用户名: 密码: 验证码:
水溶性非对称吲哚方酸菁染料合成新方法及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以对肼基苯磺酸和苯肼为起始原料,在酸性条件下合成了水溶性吲哚衍生物和非水溶性吲哚衍生物。用不同的N烷基化试剂对两种吲哚衍生物进行了烷基化反应,分别得到水溶性和非水性的吲哚啉季铵盐,将非水溶性吲哚啉季铵盐与方酸乙酯缩合得到不同的非水溶性N–取代方酸半菁染料,再与水溶性吲哚啉季铵盐直缩合得到8种水溶性不对称吲哚方酸菁染料。所合成的染料采用C-18反相柱分离提纯,并且通过核磁共振氢谱对化合物结构进行表征。测试了产品的光谱性能、光稳定性、热稳定性以及产品的溶解性。通过比较发现,此种先合成非水溶性半菁染料的两步法较传统的方法一步法收率更高,是合成不对称菁染料的好方法。
     染料光谱性能测试结果显示,8种水溶性不对称方酸菁染料在5种溶剂中的最大紫外–可见吸收波长在625~655 nm之间,最大荧光发射波长在632~668 nm之间。染料Stokes位移在5~13 nm之间,摩尔吸光系数在10~5 mol~(-1)·cm~(-1)·L以上。在质子性溶剂中随着溶剂极性的增大,染料的紫外–可见吸收光谱发生蓝移,表现负向溶剂化效应。在非质子极性溶剂中随着溶剂极性的增大,染料的紫外–可见吸收光谱发生红移,表现正向溶剂化效应。在水中的荧光量子产率低于在其它极性有机溶剂中荧光量子产率。染料在不同pH值的水溶液中的光谱形状相似,染料在其他pH值的水溶液中吸光度值变化不大,但在酸性(pH= 5.65)和碱性(pH= 9.68)水溶液中吸光度明显增大,在强酸性(pH= 1.85)水溶液中吸光度明显减小,染料在pH= 5.65时都出现了小的聚集峰。4种染料的热稳定性测试结果显示,染料分解温度都在300℃以上,表明4种染料具有好的热稳定性。8种不对称染料中,SaFa (N–羧苄基–N′–羧苄基)稳定性最好,SeFg (N–甲苄基–N′–硝苄基)的光稳定性最差,其他染料差别不大。测试了8种染料在水中的溶解性,发现在水中的溶解性都很好。
In acidic medium, water-soluble and water-insoluble indoles were synthesized from phenyl hydrazine sulfonic acid and phenylhydrazine as starting materials. Two series of N–alkyl–2,3,3–trimethyl–3H–indoleninium were synthesized involving nucleophilic reaction of two kinds of indoles and different N–alkyl reagents. Different N-substituted squaraine hemiindocyane dyes were synthesized by condensation of water-insoluble indoline quaternary ammonium and squaric diethyl ester. The new water-soluble asymmetric indole squaraine dyes which have not been reported previously were synthesized by condensation of water-insoluble N-substituted squaraine hemi-indocyane dyes and various N–alkyl–2,3,3–trimethyl–3H–indoleninium–5–sulfonates. These raw dyes were purified by C–18 reverse phase column chromatograph. Their structures were confirmed by 1H NMR. In the process of synthesizing of asymmetrical squarylium indocyanine, it is found that this two–step method in which the water-insoluble hemicyanine dyes were synthesized firstly is more suitable for synthesizing water-soluble asymmetric squarylium indocyanine dyes, because the yields of dyes synthesized with this two–step method are higher than those with traditional one–step method and the two–step method in which the water-soluble hemicyanine dyes were synthesized firstly.
     The spectra properties of eight kinds of dyes in five various solvents were checked. The results show that the dyes exhibited absorption maximum from 625 to 655 nm and fluorescence emission maximum from 632 to 668 nm. The Stokes Shifts are from 5 to 13 nm. All dyes synthesized in this paper display a high molar extinction coefficientsεgreater than 10~5 mol~(-1)·cm~(-1)·L. The absorption spectra of these dyes exhibit negative solvatochromism in protonic solvents which is a blue shift of the absorption maximum with increasing solvent polarity and positive solvatochromism in aprotonic polar solvents that is a red shift of the absorption and emission maximum with increasing solvent polarity. The Fluorescence quantum yields of dyes in water are lower than those in other polar organic solvents. The absorption and emission spectra of the dyes at different pH values of aqueous solution were investigated. In the acidic (pH = 5.65) and alkaline (pH = 9.68) conditions, the absorbance of dyes in aqueous solution are increased significantly, however, when pH=1.85 the absorbance are decreased significantly. At the pH value of 5.65, aggrigation of dyes molecules are observed. The thermal stabilities of four kinds of dyes were tested. Decomposition temperatures of the dyes are all above 300℃, indicating that the four kinds of dyes have good thermal stability.The test results of photostability indicated that the photostability of SaFa (N-carboxy-benzyl-N'-carboxy benzyl) is the best,the photostability of SeFg(N-A benzyl-N'-NO2 benzyl) is the worst and the difference between others is negligible.The water-stabilities of the dyes are good from the test.
引文
[1] Tyutyulkov N, Fritz D, Ivanova A.et al.Structure and properties of new classes of coupled polymethine dyes[J]. Dyes and Pigments, 1999, 42(3):215-222.
    [2] Umezawa K, Morita S, Takazawa K.et al.Optical disk information recording method and information reproducing method[P].UP.0281123.2007-05-20.
    [3] Guo J.H, He X.Y, Cai SM, et al.Photoelectrochemical Studies of the TiO2 Nanocrystalline Electrode Composite Sensitized by Two Cyanine Dyes[J]. Acta Chimica Sinica, 2009, 67 (15):1725-1730.
    [4] Zhou X,Zhou J. The Signal Sensitivity and Photostability of DNA Hybridizations on Microarrays by Using Dye–Doped Core–Shell Silica Nanoparticles[J].Anal Chem, 2004, 76(18):5302-5312.
    [5]高志宇,刘燕刚.生物荧光标记菁染料的研究进展[J].影像技术.2001,(2):10-16.
    [6] Guo M, Diao P, Ren Y.J, et al.Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes[J].Solar Energy Materials and Solar Cells, 2005, 88(1): 23-35.
    [7] Sona A, Dosevb D, Nichkova M, et al.Quantitative DNA hybridization in solution using magnetic/luminescent core–shell nanoparticles[J].Analytical Biochemistry, 2007, 370(2): 186-194.
    [8]孙成才,霍冀川,雷永林,等.近红外吸收功能菁染料的研究进展[J].材料导报,2006,20(8):48-51.
    [9] Amaresh M, Rajani K.B, et al.Cyaninesduring the 1990s: a review[J].Chem Rev, 2000, 100(6): 1973-2012.
    [10]王继东.近红外菁染料荧光探针的合成与性能研究[D].秦皇岛:燕山大学,2006.
    [11]王凤云.方酸菁近红外吸收染料的合成及其光谱性质的研究[D].长春:长春理工大学,2010.
    [12]殷焕顺,邓建成,周燕.酞菁化合物在高新技术领域中的应用[J].2003,33(5):12-15.
    [13] Tseng W.J.Wanrping evolution of injection-moled ceramics[J].Mater Proc Techn, 2000, 102(2):14-18.
    [14] Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of Methylene blue using a Fenton-like reaction[J].J Hazard Mater ,2001,84(1):57-71.
    [15]范芳丽,乔泽邦,陈沁闻,等.2–取代吡啶半菁染料的无溶剂微波合成及光谱性质的理论研究[J].有机化学,2006,26(10):1389-1393.
    [16]闫起强.四甲川苯乙烯萘并噻唑半菁染料的合成[J].感光科学与光化学2008,18(2):170-173.
    [17]王炳帅.吲哚类方酸菁染料、半菁染料的合成与应用研究[D].大连:大连理工大学,2009.
    [18] Anatoliy L, Tatarets I.A, Fedyunyayeva T.S. Synthesis of water-soluble,ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels[J].Analytica Chimica Acta, 2006, 570(2): 214–223.
    [19] Cohen S, Lacher R, Park D. Synthesis of squaric acid [J].J Am Chem Soc, 1959, 81(13):3480.
    [20] Sprenger H, Ziegenbein W. Cyclobutenediylium Dyes[J].Angew Chem Int Ed, 1968, 7 (7),530-535.
    [21] Sung H.K, Seok H.H. Synthesis and Photostability of Functional Squarylium Dyes[J].Dye and Piments, 1997, 35(2):111-121.
    [22] Kateryna D, Volkova, Kovalska, et al. Spectroscopic study of squaraines as protein-sensitive fluorescent dyes[J].Dye and Piments,2007,6(72):285-292.
    [23] Lipowska M, Patonay G, Strekowski L.New Near–Infrared Cyanine Dyes for Labelling of Proteins[J]. Synthetic Commun, 1993, 23(1): 3087?3089.
    [24] Sanghoon Kim,Gopal K.M, Maggie P, et al. Molecular Design of Near-IR Harvesting Unsymmetrical Squaraie Dyes[J].Langmuir 2010, 26(16):13486-13492.
    [25] Bernhard O, Patsenker L, Duschl J, et al. Synthesis, Spectral Properties, and Detection Limits of Reactive Squaraine Dyes, New Class of Diode Laser Compatible Fluorescent Protein Lablels[J]. Bioconjugate Chem, 1999, 10(6):925-931.
    [26]楼开炎,钱旭红,宋恭华.不对称水溶性菁染料的简便制备与纯化方法[J].华东理工大学学报,2002,28(2):212-215.
    [27] Frank W, Paul B, Nakazumi H, et al. Symmetric and asymmetric squarylium dyes as noncovalent protein labels:a study by fluorimetry and capillary electrophoresis[J].Journal of Chromatography B, 2003, 5(1):93-105.
    [28] Yum J.H, Pablo W, Simon H, et al. Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squarylium Dye[J].J Am Chem Soc, 2007, 129(34):10320-10321.
    [29] A.Prasanna de Silva, Gunaratne H.Q, Gunnlaugsson T.Signaling Recognition Events with Fluorescent Sensors and Switches[J].Chem Rev 1997, 97(5): 1515-1566.
    [30]杨祥宇,宋健,冯荣.荧光标记染料[J].化学通报,2003,66(9):615-621.
    [31]孔祥文,张静.2,2-二甲基-2,3-二氢伯啶的合成[J].染料工业,2001,5(38):26-27.
    [32]舒凡.近红外中位氨基酸取代Cy7的合成及生物运用[D].大连:大连理工大学,2006.
    [33]王丽秋,彭孝军.生物标示用3H?吲哚菁染料[J].染料工业,2002,39(4):8-12.
    [34]郑洪,李东辉,吴敏,等.新型近红外试剂的合成及其现场二聚体与DNA作用的研究[J].高等学校化学学报,1999,20(7):1026-1028.
    [35] Waggoner A S. Method for labeling and detecting materials employing arylsulfonate cyanine dyes[P]:UP.5569766.1996-04-15.
    [36]李军,陈萍,赵江,等.近红外吸收菁染料光氧化反应机理的研究[J].感光科学与光化学,1996,4(14):314-319.
    [37]陈欣,姚祖光.N-苄基吲哚三碳菁染料的合成及性能[J].高等学校化学学报,1996,17(10):1613-1616.
    [38]王丽.生物荧光标识用菁染料的研究[D].大连:大连理工大学,2009.
    [39]王炳帅.吲哚类方酸菁染料、半菁染料的合成与应用研究[D].大连:大连理工大学,2009.
    [40]陈秀英.新型功能性2,3,3-三甲基-3H吲哚菁染料的合成、光稳定性能与应用研究[D].大连:大连理工大学,2005.
    [41] Patonay G, Gorecki T, Strekowski L, et al. Synthesis of novel near-infrared cyanine dyes for metal ion determination[J].J Heterocycl Chem, 1996, 33(6): 1871-1876.
    [42] He J, Gabor B, Ferenc K, et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 Electrode[J].J Am Chem Soc, 2002, 124(17): 4922-4926.
    [43] M.C. Basheer, S. Alex, K.George Thomas, et al. A squaraine-based chemosensor for Hg2+ and Pb2+[J]. Tetrahedron, 2006, 62(23): 605-610.
    [44] Avirah R.R, Jyothish K, Ramaiah D.Dual-Mode Semisquaraine-Based Sensor for Selective Detection of Hg2+ in a Micellar Medium[J].Org Lett, 2007, 9(1): 121-124.
    [45] Kawakami M, Ukai T. Synthesis and evaluation of novel rhodacyanine dyes that sxhibit antitumor activity[J].J Med Chem, 1997, 40(2): 220-225.
    [46] Tian H, Su J.H, Chen K.C, et al. Functional Dyes Using in New and High Technology[J].Am J Physiol Cell Physiol, 2000, 11(2): 295-296.
    [47] Oushiki D, Kojima H, Terai T, et al. Development and Application of a Near-Infrared Fluorescence Probe for Oxidative Stress Based on Differential Reactivity of Linked Cyanine Dyes[J].J Am Chem Soc, 2010, 132(8): 2795–2801.
    [48] Christopher S.G, Brigitte F.S, James A.J, et al. Flurogendrons with Multiple Donor Chromophores as Bright Genetically Targeted and Activated Probes[J].J Am Chem Soc, 2010, 132(32): 11104-11109.
    [49]张文毓.生物芯片产业发展现状及展望[J].传感器世界,2007,6(10):33-37.
    [50] Williams R.J. Copparison of covalent and noncovalent labeling with near-infred dyes for the high-performance liquid chromatographic determination of human serumalbumin[J].Anal Chem, 1993, 65(5): 601-605.
    [51] Indraneel G, Andrew D, Hamilton, et al. Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein[J].J Am Chem Soc, 2000, 122(23): 5658-5659.
    [52]王继东,王丽秋.菁染料的研究进展[J].广东化工,2007,2(34):34-36.
    [53] Eccleston M.E, Kaminski C.F, Slater N.K.H, et al. Optical characteristics of responsive biopolymers; co-polycondensation of tri-functional amino acids and Cy-3 bis-amine with diacylchlorides[J]. Polymer, 2004, 45(1): 25-32.
    [54] Steven A.S, Quincy L.M. Steady-State and Picosecond Laser Fluorescence Studies of Nonradiative Pathways in Tricarbocyanine Dyes: Implications to the Design of Near-IR Fluorochromes with High Fluorescence Efficiencies[J].J Am Chem Soc, 1994, 116(9): 3144- 3152.
    [55]蒋金芝,王艳.Fischer吲哚合成法的研究进展[J].有机化学,2006,26(8):1025-1030.
    [56]王丽秋,李秋荣,彭孝军,等.水溶性菁染料荧光标示剂的合成及其光谱性能[J].燕山大学学报,2006,30(1):91-94.
    [57]王伟,姚祖光.含N-烷基吲哚环方酸菁染料的合成及性能[J].感光科学与光化学,1997,15(4):322-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700