涛等.GaAs/AlGaAs单量子阱中界面粗糙度散射,半导体学报15(5)(1994)229-332.
    11. U. Erb, A. M. El-Sherik, G. Palumbo, K. T. Aust. Synthesis, Structure and properties of electroplated nanocrystalline materials, J. of Nanostruct. Mater. 2 (1993) 383-390.
    12. R. Birringer, U. Herr, H. Gleiter. Nanocrystalline materials - a first report, Trans. Jpn. Inst. Matal. Suppl. 27 (1986) 43-27.
    13. R. W. Calm. Melting and the surface, Nature 323(1986) 112-115.
    14.严东生.纳米材料的合成与制备,天机材料学报 10(1)(1995)1-6.
    15.倪永红,葛学武,徐相凌,陈家富,张志成.纳米材料制备研究的若干新进展,无机材料学报 15(1)(2000)9-15.
    16.田明原,施尔畏,仲维卓,庞文琴,郭景坤.无机材料学报 13(2)(1998)129-137.
    17.汪信,陆路德.纳米金属氧化物的制备及应用研究的若干进展,无机化学学报16(2)(2000)213-217.
    18.柳闽生,杨迈之,蔡生民.半导体纳米粒子的基本性质及光电化学特性,化学通报1(1997)20-24.
    19.张立德.《纳米材料》,北京:化学工业出版社,2002,P6-41.
    20. W. P. Halperin. Quantum size effects in metal particles, Rev. of Modern Phys. 58(1986) 533-606.
    21. H. Tabagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri. Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 56(1990) 2379-2380.
    22. M. Vehara, B. Barbara, B. Dieny, P. C. E. Stamp. Staircase behaviour in the nagnetization reversal of a chemically disordered magnet at low temperature, Phys. Lett. A114(1986) 23-26.
    23. P. Ball, L. Garwin. Science at the atomic scale, Nature 355 (1992) 761-766.
    24. D. L. Feldhein, C. D. Keating. Self-assembly of single electron transistors and related devices, Chem. Soc. Rev. 27 (1998) 1-13
    25. C. Hui, S. Chen, A. Xu, et al. A study of thick-film gas sensors based on nanopowders prepared by hydrothermal synthesis technique, Technical Digest of the Seventh International Meeting on Chemical Sensors, International Academic Publishers (1998) 75-77.
    26. D. Briand, M. Labeau, J. F. Currie, et al. Pd-doped SnO_2 thin films deposited by assisted ultrasonic spraying CVD for gas sensing: selectivity and effect of annealing, Sens. Actuators B 48(1998) 395-402.
    27.徐甲强,刘艳丽,牛新书.纳米ZnS的合成及其气敏性能研究,功能材料33(2002)425-427.
    28. H. Lin, S. J. Tzeng, P. J. Hsiau, et al. Electrode effects on gas sensing properties of nanoerystalline zinc oxide, Nanostruct. Mater. 10 (1998) 465-47.
    29. K. H. An, S. Y. Jeong, H. R. Hwang, Y. H. Lee. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites, Adv. Mater. 16 (2004) 1005-1009.
    30. N. L. Wu, S. Y. Wang, I. A. Rusakova. Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides, Science 285(1999) 1375-1377.
    31. C. Malagù, M.C. Carotta, S. Galliera, V. Guidi, T. G. G. Maffeis, G. Martinelli, G.T. Owen, S. P. Wilks. Evidence of bandbending flattening in 10 nm polycrystalline SnO_2, Sens. Actuators B 103 (2004) 50-54.
    32. D. D. Vuong, G. Sakai, K. Shimanoe, N. Yamazoe. Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application, Sens. Actuators B 103 (2004) 386-391.
    33. Z. H. Jin, H. J. Zhou, Z. L. Jin, R. F. Savinell, C. C. Liu. Application of nano-crystalline porous tin oxide thin film for CO sensing, Sens. Actuators B 52 (1998) 188-194.
    34. C. Xu, J. Tamaki, N. Miura, N. Yamazoe. Grain size effects on gas sensitivity of porous SnO_2-based elements, Sens. Actuators B 3 (1991) 147-155.
    35.王育德.纳米微晶巨磁阻抗元器件—21世纪的传感器,汽车电器2(2000)22.
    36.缪煜清.纳米技术在生物传感器中的应用,传感器技术,21(11)(2002)61-64.
    37.许改霞,王平,李蓉等.纳米传感器技术及其在生物医学中的应用(国外医学生物工程分册),25(2)(2002)49.
    38.康昌鹤,唐省吾编著.《气、湿敏感器件及其应用》.北京:科学出版社,1988,5-6.
    39. T. Seiyama, A. Kato. A new detector for gaseous components using semiconductor thin film. Anal. Chem. 34(1962) 1502-1503.
    40. K. R. Han, C. S. Kim, K. T. Kang, H. J. Koo, D. I. Kang, J. W. He. Studing on sensing properties of tin oxide CO gas sensor with low power consumption, Sens. Actuators B 81(2002) 182-186.
    41. B. Bott, T. A. Jones, B. Mann. The detection and measurement of CO using ZnO single crystals, Sens. Actuators B 5 (1984) 65-73.
    42. T. Oyabu, Y. Ohta, T. Kurobe. Tin oxide gas sensor and countermeasure system against accidental gas leaks, Sens. Actuators B 9(1986) 301-312.
    43. C. Cantalini, M. Faccio, G. Ferri, M. Pelino. The influenee of water vapor on carbon monoxide sensitivity of α-Fe_2O_3 ceramic sensors, Sens. Actuators B 18-19(1994) 438-442.
    44. J. F. McAleer, P. T. Moseley, J. O. W. Norris, D. E. Williams. Tin oxide gas sensors, J. Chem. Soc. Faraday Trans. 1(83) (1987) 1323-1346.
    45. K. H. Song, S. J. Park. Factors determining the carbon monoxide sensing properties of tin oxide thick films calcined at different temperature, J. Am. Ceram. Sac. 77(1994) 2935-2939.
    46. C. Cobianu, C. Savaniu, P. Siciliano, S. Capone, M. Utriainen, L. Niinisto. SnO_2 sol-gel derived thin film for integrated gas sensors, Sens. Actuators B 77(2001) 496-502.
    47.曹晓平.二氧化锡薄膜结构特性与气敏特性的研究,清华大学博士论文,1997年,8-9.
    48. H. Gong, Y. Wang, S. Teo, L. Huang. Interaction between thin-film tin oxide gas sensor and five organic vapors, Sens. Actuators B 54 (1999) 232-235.
    49. M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers, Science 292(2001) 1897-1899.
    50. Y. Zhang, H. Jia, X. Luo, et al. Synthesis, microstructure and growth mechanism of dendrite ZnO nanowires, J. Phys. Chem. B 107(2003) 8289-8293.
    51. Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides, Science 291(2001) 1947-1949.
    52. X. Y. Zhang, J. Y. Dai, H. C. Ong, N. Wang, H. L. W. Chan, C. L. Choy. Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence, Chem. Phys. Lett. 393 (2004) 17-21.
    53. B. Liu, H. C. Zeng. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm, J. Am. Chem. Soc. 125 (2003) 4430-4431.
    54. J. Y. Lao, J. G. Wen, Z. F. Ren. Hierarchical ZnO nanostructures, Nano. Lett. 2(2002) 1287-1291.
    55. C. C. Tang, S. S. Fan, M. L. Chapelle, P. Li. Silica-assisted catalytic growth of oxide and nitride nanowires, Chem. Phys. Lett. 333(2001) 12-15.
    56.沈茹娟,贾殿赠,梁凯.纳米氧化锌的固相合成及其气敏特性.无机化学学报 16(2000) 906-910.
    57. J. Q. Xu, Y. Pan, Y. A. Shun, et al. Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B 66(2000) 277-279.
    58. Z. Wang. Zinc oxide nanostructures: growth, properties and applications, J. Phys: Condens. Matter 16(2004) R829-858.
    59. W. L. Hughes, Z. L. Wang. Formation of piezoelectric single-crystal nanorings and nanobows, J. Am. Chem. Soc. 126(2004) 6703-6709.
    60. X. Wang, Y. Ding, C. J. Summers, Z. L. Wang. Large-scale synthesis of six-nanometer-wide ZnO nanobelts, J. Phys. Chem. B 108 (2004) 8773-8777.
    61. M. Takeluchi, S. Kashimura, S. Ozawa. Photoconductive and gas sensitive properties of ultrafine ZnO particle layers prepared by a gas evaporation technique. Vacuum 41 (1989) 1636-1637.
    62.任玉芳.稀土元素在气敏半导体中的作用,中国稀土学报 3(1985)15-19.
    63. B. Bhooloka Rao. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Mater. Chem. Phy. 64 (2000) 62-65.
    64.王晓平.稀土掺杂ZnO半导体气敏传感器的性能研究,湘潭大学自然科学学报 21(1999) 109-111.
    65. B. P. J. de Lacy Costello, R. J. Ewen, P. R. H. Jones, N. M. Ratcliffe, R. K. M. Wat. A study of the catalytic and vapor-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide, Sens. Actuators B 61(1999) 199-207.
    66. T. H. Kwon, S. H. Park, J. Y. Ryu, H. H. Choi. Zinc oxide thin film doped with Al_2O_3, TiO_2 and V_2O_5 as sensitive sensor for trimethylamine gas, Sens. Actuators B 46(1998) 75-79.
    67.全宝富,沈艳宾,卢革宇等.掺杂剂与ZnO材料的气敏特性,吉林大学自然科学学报 3(1993)77-80.
    68.杨留方,赵景畅,吴兴惠.掺杂ZnO臭氧敏感特性研究,仪表技术与传感器 12(2000) 8-9.
    69. A. Triuchi, Y. X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. P. Russo, J. Duplessis, S. Viticoli. Investigation of sol-gel prepared Ga-Zn oxide thin films for oxygen gas sensing, Sens. Actuators A 108(2003) 263-270.
    70. N. Jayadev Dayan, S. R. Sainkar, A. A. Belkehar et al. On the highly selective ZnO:Al_2O_3 based thick film hydrogen sensors, J. of Mater. Sci. Lett. 16(1997) 1952-1954.
    71. X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, J. G. Zhao. ZnO nanoparticle thin film: preparation, characterization and gas-sensing property, Sens. Actuators B 102(2004) 248-252.
    72. Y. Tsutomu, W. Satoshi, N. Tatsuo, et al. Gas-sensing properties of ultrathin zinc oxide films, Sens. Actuators B 14(1993) 594-595.
    73. M. Bender, E. Fortunato, P. Nunes, et al. Highly sensitive ZnO ozone detectors at room temperature, Japanese Journal of Applied Physics, Part 2: 42(2003) L435-L437.
    74. M. Bender, E. Gagaoudakis, E. Douloufakis, et al. Production and characterization of zinc oxide thin films for room temperature ozone sensing, Thin Solid Films 418 (2002) 45-50.
    75. GS. Devi, T. Hyodo, Y. Shimizu, M. Egashira. Synthesis of mesoporous TiO_2-based powders and their gas-sensing properties, Sens. Actuators B 87 (2002) 112-119.
    
    76. A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe. Microstructure control of thermally stable TiO_2 obtained by hydrothermal process for gas sensors, Sens. Actuators B 103 (2004) 312-317.
    
    77. J.H. Kim, S.H. Kim, S. Shiratori. Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor, Sens. Actuators B 102 (2004) 241-247.
    
    78. B.W. Licznerski, K. Nitsch, H. Teterycz, T. Sobanski, K. Wisniewski. Characterisation of electrical parameters for multiplayer SnO_2 gas sensors, Sens. Actuators B 103 (2004) 69-75.
    
    79. T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira. Preparation and gas-sensing properties of thermally stable mesoporous SnO_2, Sens. Actuators B 83 (2002) 209-215.
    
    80. G Mangamma, V. Jayaraman, T. Gnanasekaran, G Periaswami. Effects of silica additions on H2S sensing properties of CuO-SnO_2 sensors, Sens. Actuators B 53 (1998) 133-139.
    
    81.Z.H. Jin, H.J. Zhou, Z.L. Jin, R.F. Savinell, C.C. Liu. Application of nano-crystalline porous tin oxide thin film for CO sensing, Sens. Actuators B 52 (1998) 188-194.
    
    82. C. Xu, J. Tamaki, N. Miura, N. Yamazoe. Grain size effects on gas sensitivity of porous SnO_2-based elements, Sens. Actuators B 3 (1991) 147-155.
    
    83. H.W. Ryu, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Hong, Y.J. Soe, D.C. Shin, J.S. Park, G.P. Choi. ZnO sol-gel derived porous film for CO gas sensing, Sens. Actuators B 96 (2003) 717-722.
    
    84. YD. Wang, C.L. Ma, X.H. Wu, X.D. Sun, H.D. Li. Mesostructured tin oxide as sensitive material for C_2H_5OH sensor, Talanta 57 (2002) 875-882.
    
    85. Y. Shimizu. T. Hyodo, M. Egashira. Mesoporous semiconducting oxides for gas sensor application, J. of the European Ceram. Soc. 24 (2004) 1389-1398.
    86. S. Basu, S. Chatterjee, M. Saha, S. Bandyopadhay, K. K. Mistry, K. Sengupta. Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases, Sens. Actuators B 79(2001) 182-186.
    87. Y. Isogai, M. Miyayama, H. Yanagida. PZT/ZnO actuator responding to reducing gases, Sens. Actuators B 30(1996) 47-53.
    88. H. Y. Xu, X. L. Liu, D. L. Cui, M. Li, M. H. Jiang. A novel method for improving the performance of ZnO gas sensors, Sens. Actuators B 114(2006) 301-307.
    89.徐红燕,刘秀琳,崔得良,李梅,王琪珑,蒋民华.利用纳米ZnO粉制备厚膜气敏传感器的研究,功能材料与器件学报 11(2)(2005) 241-245.
    90.徐红燕,刘秀琳,李梅,余丽丽,王成建,蒋民华,崔得良.ZnO多孔纳米固体厚膜气敏传感器的制备和性质表征,功能材料 35(2004增刊) 2930-2933.
    91. IUPAC, manual of symbols and terminology. Pure Appl. Chem. 31(1972) 578-638.
    92. A. Sayari. Catalysis by crystalline mesoporous molecular sieves, Chem. Mater. 8(1996) 1840-1852.
    93. M. S. Wong, J. Y. Ying. Amphiphilic templating of mesostructured zirconium oxide, Chem. Mater. 10 (1998) 2067-2077.
    94.陈航榕,施剑林,张文华,严东升.高比表面积有序多孔氧化锆合成与表征,无机材料学报 15(2000) 1123-1126.
    95. N. O. Engin, A. C. Tas. Preparation of porous Ca_(10)(PO_4)_6(OH)_2 and β-Ca_3(PO_4)_2 bioceramics, J. Am. Ceram. Soc. 83(2000) 1581-1584.
    96.刘秀琳,徐红燕,孟宪平等.利用溶剂热压方法制备羟基磷灰石多孔纳米固体,物理化学学报 20(2004)608-611.
    97. H. Y. Xu, X. L. Liu, M. Li, Z. Chen, D. L. Cui, M. H. Jiang. Preparation and characterization of TiO_2 bulk porous nanosolids, Mater. Lett. 59(2005) 1962-1966.
    98.刘秀琳,徐红燕,李梅,孟宪平,王琪珑,蒋民华,崔得良.二氧化锆多孔纳米固体的制备与性质表征,功能材料35(2004增刊) 3119-3122.
    99.孟宪平.微孔型无机粉木的水热热压固化及固化体性能研究,吉林大学博士 论文,P13.
    100. N. Yamasaki, K. Yanagisawa, M. Nishioka, S. Kanahara. A hydrothermal hot-pressing method: apparatus and application, J. Mater. Sci. Lett. 5(1986) 355-356.
    101. K. Yanagisawa, M. Nishioka, N. Yamasaki. Immoilization of radioactive wastes by hydrothermal hot-pressing, Am. Ceram. Soc. Bull. 54(1985) 1563-1567.
    102. N. Yamasaki, K. Yanagisawa, S. Kanahara, M. Nishiokka, N. Natsuoka, J. Yamazaki. Immobilization of radioactive wastes powder, J. Nucl. Sci. Technol., 21(1984) 71-73.
    103. K. Yanagisawa, M. Nishioka, N. Yamasaki. Immobilization of ratioactive wastes in hydrothermal synthetic rock, properties of waste form containing simulated high-level radioactive waste, J. Nucl. Sci. Technol. 23(1986) 550-558.
    104. K. Yanagisawa, M. Nishioka, N. Yarnasaki. Immobilization of low-level radioactive waste containing sodium sulfate by hydrothermal hot-pressing, J. Nucl. Sci. Technol. 26(1989) 395-397.
    105. M. Nishioka, S. Hirai, K. Yanagisawa, N. Yamasaki. Solidification of glass powder with simulated high-level radioactive waste during hydrothermal hot-pressing, J. Am. Ceram. Soc. 73(1990) 317-322.
    106. M. Nishioka, K. Yanagisawa, N. Yamasaki. Solidification of sludge ash by hydrothermal hot-pressing, J. Water Pollution Control Federation 62(1990) 926-932.
    107. K. Hosoi, S. Kawai, K. Yanagisawa, N. Yamasaki. Densification process for spherical glass powders with the same particle size by hydrothermal hot-pressing, J. Mater. Sci. 26(1991) 6448-6452.
    108. N. Yamasaki, T. Kai, M. Nishioka, K. Yanagisawa, K. Ioku. Porous hydroxy-apatite ceramics prepared by hydrothermal hot-pressing, J. Mater. Sci. Lett. 9(1990) 1150-1152.
    109. H. Gong, Y. J. Wang, S. C. Teo, L. Huang. Interaction between thin-film tin oxide gas sensor and five organic vapors, Sens. Actuators B 54(1999) 232-235.
    110. D. S. Lee, J. K. Jung, J. W. Lim, J. S. Huh, D. D. Lee. Recognition of volatile organic compounds using SnO_2 sensor array and pattern recognition analysis, Sens. Actuators B 77(2001) 228-236.
    111. D. S. Lee, Y. T. Kim, J. S. Huh, D. D. Lee. Fabrication and characteristics of SnO_2 gas sensor array for volatile organic compounds recognition, Thin Solid Films 416(2002) 271-278.
    112. J. Q. Xu, Y. Shun, Q. Y. Pan, J. H. Qin. Sensing characteristics of double layer film of ZnO, Sens. Actuators B 66(2000) 161-163.
    113. P. Ivanov, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, X. Correig. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO_2 surfaces, Sens. Actuators B 99(2004) 201-206.
    114. J. Ho, Y. Fang, K. Wu, W. Hsieh, C. Chen, G. Chen, M. Ju, J. Lin, S. Hwang. High sensitivity ethanol gas sensor integrated with a solid-state heater and thermal isolation improvement structure for legal drink-drive limit detecting, Sens. Actuators B 50(1998) 227-233.
    115. B. P. J. de Lacy Costello, R. Ewen, N. Guemion, N. Ratcliffe. Highly sensitive mixed oxide sensors for the detection of ethanol, Sens. Actuators B 87(2002) 207-210.
    116. Y. K. Fang, J. J. Lee. A tin oxide thin film sensor with high ethanol sensitivity, Thin Solid Films 169(1989) 51-56.
    117. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe. Role of additives on alcohol sensing by semiconductor gas sensor, Chem. Lett. 18(1989) 845-848.
    118. T. Yamazoe, J. Tamaki, N. Miura, N. Yamazoe, S. Matsushima. Development of SnO_2-based ethanol gas sensor, Sens. Actuators B 9(1992) 63-69.
    119.祝柏林.纳米ZnO对VOCs敏感特性的研究,华中科技大学博士学位论文,2003年,16-17.
    120. S. V. Ryabtsev, A. V. Shaposhnick, A. N. Lukin, et al. Application of semiconductor gas sensors for medical diagnostics, Sens. Actuators B 59(1999) 26-29.
    1. R. G. Heideman, P. V. Lambeck, J. G. E. Gardeniers. High quality ZnO layers with adjustable refractive indices for integrated optics applications, Optical Materials, 4(1995) 741-755.
    2. Y. Yang, H. Chen, B. Zhao, X. Bao. Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives, J. Cryst. Growth 263(2004) 447-453.
    3. T. Aoki, Y. Hatanaka, D. C. Look. ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett. 76(2000) 3257-3258.
    4. A. Mycielski, L. Kowalczyk, A. Szadkowski et al. The chemical vapor transport growth of ZnO single crystals, J. Alloys Comp. 371(2004) 150-152.
    5. Y. Liu, C. R. Gorla, S. Liang et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, J. Electron. Mater. 29(2000) 69-74.
    6. T. Yamamoto, T. Shiosaki, A. Kawabata, Characterization of ZnO piezoelectric films prepared by RF planar-magmetron sputting, J. Appl. Phys. 51(1980) 3113-3120.
    7. N. K. Zayer, R. Greef, K. Rogers et al. In situ monitoring of sputtered zinc oxide films for piezoelectric transducers, Thin Solid Films 352(1999) 179-184.
    8. B. Rao. Zinc oxide ceramic semi-conductor gas sensor for ethanol vapor, Mater. Chem. Phys. 64(2000) 62-65.
    9. K.S. Weiβenrieder, J. Müller. Conductivity model for sputtered ZnO-thin film gas sensors, Thin Solid Films 300(1997) 30-41.
    10. M. H. Huang, S. Mao, H. Feick et al. Room-temperature ultraviolet nanowire nanolasers, Science 292(2001) 1897-1899.
    11. Y. Zhang, H. Jia, X. Luo et al. Synthesis, microstructure and growth mechanism of dendrite ZnO nanowires, J. Phys. Chem. B 107(2003) 8289-8293.
    12. S. Li, C. Y. Lee, T. Y. Tseng. Copper-catalyzed ZnO nanowires on silicon(100) grown by vapor-liquid-solid process, J. Cryst. Growth 247(2003) 357-362.
    13. B. Liu, H. C. Zeng. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50nm, J. Am. Chem. Soc. 125(2003) 4430-4431.
    14. J. Zhang, W. Yu, L. Zhang. Fabrication of semiconducting ZnO nanobelts using a halide, Phys. Lett. A 299(2002) 276-281.
    15. Z. W. Pan, Z. R. Dai, Z. L. Wang. Nanobelts of semiconducting oxides, Science 291(2001) 1947-1949.
    16. J. Y. Lao, J. G. Wen, Z. F. Ren. Hierarchical ZnO nanostructures, Nano. Lett. 2 (2002) 1287-1291.
    17. X. Wang, Y. Ding, C. J. Summers et al. Large-scale synthesis of six-nanometer-wide ZnO nanobelts, J. Phys. Chem. B 108(2004) 8773-8777.
    18. C. Jin, W. Zhu, D. Fang. Preparation of nanocrystalline ZnO particle, Fine Chem., 16(1999) 26-28.
    19. Y. H. Lin, Z. L. Tang, Z. I. Zhang. Preparation of nanometer zinc oxide powders by plasma pyrolysis technology and their application, J. Am. Ceram. Soc., 83(2000) 2869-2871.
    20. I. Trindade, J. D. Pedrosa de Jesus, P. OBrien. Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution, J. Mater. Chem. 4(1994) 1611-1617.
    21. N. Audebrand, J. -P. Auffrédic, D. Louer. X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors, general concepts on precursor-dependent microstructural properties, Chem. Mater. 10(1998) 2450-2461.
    22. D. Chen, X. Jiao, G. Cheng. Hydrothermal synthesis of zinc oxide powders with different morphologies, Solid State Commun. 113(2000) 363-366.
    23. S. Mahamuni, K. Borgohain, B. S. Bendre, J. L. Valene, H. R. Subhash. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots, J. Appl. Phys. 85(1999) 2861-2865.
    24. X. R. Ye, D. Z. Jia, J. J. Qi, X. Q. Xin, z. Xue. One-Step solid-state reactions at ambient temperatures-a novel approach to nanocrystal synthesis, Adv. Mater. 11(1999) 941-942.
    25. Y. Inubushi, R. Takami, M. Iwasaki, H. Tada, S. Ito. Mechanism of formation of nanocrystalline ZnO particles through the reaction of [Zn(acac)_2] with NaOH in EtOH, J. Colloid. Interf. Sci. 200(1998) 220-227.
    26. G. Rodry guez-Gattomo, P. Santiago-Jacinto, L. Rendon-Vazquez et al. Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts, J. Phys. Chem. B 107(2003) 12579-12604.
    27.刘秀琳,余丽丽,徐红燕等.TiO_2多孔纳米固体对罗丹明B的热催化降解作用,化学学报 62(24)(2004) 2398-2402.
    28. D. F. Ollis, E. Pelizzetti, N. Serpone. Photocatalyzed destruction of water contaminants, Environ. Sci. Technol. 25(1991) 1522-1529.
    29. J. C. D'oliveira, G. Al-Sayyed, P. Pichat. Photodegradation of 2- and 3- chlorophenol in titanium dioxide aqueous suspensions, Environ. Sci. Technol. 24(1990) 990-996.
    30. R. Ashi, T. Morikawa, T. Ohwaki, Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(2001) 269-271.
    31. H. Ross, J. Bending, S. Hecht. Sensitized photocatalytical oxidation of terbutylazine, Sol. Energy Mater. Sol. Cell. 33(1994) 475-481.
    32. H. Hidaka, T. S. Kazuhiko, J. Zhao, N. Serpone. Photoelectrochemical decomposition of amino acids on a TiO_2/OTE particulate film electrode, J. Photochem. Photobiol. A: Chem. 109(1997) 165-170.
    33. H. Hidaka, J. Zhao, E. Pelizzetti, N. Serpone. Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic DBS and cationic BDDAC on the titania surface, J. Phys. Chem. 96(1992) 2226-2230.
    34. T. Tsuru, T. Kan-no, T. Yoshioka, M. Asaeda. A Photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes, Catal. Today 82(2003) 41-48.
    35. A. Wold. Photocatalytic properties of titanium dioxide(TiO_2), Chem. Mater. 5(1993) 280-283.
    36. R. A. Caruso, M. Giersig, F. Willig, M. Antonietti. Porous"coral like" TiO_2 structures produced by templating polymer gels, Langmuir 14(1998) 6333-6336.
    37. J. W. Long, K. E. Swider, C. I. Merzbacher, D. R. Rolison. Voltammetric characterization of Ruthenium oxide-based aerogels and other RuO_2 solids: the nature of capacitance in nanostruetured materials, Langmuir 15(1999) 780-785.
    38. R. A. Caruso, M. Antonietti, M. Giersig, H. P. Hentze, J. Jia. Modification of TiO_2 network structures using a polymer gel coating technique, Chem. Mater. 13(2001) 1114-1123.
    39. S. I. Matsushita, T. Miwa, D. A. Tryk, A. Fujishima. New mesostructured porous TiO_2 surface prepared using a two-dimensional array-based template of silica particles, Langmuir 14(1998) 6441-6447.
    40. K. P. Kumar. Porous nanocomposites as catalyst supports: Part Ⅰ. 'second phase stabilization', thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites, Appl. Catal. A General 119(1994) 163-183.
    41. E. Y. Kaneko, S. H. Pulcinelli, V. Teixeira da Silva, C. V. Santilli. Sol-gel synthesis of titania-alumina catalyst supports, Appl. Catal. A General 235(2002) 71-78.
    42. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri. TiO_2 thin films by a novel sol-gel processing for gas sensor applications, Sens. Actuators B 68(2000) 189-196.
    43. B. L. Zhang, B. S. Chen., K. Y. Shi, S. J. He, X. D. Liu, Z. J. Du, K. L. Yang. Preparation and characterization of nanocrystal grain TiO_2 porous microspheres, AppL CataL B 40(2003) 253-258.
    44. H. Kozuka, Y. Takahashi, G. L. Zhao, T. Yoko. Preparation and photoelectron-chemical properties of porous thin films composed of submicron TiO_2 particles, Thin Solid Films 358(2000) 172-179.
    45. K. Kato, A. Tsuzuki, Y. Yorii, H. Taoda, T. Kato, Y. Butsugan. Morphology of thin anatase coating prepared from alkoxide solutions containing organic polymer, affecting the photocatalytic decomposition of aqueous acetic acid. J. Mater. Sci. 30(1995) 837-841.
    46. H. Y. Xu, X. L. Liu, M. Li, Z. Chen, D. L. Cui, M. H. Jiang. Preparation and characterization of TiO_2 bulk porous nanosolids, Mater. Lett. 59(2005) 1962-1966.
    47. C. Morteera, G. Cerrato, L. Ferroni. Surface characterization of yttria-stabilized tetragonal ZrO_2 Part 1: Structural, morphological, and surface hydration features, Mater. Chem. Phys. 37(1994) 243-257.
    48. S. Suganuma, M. Watanabe, T. Kobayashi, S. Wakabayashi. SO_2 gas sensor utilizing stabilized zirconia and sulfate salts with a new working mechanism, Solid State Ionics 126(1999) 175-179.
    49. G. Lu, N. Miura, N. Yamazoe. High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode, Sens. Actuators B 35-46 (1996) 130-135.
    
    50. A.D. Brailsford, M. Yussouff, E.M. Logothelis. A first-principles model of the zirconia oxygen sensor, Sens. Actuators B 44 (1997) 321-326.
    
    51. K. Tanabe, T. Yamaguchi. Acid-base bifunctional catalysis by ZrO_2 and its mixed oxides, Catal. Today 20 (1994) 185-197.
    
    52. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712.
    
    53. Q. Hu, D.I. Margolese, G.D. Stucky. Surfactant control of phases in the synthesis of mesoporous silica-based materials, Chem. Mater. 8 (1996) 1147-1160.
    
    54. G. Larsen, E. Lotero, M. Nabity et al. Surfactant-assisted synthesis ofmesoporous zirconia powders with high surface areas, J. Catal. 164 (1996) 246-248
    
    55. M.S. Wong, J.Y. Ying. Amphiphilic templating of mesostmctured zirconium oxide, Chem. Mater. 10 (1998) 2067-2077
    
    56. R. Valero, B. Durand, J.L. Guth, T. Chopin. Hydrothermal synthesis of porous zircon in basic fluorinated medium, Micro. Meso. Mater. 29 (1999) 311-318.
    
    57. Y.Q. Wang, L.X. Yin, O. Palchik, Y. Rosenfeld Hacohen, Y. Koltypin, A. Gedanken. Rapid synthesis of mesoporous yttrium-zirconium oxides with ultrasound irradiation, Langmuir 17 (2001) 4131-4133.
    
    58. V.I. Parvulescu, H. Bonnemann, V. Parvulescu et al. Preparation and characteri -zation of mesoporous zirconium oxide, Appl. Catal. A: General 214 (2001) 273-287.
    
    59. M. Radecka. K. Zakrzewska, M. Rekas. SnO_2-TiO_2 solid solutions for gas sensors, Sens. Actuators B 47 (1998) 194-204.
    
    60. T.H. Kwon, S.H. Park, J.Y. Ryu, H.H. Choi. Zinc oxide thin film doped with Al_2O_3, TiO_2 and V_2O_5 as sensitive sensor for trimethylamine gas, Sens. Actuators B 46 (1998) 75-79.
    1. H. Nanto, H. Sokooshi, T. Kawai, T. Usuda. Zinc oxide thin-film trimethylamine sensor with high sensitivity and excellent selectivity, J. Mater. Sci. Lett. 11(1992) 235-237.
    2. H. Nanto, T. Minami, S. Takata. Zinc oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity, J. Appl. Phys. 60(2) (1986) 482-484.
    3. S. M. Sze. Semiconductor sensitivity, Chemical Sensors, Wiley, New York, 1995, PP. 383-409
    4. X. L. Cheng, H. Zhao, L. H. Huo, S. Gao, J. G. Zhao. ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property, Sens. Actuators B 102(2004) 248-252.
    5. J. Q. Xu, Q. Y. Pan, Y. A. Shun, Z. Z. Tian. Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B 66(2000) 277-279.
    6.沈茹娟,贾殿赠,梁凯.纳米氧化锌的固相合成及其气敏性质,无机化学学报 16(6)(2000) 906-910.
    7.王林,张覃轶,祝柏林,王爱华,谢长生.激光烧结纳米ZnO气敏传感器制备及其气敏特性研究,传感技术学报 4(2003) 491-494.
    8.徐甲强,潘庆谊,孙雨安,李占才.纳米氧化锌的乳液合成、结构表征与气敏性能,无机化学学报 14(3)(1998) 355-359.
    9.曹建民.沉淀法制备ZnO超细粉及其对乙醇气敏性研究,化工新型材料 32(12) (2004) 44-46.
    10.董立峰,崔作林.电弧等离子体制备纳米ZnO的气敏特性,材料研究学报 12(4) (1998) 407-410.
    11.牛新书,杜卫平,杜卫民,蒋凯.纳米ZnO的制备及其气敏性能,应用化学 20(10) (2003) 968-971.
    12.刘延辉,曾大文,王辉虎,谢长生.热氧化纳米Zn制备ZnO厚膜及其气敏特性的研究,传感技术学报 18(1)(2005) 43-46.
    13. S. Basu, A. Dutta. Room-temperature hydrogen sensors based on ZnO, Mater. Chem. Phys. 47(1997) 93-96.
    14. G. Rao, D. Rao. Gas sensor response of ZnO based thick film sensor to NH_3 at room temperature, Sens. Actuators B 55(1999) 166-169.
    15. C. Kwon, H. Hong, D. Yun, K. Lee, S. Kim, Y. Roh, B. Lee. Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems, Sens. Actuators B 24-25(1995) 610-613.
    16. N. Jayadev Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer. Formulation and chracterization of ZnO.Sb thick-film gas sensors, Sens. Actuators B 325 (1998) 254-258.
    
    17. Y. Shimizu, T. Hyodo, M. Egashira. Mesoporous semiconducting oxides for gas sensor application, J. Euro. Ceram. Soc. 24 (2004) 1379-1398.
    
    18. CD. Feng, Y. Shimizu, X. Egashira. Effect of gas diffusion process on sensing properties of SnO_2 thin-film sensors in a SiO_2/SnO_2 layer-built structure fabricated by sol-gel process, J. Electrochem Soc. 141 (1994) 220-225.
    
    19. S. Basu, S. Chatterjee, M. Saha, S. Bandyopadhay, K.K. Mistry, K. Sengupta. Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases, Sens. Actuators B 79 (2001) 182-186.
    
    20. H.T. Sun, M.T. Wu, T. Li, X. Yao. Porosity control of humidity sensitive ceramics and theoretical model of humidity sensitive characteristics, Sens. Actuators B 19 (1989)61-70.
    
    21. K. Katayama, K. Hasegawa, Y. Takahashi, T. Akiba. Humidity sensitivity of Nb_2O_5 doped TiO_2 ceramics, Sens. Actuators B 24(1990) 55-60.
    
    22. S. Saito, M. Miyayama, K. Koumoto, H. Yanagida. Gas sensing characteristics of porous ZnO and Pt/ZnO ceramics, J. Am. Ceram. Soc. 68 (1985) 40-43.
    
    23. D.H. Yoon, G.M. Choi. Microstructure and CO gas sensing properties of porous ZnO produced by starch addition, Sens. Actuators B 45 (1997) 251-257.
    
    24. T. Hyodo, S. Abe, Y. Shimizu, M. Egashira. Gas-sensing properties of ordered mesoporous SnO_2 and effects of coatings thereof, Sens. Actuators B 93 (2003) 590-600.
    
    25. T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira. Preparation and gas-sensing properties of thermally stable mesoporous SnO_2, Sens. Actuators B 83 (2002) 209-215.
    
    26. H.W. Ryu, B.S. Park, S.A. Akbar, W.S. Lee, K.J. Hong, Y.J. Seo, D.C. Shin, J.S. Park, G.P. Choi. ZnO sol-gel derived porous film for CO gas sensing, Sens. Actuators B 96 (2003) 717-722.
    
    27. H.Y. Xu, X.L. Liu, D.L. Cui, M. Li, M.H. Jiang. A novel method for improving the performance of ZnO gas sensors, Sens. Actuators B 114 (2006) 301-307.
    28. T. Seiyama, S. Kagawa. Study on a detector for gaseous components using semiconductive thin films, AnaL Chent. 38 (8) (1966) 1069-1073.
    1. N. Jayadev Dayan, S. R. Sainkar, R. N. Karekar, R. C. Aiyer. Formulation and characterization of ZnO: Sb thick-film gas sensors, Thin Solid Films 325(1998) 254-258.
    2. H. Nanto, H. Sokooshi, T. Kawai, Aluminium-doped ZnO thin film gas sensor capable of detecting freshness of sea foods, Sens. Actuators B 14(1993) 715-717.
    3. B. Bhooloka Rao. Zinc oxide ceramic semiconductor gas sensor for ethanol vapor, Mater. Chem. Phys. 64(2000) 62-65.
    4. B. P. J. de Lacy Costello, R. J. Ewen, N. M. Ratcliffe, P. S. Sivanand. Thick film organic vapour sensors based on binary mixtures of metal oxides, Sens. Actuators B 92(2003) 159-166.
    5. W. J. Moon, J. H. Yu, G. M. Choi. The CO and H_2 gas selectivity of CuO-doped SnO2-ZnO composite gas sensor, Sens. Actuators B 87(2000) 464-470.
    6. Y. S. Choi, C. G. Lee, S. M. Cho. Preparation of doped-ZnO thin film by sol-gel process, Theor. Appl. Chem. Eng. 1(1995) 1389-1392.
    7. S. M. Hyun, K. Hong, B. H. Kim. Preparation and characterization of Al-doped ZnO transparent conducting thin film by sol-gel processing, J. Korean Ceram. Soc. 33(1996) 149-154.
    8. A. Trinchi, Y. X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. P. Russo, J. Duplessis, S. Viticoli. Investigation of sol-gel prepared Ga-Zn oxide thin films for oxygen gas sensing, Sens. Actuators A 108(2003) 263-270.
    9. T. K. Kwon, S. H. Park, J. Y. Ryu, H. H. Choi. Zinc oxide thin film doped with Al_2O_3, TiO_2 and V_2O_5 as sensitive sensor for trimethylamine gas, Sens. Actuators B 846(1998) 75-79.
    10. H. M. Lin, C. H. Keng, C. Y. Tung. Gas-sensing properties ofnanocrystalline TiO_2, Nanostructured Materials 9(1997) 747-750.
    11. J. S. Chen, H. L. Li, J. L. Huang. Structural and CO sensing characteristics of Ti-added SnO_2 thin films. Appl. Surf. Sci. 187(2002) 305-312.
    12. V. Guidi, D. Boscarino, L. Casarotto, et al. Nanosized Ti-doped MoO_3 thin films for gas-sensing application, Sens. Actuators B 77(2001) 555-560.
    13. D. S. Lee, S. D. Han, S. M. Lee, et al. The TiO_2-adding effects in WO_3-based NO_2 sensors prepared by coprecipitation and precipitation method. Sens. Actuators B 65 (2000) 331-335.
    14. C. C. Zhang, Y. X. Hu, W. Z. Lu, et al. Influence of TiO_2/Sb_2O_3 ratio on ZnO varistor ceramics. J. Europ. Ceram. Soc. 22 (2002) 1-65.
    15. S. Bemik, P. Zupancic, K. Drago. Infuence of Bi_2O_3/TiO_2, Sb_2O_3 and Cr_2O_3 doping on low-voltage varistor ceramics. J. Europ. Ceram. Soc. 19(1999) 709-713.
    16. T. W. Kim, U. S. Choi, S. W. Jung. Electrical conductivity and CO gas sensitivity of ZnO-TiO_2 composites. Proceedings of the IEEE International conference on Properties and Applications of Dielectric Materials 2(1997) 847-850.
    17.祝柏林.纳米ZnO对VOCs敏感特性的研究,华中科技大学博士学位论文,2003年,66-71.
    18. A. Peigney, H. Andrianjatovo, R. Legros, et al. Influence of chemical composition on sintering of bismuth-titanium-doped zinc oxide. J. Mater. Sci. 27(1992) 2397-2405.
    19. W. Gopel, K. D. Schierbaum. SnO_2 sensors: current status and future prospects, Sens. Actuators B 26-27(1995) 1-12.
    20. A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, K. S. Goto, Solid-state gas sensors: a review, J. Electrochem. Soc. 122(1992) 390-3703.
    21. T. Hyodo, N. Nishida, Y. Shimizu, M. Egashira. Preparation and gas-sensing properties of thermally stable mesoporous SnO_2, Sens. Actuators B 83(2002) 209-215.
    22. P. Montmeat, R. Lalauze, J. -P. Viricelle, G. Toumier, C. Pijolat. Model of the thickness effect of SnO_2 thick film on the detection properties, Sens. Actuators B 103(2004) 84-90.
    23. M. Radecka, K. Zakrzewska, M. Rekas. SnO_2-TiO_2 solid solutions for gas sensors, Sens. Actuators B 47(1998) 194-204.
    24. W. J. Fleming. Physical principles goveming non-ideal behavior of the zirconia oxgen sensor, J. Electrochem. Soc. 124(1977) 21-28.
    25. F. Shimizu, N. Yamazoe, T. Seiyama. Detection of combustible gases with stabilized zirconia sensor, Chem. Lett.(1978) 299-300.
    26. H. Okamoto, H. Obayashi, T. Kudo. Non-ideal emf behavior of zirconia oxygen sensors, Solid State Ionics 3-4(1981) 453-456.
    27. A.Vogel, G. Baier, V. Schüle. Non-Nemstian potentiometric zirconia sensors: screening of potential working electrode materials, Sens. Actuators B 15-16 (1993) 147-150.
    28. Z. Y. Can, H. Narita, J. Mizusaki, H. Tagawa. Detection of carbon monoxide by using zirconia oxygen sensor, Solid State Ionics 79(1995) 344-348.
    29. G. Lu, N. Miura, N. Yamazoe. High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode, Sens. Actuators B 35-36 (1996) 130-135.
    30. Y. Isogai, M. Miyayama, H. Yanagida, PZT/ZnO actuator responding to reducing gases, Sens. Actuators B 30(1996) 47-53.
    31. M. Fleischer, H. Meixner. A selective CH_4 sensor using semiconducting Ga_2O_3 thin films based on temperature switching of multigas reactions, Sens. Actuators B 24-25 (1995) 544-547.
    32. M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka. Ga_2O_3 thin films for high-temperature gas sensors, Appl. Surf. Sci. 142(1999) 188-191.
    33. T. Schwebel, M. Fleischer, H. Meixner. A selective, temperature compensated O_2 sensor based on Ga_2O_3 thin films, Sens. Actuators B 65 (2000) 176-180.
    
    34. M. Ogita, K. Higo, Y. Nakanishi, Y. Hatanaka. Ga_2O_3 thin film for oxygen sensor at high temperatureAppl. Surf. Sci. 175-176 (2001) 721-725.
    
    35. M. Fleischer, H. Meixner. Sensing reducing gases at high temperatures using long-term stable Ga_2O_3 thin films, Sens. Actuators B 6 (1992) 257-261.
    
    36. J. Frank, M. Flcischer, H. Meixner. Electrical doping of gas-sensitive, semiconducting Ga_2O_3 thin films, Sens. Actuators B 34 (1996) 373-377.
    
    37. A. Triuchi, Y.X. Li, W.Wlodarski, S. Kaciulis, L. Pandolfi, S.P. Russo, J. Duplessis, S. Viticoli. Investigation of sol-gel prepared Ga-Zn oxide thin films for oxygen gas sensing, Sens. Actuators A 108 (2003) 263-270.
    
    38. J. Frank, M. Flcischer, H. Meixner, A. Feltz. Enhancement of sensitivity and conductivity of semiconducting Ga_2O_3 gas sensors by doping with SnO_2, Sens. Actuators B 49 (1998) 110-114.
    
    39. X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, Y. Qian. One-Dimensional Arrays of Co_3O_4 Nanoparticles: Synthesis, Characterization, and Optical and Electrochemical Properties. J. Phys. Client. B 108 (2004) 16401-16404.
    
    40. T. He, D.R. Chen, X.L. Jiao, Y.Y. Xu, Y.X. Gu. Surfactant-Assisted Solvothermal Synthesis of Co_3O_4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size, Langmuir 20 (2004) 8404-8408.
    
    41. A. Gulino, P. Dapporto, P. Rossi, I. Fragala. A novel self-generating liquid MOCVD precursor for Co_3O_4 thin films. Chem. Mater. 15 (2003) 3748-3752.
    
    42. E. Barrera, T Viveros, A. Avila, P. Quintana, M. Morales, N. Batina. Cobalt oxide films grown by a dipping sol-gel process. Thin Solid Films 346 (1999) 138-144.
    
    43 . S.D. Chioi, B.K. Min. Co_3O_4-based isobutene sensor operating at low temperatures. Sens. Actuators B 77 (2001) 330-334.
    44. J. Wollenstein, M. Burgmair, G. Plescher, et al. Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures. Sens. Actuators B 93 (2003) 442-448.
    45. R.J. Wu, C.H. Hu, C.T. Yeh, P.G. Su. Nanogold on powdered cobalt oxide for carbon monoxide sensor. Sens. Actuators B 96 (2003) 596-601.
    
    46. H. Yumaura, K. Moriya, N. Miura, N. Yamazoe. Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide. Sens. Acuators B 65(2000)39-41.
    
    47. H.J. Lee, J.H. Song, Y.S. Yoon, et al. Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sens. Actuators B 79 (2001) 200-205.
    1. S. Ichihirano. Hydrothermon processing of ceramics, Ceram. Bull. 66(1987) 1342-1344.
    2. W. J. Dawson. Hydrothermal synthesis of advanced ceramic powders, Ceram. Bull. 67(1988) 1673-1678.
    3.何红运,孟宪平,周凤歧,庞文琴.超微粉Ga-BETA沸石的水热合成及其结构研究,化学学报 52(1994)380-385.
    4. C. Hui, S. T. Chen, A. L. Xu, Y. L. Yu. A study of thick-film gas sensors based on SnO_2 nanopowders prepared by hydrothermal synthesis technique, 7th International Meeting on chemical sensors, International academic publishers, 1998: 75-77.
    5.蒲永平,董敏,陈守田.水热处理对固相合成的钛酸钡粉体的影响,陕西科技大学学报 23(4)(2005) 25-28.
    6.郑遗凡,岳林海,金达莱,徐铸德.水热处理氢氧化镁微品性质研究,无机化学学报 19(6)(2003)637-640.
    7. S. H. Park, J. Y. Ryu, H. H. Choi et al. Zinc oxide thin film doped with Al_2O_3, TiO_2 and V_2O_5 as sensitive sensor for trimethylamine gas, Sens. Actuators B 46 (1998) 75-79.
    8. N. J. Dayan, S. R. Sainkar, R. N. Karekar et al. Formulation and characerization of ZnO: Sb thick-film gas sensors, Thin Solid Films 325(1998) 254-258.
    9. R. H. Kyoung, S. K. Chang, T. K. Keon, J. K. He, I. K. Deok, J. W. He. Study on sensing properties of tin oxide CO gas sensor with low power consumption, Sens. Actuators B 81 (2002) 182-186.
    10. Y. D. Wang, C. L. Ma, X. H. Wu, X. D. Sun, H. D. Li. Mesostructured tin oxide as sensitive material for C_2H_5OH sensor, Talanta 57(2002) 875-882.
    11. O. Wurzinger, G. Reinhardt. CO-sensing properties of doped SnO_2 sensors in H2-rich gases, Sens. Actuators B 103(2004) 104-110.
    12. P. Ménini, F. Parret, M. Guerrero, K. Soulantica, L. Erades, A. Maisonnat, B. Chaudret. CO response of a nanostructured SnO_2 gas sensor doped with palladium and platinum, Sens. Actuators B 103(2004) 111-114.
    13. A. Chiorino, G. Ghiotti, F. Prinetto, M. C. Carotta, D. Gnani, G. Martinelli. Preparation and characterization of SnO_2 and MoO_x-SnO_2 nanosized powders for thick film gas sensors, Sens. Actuators B 58 (1999) 338-349.
    14. G. De, A. Licciulli, C. Massaro, A. Quirini, R. Rella, P. Siciliano, L. Vasanelli. Sol-gel derived pure and palladium activated tin oxide films for gas-sensing applications, Sens. Actuators B 55 (1999) 134-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700