用户名: 密码: 验证码:
生物荧光标识用菁染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着蛋白质组时代的来临,荧光检测技术结合高效液相(HPLC)或凝胶电泳技术的应用大大推动了蛋白质组学的进步。但生物检测的灵敏度仍有待于进一步提高。菁染料是目前最主要的蛋白质荧光标示剂之一,该类染料的主要问题在于容易发生光漂白和自聚集导致荧光淬灭。本论文主要针对吲哚类菁染料进行合成、性能以及蛋白质荧光标记的应用研究。
     为了开发出蛋白质标记效果更好的菁染料,合成了系列水溶性三甲川菁染料,其中N-对羧苄基-N'-磺丁基-5’-磺酸基-三甲川-3H-吲哚菁染料(Ⅱe)标记牛血清白蛋白(BSA)的检测限为4.8×10-10 mol L-1,达到文献报道的较灵敏的荧光试剂的水平。同时应用高效液相色谱和聚丙烯酰胺凝胶电泳(SDS-PAGE)两种分析技术研究染料结构对蛋白质标记的影响。结果表明,在染料的琥珀酰亚胺活性酯(NHS)一侧应为疏水的,而在染料另一侧引入磺酸基来提供必要的水溶性,这样的染料结构更有利于蛋白质标记反应。
     由于近红外染料可以有效避开生物自荧光所造成的干扰,合成了四个水溶性不对称五甲川菁染料(647-680 nm),结构未见报道。光稳定性实验结果表明,在吲哚环N位引入刚性苯环结构或空间体积较大的磺丁基等基团,能够提高染料的光稳定性能。应用其中具有较好光稳定性的N-对羧苄基-N'-磺丁基-5,5'-磺酸基-五甲川-3H-吲哚菁染料(Ⅲj)标记BSA,最低检测限达到1.2×10-8mol L-1,可比商品化染料荧光素异硫氰酸酯(FITC)检测更低丰度的蛋白质,与紫外检测相比检测灵敏度可以提高近二个数量级。
     针对近红外五甲川菁染料光稳定性差的问题,设计合成系列水溶性方酸菁染料,其中两个不对称染料结构未见报道。光稳定性实验结果表明,方酸菁染料的稳定性优于五甲川菁染料的稳定性,不同N位取代基染料光稳定性大小顺序依次为对羧苄基>苄基>乙基>羧戊基,可见,在吲哚环N位引入体积大、具有刚性苯环结构的基团,能够阻止单重态氧的进攻,从而提高菁染料的光稳定性。而对于同是苯环结构的对羧苄基和苄基来说,苯环对位具有吸电性的羧基更有利于提高菁染料的光稳定性。
     此外,针对菁染料易于聚集的问题,合成了新型多氟取代三甲川菁染料,同时优化了反应条件,提高中间体和目标产物的收率。通过与传统无氟菁染料对比,多个氟原子的引入提高了染料在水中的光稳定性,减弱了染料的自聚作用。
In the post-genome sequencing era, protein analysis has been paid more and more attention. Fluorescence detection was readily applied in high performance liquid chromatography (HPLC) or electrophoresis techniques, especially the differential in-gel electrophoresis (DIGE), enabling qualitative and quantitative analysis of proteins. For proteomics, the improvement on the detection sensitivity of proteins is an imperative task. Cyanine dyes have found widespread use as fluorescent labels for biomolecules, particularly for fluorescent labeling proteins. However, two common problems encountered by cyanine dyes are their susceptibility to form nonfluorescent aggregates and their tendency to undergo photobleaching. In this thesis, cyanine dyes based on 2,3,3-trimethyl-3H-indolium are synthesized and their corresponding properties and biological applications are studied.
     In order to improve the protein labeling effect, a series of water-soluble trimethine 3H-indocyanine (Cy3) dyes were synthesized. The limit of detection of the asymmetric dye II e for BSA decreased to 4.8×10-10 mol L-1. Two methods, high performance liquid chromatography and gel electrophoresis (SDS-PAGE), were used to evaluate the influence of different dyes'structures on protein labeling. The results indicate the asymmetric dyes can benefit protein labeling, which possess the carboxyl group on the hydrophobic side of the dyes to synthesize the NHS ester and sulfo-groups on the other side to provide the dyes with necessary water-solubility.
     Four novel water-soluble asymmetric Cy5 dyes were synthesized because their spectra reach the near-infrared (NIR) region, where a biological matrix exhibits the least absorption and autofluorescence background. It is demonstrated that the benzyl group and sulfo-group on the N-position of 3H-indolium pentamethine cyanine dyes improved the photostability in aqueous solutions. In addition, the limit of detection of dye IIIj for BSA was 1.2×10-8 mol L-1 about 100-fold lower than that by UV detection. Compared to commercial fluorescein isothiocyanate (FITC), more proteins with low concentrations could be labeled, resulting in improved detection sensitivity for protein analysis. All results demonstrated that asymmetric dye IIIj possesses better photostability, which can be a good fluorescent labeling reagent for protein labeling.
     Focus on the poor photostability of pentamethine cyanine dyes, a series of water-soluble squarylium cyanine dyes were synthesized, including two novel asymmetric dyes. The result is shown that their photostabilities of squarylium cyanine dyes reported here are better than that of pentamethine cyanine dyes. The effect of different N-substituents on the photostability of the dyes can be placed in the order:p-carboxylbenzyl group> benzyl group> ethyl group > carboxylpentanyl group. Therefore, the benzyl group on the N-position of 3H-indolium pentamethine cyanine dyes improved the photostability in aqueous solutions, and reduced reactivity toward singlet oxygen, and the electron-withdrawing group on the benzyl group on nitrogen atom of cyanine dyes is good for improving photostability.
     Finally, focus on the problem of aggregation, a novel polyfluorinated cyanine dye was synthesized and its reaction conditions were optimized to imcrease the yields of intermediates and product. Compared with the nonfluorinated analogue, the novel dye exhibits significantly reduced aggregation in aqueous media, enhanced fluorescence quantum yield, greater resistance to photobleaching.
引文
[1]张华山,王红,赵媛媛.分子探针与检测试剂[M].北京:科学出版社,2002.
    [2]Mishra A, Behera R K, Behera P K, et al. Cyanines during the 1990s:A Review [J]. Chemical Review,2000,100:1973-2011.
    [3]Giepmans Ben N G, Stephen R A, Ellisman M H, et al. The Fluorescent Toolbox for Assessing Protein Location and Function [J]. Science,2006, (312):217-223.
    [4]陈国珍,黄贤智,郑朱梓,等.荧光分析法(第二版)[M].北京:科学出版社,1990.
    [5]C.赖卡特[联邦德国].有机化学中的溶剂效应[M].北京:化学工业出版社,1987.
    [6]杨祥宇,宋健,冯荣秀.荧光标记染料[J].化学通报,2003,9:615-621.
    [7]傅妮娜,王红,张华山.近红外荧光探针及其在生物分析中的应用进展[J].分析科学学报,2008,24:233-239.
    [8]Kyle R G, Eric S W, David J K. Caged Q-rhodamine dextran:a new photoactivated fluorescent tracer [J]. Bioorganic and Medicinal Chemistry Letters,2001,11: 2181-2183.
    [9]Wang Q, Scheigetz J, Roy B, et al. Novel caged fluorescein diphosphates as photoactivatable substrates for protein tyrosine phosphatases [J]. Biochimica Biophysica Acta,2002,1601(1):19-28.
    [10]Zhao Y R, Zheng Q, Dakin K, et al. New caged coumarin fluorophores with extraordinary uncaging cross sections suitable for biological imaging applications [J]. Journal of the American Chemical Society,2004,126(14):4653-4663.
    [11]Tao Z F, Qian X. Naphthalimide hydroperoxides as photonucleases:substituent effects and structural basis [J]. Dyes and Pigments,1999,43 (2):139-145.
    [12]吕荣文,张淑芬,杨锦宗.生化分析用荧光染料[J].染料工业,1999,36(6):14-17.
    [13]梅文明.1,8-萘酰亚胺衍生物的合成及应用研究[J].中山大学研究生学刊(自然科学、医学版),2002,23(1):45-52.
    [14]Pires M M, Chmielewski J. Fluorescence imaging of cellular glutathione using a latent Rhodamine [J]. Organic Letters,2008,10(5):837-840.
    [15]Julien O, Mercier P, Spyracopoulos L, et al. NMR studies of the dynamics of a bifunctional rhodamine probe attached to troponin C [J]. Journal of the American Chemical Society,2008,130(8):2602-2609.
    [16]Tang B, Xing Y L, Li P, et al. A Rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells [J]. Journal of the American Chemical Society,2007,129(38):11666-11667.
    [17]Kenmoku S, Urano Y, Kojima H, et al. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis [J]. Journal of the American Chemical Society,2007,129(23):7313-7318.
    [18]Dujols V, Ford F, Czamik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(Ⅱ) ion in water [J]. Journal of the American Chemical Society, 1997,119:7386-7387.
    [19]Lee M H, Kim H J, Yoon S, et al. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine [J]. Organic Letters,2008,10(2):213-216.
    [20]Jameson E E, Cunliffe J M, Neubi R R, et al. Detection of G proteins by affinity probe capillary electrophoresis using a fluorescently labeled GTP analogue [J]. Analytical Chemistry,2003,75:4297-4304.
    [21]Funovics M, Weissleder R, Tung C H. Protease sensors for bioimaging [J]. Analytical and Bioanalytical Chemistry,2003,377(6):956-963.
    [22]Tung C H, Gerszten R E, Jaffer F A, et al. A novel near-fluorescence sensor for detection of thrombin activation in blood [J]. Chembiochem,2002,3:207-211.
    [23]Welder F, Paul B, Nakazumi H, et al. Symmetric and asymmetric squarylium dyes as noncovalent protein labels:a study by fluorimetry and capillary electrophoresis. [J]. Journal of Chromatography B,2003,793(1):93-105.
    [24]Pham W, Medarova Z, Moore A. Synthesis and application of a water-soluble near-infrared dye for cancer detection using optical imaging [J]. Bioconjugate Chemistry,2005,16(3):735-740.
    [25]Ye Y, Bloch S, Kao J, et al. Multivalent carbocyanine molecular probes:synthesis and applications [J]. Bioconjugate Chemistry,2005,16(1):51-61.
    [26]Frangioni J V. In vivo near-infrared fluorescence imaging [J]. Current Opinion in Chemical Biology,2003,7:626-634.
    [27]Knemeyer J P, Marme N, Sauer M. Probes for detection of specific DNA sequences at the single-molecule level [J]. Analytical Chemistry,2000,72:3717-3724.
    [28]Miller L W, Sable J, Goelet P, et al. Methotrexate conjugates:A molecular in vivo protein tag [J]. Angewandte Chemie International Edition,2004,43(13):1672-1675.
    [29]Lakowicz J R, Piszczek G, Kang J S. On the possibility of long-wavelength long-lifetime high-quantum-yield luminophores Anal Biochem [J]. Analytical Biochemistry,2001,288(1):62-75.
    [30]Jilkina 0, Kuzio B, Grover G J, et al. Sarcolemmal and mitochondrial effects of a KATP opener, P-1075, in "polarized" and "depolarized" Langendorff-perfused rat hearts [J]. Biochimica Biophysica Acta,2003,1618(1):39-50.
    [31]Zhao W, Carreira E M. Conformationally restricted aza-bodipy:A highly fluorescent, stable, near-infrared-absorbing dye [J]. Angewandte Chemie International Edition,2005,44(11):1677-1679.
    [32]Williams R J. Comparison of covalent and noncovalent labeling with near-infrared dyes for the high-performance liquid chromatographic determination of human serum albumin [J]. Analytical Chemistry,1993,65:601-605.
    [33]宋锋玲.近红外中位硫、氮取代七甲川菁类荧光染料的合成及光谱性能研究:(博士学位论文).大连:大连理工大学,2006.
    [34]Zaheer A, Lenkinskl R E, Mahmood A, et al. In vivo near-infrared fluorescence imaging of osteoblastic activity [J]. Nature Biotechnology,2001,19:1148-1154.
    [35]Cohen S A, Michaud D P. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidy carbamate, and its application for the analysis of hydrolysate amino acids via HPLC [J]. Analytical Biochemistry, 1993,211:279-287.
    [36]Bosch L, Alegria A, Farre R. Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods [J]. Journal of chromatography B,2006,831(1-2):176-183.
    [37]刘勋,张华山,徐国良,等.N-羟基琥珀酰亚胺-3-吲哚乙酸酯柱前衍生高效液相色谱分离及荧光测定肽及其水解物[J].高等化学学报,1997,18:873-876.
    [38]Cao L W, Wang H, Li J S, et al.6-Oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl)fluorescein as a new fluorescent labeling reagent for aliphatic amines in environmental and food samples using high-performance liquid chromatography [J]. Journal of Chromatography A,2005,1063:143-151.
    [39]Cao L W, Wang H, Ma M, et al. Determination of biogenic amines in HeLacell lysate by 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein and micellar electrokinetic capillary chromatography with laser-induced fluorescence detection [J]. Electrophoresis,2006,27:827-836.
    [40]Neadle D J, Pollit R J. The formation of 1-dimethylamionaphthalene-5-sulphonamide during the preparation of 1-Dimethylaminonaphthacene-5-sulphonyl-amino-acids [J]. Biochemical Journal,1965,97,607-608.
    [41]Seiler N, Schmidt-Glenewinkel T, Schneider H H.5-Di-nbutylaminonaphtha lene-1-sulphonyl chloride-a new reagent for fluorescence labelling of amines, amino acids and peptides [J]. Journal of Chromatography A,1973,84,95-107.
    [42]Causse E, Issac C, Malatray P, et al. Assays for total homocysteine and other thiols by capillaryelectrophoresis-laser-induced fluorescence detection:I. Preanalyticalcondition studies [J]. Journal of Chromatography A,2000,895:173-178.
    [43]Wang H, Liang S C, Zhang Z M, Zhang H S.3-Iodoacetylaminobenzanthrone as a fluorescent derivatizing reagent forthiols in high-performance liquid chromatography [J]. Analytica Chimica Acta,2004,512:281-286.
    [44]张琳.新型荧光试剂的合成及标记方法研究:(博士学位论文).大连:中国科学院大连化学物理研究所,2006.
    [45]尤进茂.荧光试剂的合成表征及在高效液相色谱中的应用:(博士学位论文).兰州:中国科学院兰州化学物理研究所,1996.
    [46]马增春,高月,吕俊萍,等.双向凝胶电泳中三种蛋白质检测方法的比较[J].中国生物化学与分子生物学报,2004,4:551-556.
    [47]Unlu M, Morgan M E, Minden JS. Difference gel electrophoresis:A single gel method for detecting changes in protein extracts [J]. Electrophoresis,1997,18:2071-2077.
    [48]Righetti P G, Castagna A, Antonucci F, et al. Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches [J]. Journal of Chromatography A,2004,1051:3-17.
    [49]Patton W F. A thousand points of light:the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics [J]. Electrophoresis,2000,21:1123-1144.
    [50]车庆林,彭孝军.荧光免疫分析用染料及其研究进展[J].现代化工,1998,2:12-14.
    [51]孙凯,汪谦.液相芯片技术研究应用进展[J].中华实验外科杂志,2005,22(5):639-640.
    [52]Jia X C, Raya R, Zhang L, et al. A novel method of multiplexed competitive antibody binning for the characterization of mono-clonal antibodies [J]. Journal of Immunological Methods,2004,288:91-98.
    [53]Hamer F M. Cyanine Dyes and Related Compounds. London:Interscience Publishers, John Wiley & Sons Ltd.,1964.
    [54]皮·格拉夫基德.照相化学(第四分册:光学敏化).刘敦译.北京:中国电影出版社,1984.
    [55]姚祖光.多甲川染料的功能开发.影像科学与实践,1991,1(1):125.
    [56]唐福龙,顾冬红,陈启婴,等.一种菁染料—聚合物薄膜的光存储性能[J].光学学报,1996,16(12):1773-1777.
    [57]Sergio T, Saif A H, Brian 0, et al. Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells [J]. Journal of Materials Chemistry,2007,17:3037-3044.
    [58]Wu W J, Hu J L, Tian H. Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells [J]. Photochemical and Photobiological Sciences,2008,7:63-68.
    [59]杨锦宗.染料的分析与剖析.北京:化学工业出版社,1991.
    [60]Kazushi K, Yoshihito 0, Kenji N, et al. Synthsis, binding and fluorescence properties of olignucleotide derivatives having a dansyl fluorescence label attached to the 2'-Position of a ribonucleside [J]. Tetrahedron,1997,53: 4265-4270.
    [61]张红春,姚祖光.含取代吲哚的三碳菁染料的合成及其光性能[J].华东理工大学学报,1994,20(6):788-793.
    [62]Mujumdar S R, Mujumdar R B, Grant C M, et al. Cyanine-Labeling Reagents: Sulfobenzindocyanine Succinimidyl Esters [J]. Bioconjugate Chemistry,1996,7:356-362.
    [63]Dai Z, Peng B. Synthesis and Characterization of Indodicarbocyanines [J]. Dyes and Pigments,1998,36(2):169-175.
    [64]Steven A S, Quincy L M. Steady-state and picosecond laser fluorescence Studies of nonradiative pathways in tricarbocyanine dyes:implications to the design of Near-IR fluorochromes with high fluorescence efficiencies [J]. Journal of the American Chemical Society,1994,116:3744-3752.
    [65]Fabian J, Nakazumi H, Matsuoka M. Near-infrared absorbing dyes [J]. Chemical Reviews,1992,92(6):1197-1226.
    [66]]Zheng H. Cationic cyanine as a near-infrared fluorescent probe for the determination of nucleic acids [J]. Journal of Analytical Chemistry,2000, 366:504-507.
    [67]Patonay G, Kim J S, Kodagahally R, et al. Spectroscopic study of a novel bis(heptamethine cyanine) dye and its interaction with human serum albumin [J]. Application Spectroscopy,2005,59(5):682-690.
    [68]Mujumdar R B, Ernst L A, Mujumdar S R, et al. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters [J]. Bioconjugate Chemistry,1993,4:105-111.
    [69]Wang L Q, Peng X J, Zhang R, et al. Syntheses and spectral properties of fluorescent trimethines sulfo-3H-indocyanine dyes [J]. Dyes and Pigments,2002,54:107-111.
    [70]王丽秋.水溶性3H-吲哚菁型生物荧光标示染料的研究:(博士学位论文).大连:大连理工大学,2003.
    [71]曾万学,陈萍,郑德水.感半导体激光菁染料稳定性的研究[J].感光科学与光化学,1993,11(4):372.
    [72]曾万学,陈萍,郑德水.多甲川链菁染料光氧化机理研究[J].感光科学与光化学,1995,13(2):136-143.
    [73]Li J, Chen P. Study on the photofading of near-infrared absorbing indolenine cyanines dyes [J]. Chinese Chemical Letters,1996,7(12):1121-1124.
    [74]李军,陈萍,赵江,等.近红外吸收菁染料分子链结构对其光氧化稳定性能的影响[J].感光科学与光化学,1997,15(5):343-350.
    [75]郑洪,李东辉.一种近红外花菁染料的合成及其应用于生物大分子的测定[J].应用化学,1999,16(3):7-20.
    [76]杨松杰,田禾.菁染料光稳定性研究进展[J].感光科学与光化学,1999,17(3):275-283.
    [77]田禾,苏建华,孟凡顺,等.功能性色素在高新技术中的应用[J].北京:化学工业出版社,精细化工出版中心,2000.
    [78]陈欣,姚祖光.含镍配合物阴离子的吲哚三碳菁合成及性能[J].感光科学与光化学,1998,16(4):326-330
    [79]王伟,姚祖光.含N-烷基吲哚环方酸菁染料的合成及性能[J].感光科学与光化学,1997,15(4):321-324.
    [80]Kashida H, Asanuma H, Komiyama M. Alternating hetero H aggregation of different dyes by interstrand stacking from two DNA-dye conjugates [J]. Angewandte Chemie International Edition,2004,43(47):6522-6525.
    [81]Strekowski L, Lipowska M, Patonay G. Substitution reactions of a nucleofugal group in heptamethine cyanine dyes [J]. Journal of Organic Chemistry,1992,57:4578-4580.
    [82]Strekowski L, Lipowska M, Patonay G. Facile derivatizations of heptamethine cyanine dyes [J]. Synthetic Communication,1992,22(17):2593-2598.
    [83]Strekowski L, Lipowska M, Gorecki T. Functionalization of near-infrared cyanine dyes [J]. Journal of Heterocyclic Chemistry,1996,33:1685-1688.
    [84]Gorecki T, Patonay G, Strekowski L. Synthesis of novel near-infrared cyanine dyes for metal ion determination [J]. Journal of Heterocyclic Chemistry, 1996,33:1871-1876.
    [85]Renikuntla B R, Rose H C, Eldo J, et al. Improved photostability and fluorescence properties through polyfluorination of a cyanine dye [J]. Organic Letters,6 (6):909-912.
    [86]Zhang Z, Achilefu S. Synthesis and evaluation of polyhydroxylated near-infrared carbocyanine molecular probes [J]. Organic Letters,2004,6(12):2067-2070.
    [87]Peng X J, Song F L,Lu E H, et al. Heptamethine cyanine dyes with a large stokes shift and strong fluorescence:a paradigm for excited-state intramolecular charge transfer [J]. Journal of the American Chemical Society,2005,127:4170-4171.
    [88]Tung Ching-Hsuan. Fluorescence eptide robes for in vivo diagnostic imaging [J]. Biopolymers,2004,76:391-403.
    [89]Zheng H, Zhu C Q, Li D H, et al. A novel method for the determination of total protein in human serum by near infrared fluorescence recovery [J]. Journal of Analytical Chemistry,2000,368:511-515.
    [90]Zheng H, Mao Y X, Li D H, et al. Dye-binding protein assay using a long-wave-absorbing cyanine probe [J]. Analytical Biochemistry,2003,318:86-90.
    [91]Welder F, Paul B, Nakazumi H, et al. Symmetric and asymmetric squarylium dyes as noncovalent protein labels:a study by fluorimetry and capillary electrophoresis [J]. Journal of Chromatography B,2003,793:93-105.
    [92]Metzker M L, Lu J, Gibbs R A. Electrophoretically uniform fluorescent dyes for automated DNA sequencing [J]. Science,1996,271:1420-1422.
    [93]姜楠,霍海如,姜廷良.蛋白质组检测技术进展[J].国外医学卫生学分册,2004,31(1)55-58.
    [94]Gharbi S, Gaffney P, Yang A, et al. Evaluation of 2D-differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system [J]. Cell Proteomics,2002,2:91-98.
    [95]Patonay G. Near-infrared fluorescence:an emerging new method [J]. Advanced Near-Infrared Meas,1993,1:133-138.
    [96]Yang C, Shimelis 0, Zhou X, et al. Handling and detection of 0.8 amol of a near-infrared cyanine dye by capillary electrophoresis with laser-induced fluorescence detection [J]. Journal of Chromatography A,2002,979:307-314.
    [97]Benson S C, Singh P, Glazer A N. Heterodimeric DNA-binding dyes designed for energy transfer:synthesis and spectroscopic properties [J]. Nucleic Acids Research,1993,21(24):5727-5735.
    [98]Jacobsen J P, Pedersen B, Hansen L F, et al. Site selective bis-intercalation of a homodimeric thiazole orange dye in DNA oligonucleotides [J]. Nucleic Acids Research,1995,23(5):753-760.
    [99]Sergio G, Wells K S, Johnson I D, et al. Direct visualization of individual DNA molecules by fluorescence microscopy:characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO [J]. Analytical Biochemistry,1997,249:44-53.
    [100]Skeidsvoll J, Ueland P M. Analysis of double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection using the monomeric dye SYBR Green Ⅰ [J]. Analytical Biochemistry,1995,231:359-365.
    [101]Liu T, Qia W J, Gritsenko M A, et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and Mass spectrometry [J]. Journal of Proteome Research,2005,4:2070-2080.
    [102]Patonay G, Salon J, Sowell J, et al. Noncovalent labeling of biomolecules with red and near-infrared dyes [J]. Molecules,2004,9:40-49.
    [103]Tung C H. Fluorescent peptide probes for in vivo diagnostic imaging [J]. Biopolymers,2004,76:391-403.
    [104]Patton W F, Beechem J M. Rainbow'send:the quest for multiplexed fluorescence quantitative analysis in proteomics [J]. Current Opinion in Chemical Biology,2001,5:63-69.
    [105]Patton W F. A thousand points of light:The application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics [J]. Electrophoresis,2000,21:1123-1144.
    [106]Miller I, Crawford J, Gianazza E. Protein stains for proteornic applications: Which, when, why? [J]. Proteomics,2006,6:5385-5408.
    [107]Karstens T, Kobs K. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements [J]. The Journal of Physical Chemi stry,1980,84:1871-1872.
    [108]Velapoldi R A, Tonnesen H H. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region [J]. Journal of Fluorescence,2004,14:465-472.
    [109]Song F L, Peng X J, Lu Erhu, et al. Syntheses, spectral properties and photostabilities of novel water-soluble near-infrared cyanine dyes [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,168:53-57.
    [110]Widengren J, Schwille P. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy [J]. The Journal of Physical Chemistry A,2000,104:6416-6428.
    [111]Veledo M T, Frutos M, Diez-Masa J C. Development of a method for quantitative analysis of the major whey proteins by capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection [J]. Journal of Separation Science,2005,28:935-940.
    [112]森德尔L R,柯克兰J J,格莱吉克J L,实用高效液相色谱法的建立(第二版),张玉奎译[M].北京:华文出版社,2001.
    [113]Tatarets A L, Fedyunyayeva I A, Dyubko T S, et al. Synthesis of water-soluble, ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels [J]. Analytica Chimica Acta,2006,570:214-223.
    [114]陈秀英,彭孝军.DNA分子荧光探针[J].染料与染色,2004,41(6):315-319.
    [115]Terpetschnig E, Szmacinski H, Ozinskas A, et al. Synthesis of squaraine-N-hydroxysuccinimide esters and their biological application as long-wavelength fluorescent labels [J]. Analytical Biochemistry,1994,217: 197-204.
    [116]Patonay G, Salon J, Sowell J, et al. Noncovalent labeling of biomolecules with Red and near-infrared dyes [J]. Molecules,2004,9:40-49.
    [117]Schuler B, Pannell L K. Specific Labeling of. Polypeptides at amino-terminal cysteine residues using Cy5-benzyl thioester [J]. Bioconjugate Chemistry,2002,13:1039-1043.
    [118]Song B, Zhang Q, Ma W H, et al. The synthesis and photostability of novel squarylium indocyanine dyes [J]. Dyes and Pigments,2009,82:396-400
    [119]王学杰.方酸菁染料的结构与电子性质的分子轨道法研究[J].计算机与应用化学,2003,20(1)125-128.
    [120]Chen X Y, Peng X J, Cui A J, et al. Photostabilities of novel heptamethine 3H-indolenine cyanine dyes with different N-substituents [J]. Journal of Photochemistry and Photobiology:A Chemistry,2006,181:79-85.
    [121]Qiao X Q, Wang Li, Ma J F, et al. High sensitivity analysis of water-soluble, cyanine dye labeled proteins by high-performance liquid chromatography with fluorescence detection [J]. Analytica Chimica Acta,2009,640:114-120.
    [122]Sevick-Muraca E M, Houston J P, Gurfinkel M. Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent [J]. Current Opinion in Chemical Biology,2002,6:642-650.
    [123]宋波,张茜,彭孝军,等.新型水溶性荧光标示剂吲哚方酸菁染料的合成及光谱性能[J].高等学校化学学报,2008,29(5):932-935.
    [124]陈秀英.新型3H吲哚荧光菁染料的合成与性能研究:(博士学位论文).大连:大连理工大学,2006.
    [125]Kanony C, Akerman B, Tuite E. Photobleaching of asymmetric cyanines used for fluorescence imaging of single DNA molecules [J]. Journal of the American Chemical Society,2001,123,7985-7995.
    [126]Kanofsky J R, Sima P D. Structural and environmental requirements for quenching of singlet oxygen by cyanine dyes [J]. Photochemistry and Photobiology,2000,71(4):361-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700