用户名: 密码: 验证码:
水泵水轮机“S”区内流机理及优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泵水轮机作为抽水蓄能电站的核心部件,是我国抽蓄电站国产化进程中的关键技术。在水泵水轮机的实际运行过程中发现机组并网时存在较大的不稳定问题,其主要原因就是机组的特性曲线呈现“S”形状,这种特性陆陆续续在多个电站反映出来,给电站的生产造成了很大的困难。本论文针对水泵水轮机的“S”特性问题,重点围绕现有机组“S”特性曲线的数值预测方法、“S”特性的形成机理和“S”特性曲线的水力优化设计三个方面开展了相应的研究工作,内容如下:
     (1)首先,“S”特性曲线上的工况点是由水轮机工况、水轮机制动工况和反水泵工况组成的,是典型的非设计工况,在这些工况点的流动是目前的双方程涡粘性湍流模型所不能准确求解的。本文借鉴了二阶矩模型的优点,在York等人的工作基础上,采用对显式代数应力模型EASM模型进行线性化处理的方法修改了标准k-ε模型,并对修改的模型进行了典型算例的实验验证,结果表明新模型可以更加准确地计算大曲率流动特征。
     (2)基于上述新模型,采用全三维全流道的湍流稳态计算方法对“S”特性曲线的工况点进行了仿真计算。计算结果表明仿真曲线与模型试验曲线吻合良好。进一步地对“S”特性曲线的典型工况点的内部流场进行了分析,初步解释了“S”特性曲线形成的机理为活动导叶出口和转轮进口之间的无叶区内“挡水环”的阻塞作用。
     (3)为从瞬态过程真实流动的角度进一步解释“S”特性曲线对瞬态过程不稳定特性的影响,基于动态滑移面法建立了机组飞逸过程的三维瞬态流动的数值模拟方法,并对某电站水泵水轮机真机的飞逸过程进行了仿真计算。仿真结果显示数值方法可以准确地预测飞逸过程的转速变化曲线。进一步对人为假设的水头条件下对飞逸过程进行了仿真计算,得到了转速的波动曲线,进一步的流场的分析揭示了转速的波动原因为无叶区的动态失速造成的。
     (4)从水力设计的角度出发,对“S”特性曲线的各个工况点的机组各部件的水力损失进行分析,得到转轮是导致水泵水轮机“S”特性的主要原因;进而对比了水泵水轮机“S”曲线典型工况点的环量分布规律,得到改进“S”特性方向在于提高转轮的过流能力。为了验证这一推论,首先通过数值模拟的方法研究了采用两不同导叶相对高度的转轮的特性曲线变化特征,验证了提高导叶高度的方法是可行的。在此基础上,对500m水头段的两个典型电站的水泵水轮机水力模型进行了设计和模型试验,并用试验结果验证了上述结论。
As the core technology in the localization process of pump storage power station, the design of pump turbine is the key issue. During the practical operating in several power stations, it was observed that severe unstable phenomenon is always occurring when synchronizing with the power grid, which have led to many difficulties in power production. The original cause is the S-shaped characteristic curve. Thus, focused on this problem, this thesis has carried out several researches including the development of numerical method to predict the S-shaped characteristic curve, explanation of formation mechanism of the S-shaped characteristic curve and the hydraulic design improvement. The arrangement of structure is described as follows:
     (1) First, the operating points located on the S-shaped characteristic curve which consists of turbine condition, turbine braking condition and reverse pump condition are far away from the best efficiency point (BEP). In this sense, the internal flow pattern in so complex that the available two-equation eddy-viscosity turbulence models can't solve the flow structure accurately. Hence, based on the work by York, an improved k-ε model was established by modifying the turbulent viscosity coefficient based on the linear treatment of second-order turbulence model EASM. Consequently, the improved model was validated by two typical cases with available experimental data.
     (2) Based on the new model, three dimensional steady flow simulations were carried out. The results show that the simulated curve agrees well with that obtained by model test. Further analysis on the internal flow of typical operating conditions was done. It can be concluded that the formation of S-shaped characteristic curve can be ascribed to the water ring which turns up in the vaneless space between runner and guide vanes and has a great blocking effect.
     (3) To investigate how the S-shaped characteristic curve affects the stability of transient processes in terms of transient unsteady flow, a systematic method based on the dynamic sliding mesh (DSM) method was proposed and applied to simulate the run-away process for a prototype pump turbine. The calculated rotating speed profile agrees well with the measured one. Again, another transient simulation was carried out with artificially assumed boundary conditions under which the machine is expected to be unstable. The post-processed results show that the oscillating rotating speed profile was reproduced and the analysis on the flow field suggested that the dynamic stall occurred in the vaneless space is responsible for this.
     (4) From the point view of hydraulic design, a hydraulic loss analysis was done to the operating points located on the S-shaped curve. The result shows that it is runner which leads to the formation of the S-shaped curve. Through comparison of circulation distribution between two different and typical operating points, it is concluded that the direction to eliminate the S-shaped curve is to increase the flow capacity of runner. Consequently, this strategy was validated by numerical results of two runners with different height of guide vanes. Based on the above methodology, two hydraulic models were designed with different heights of guide vanes for the same project. From the model test's results, it was again validated that increasing the flow capacity of runner is a good way to improve the instability of pump turbine.
引文
[1]周坚.天荒坪抽水蓄能电站发挥事故备用优势情况分析[J].华东电力,2009,37(4):2589-2593.
    [2]Ikeda K, Inagaki M, Niikura K, et al.700-m 400-MW Class Ultrahigh-head Pump Turbine[J]. Hitachi Review,2000,49(2):81-87.
    [3]瞿伦富,王琳.混流可逆式水泵-水轮机全工况压力脉动的研究[J].动力工程,1996,16(6):58-62.
    [4]常工.抽水蓄能技术的发展趋势[J].国际电力,1998(1):27-29.
    [5]Pettersen K, Nielsen T K, Billdal J T. An explanation to the steep speed-flow characteristics of RPTs[Z]. Stockholm:2004.
    [6]Shinhama H, Fukutomi J, Nakase Y, et al. study on pump turbine[J].日本机械学会论文集.B,1999,65(683).
    [7]易承勇.可逆式机组低水头运行特性分析及应对措施[J].水电站机电技术,2010(04):61-63.
    [8]孔令华.高水头水泵水轮机工况转换期瞬间异常声音分析[J].水电站机电技术,2004(6):12-14.
    [9]蔡军,周喜军,邓磊,等.江苏宜兴抽水蓄能电站3号机组过速试验异常水击现象的研究[J].水力发电,2009,35(2):76-79.
    [10]王以军,王小建,刘云鹏.沙河抽水蓄能电站号机上导摆度超标的分析与处理[J].水力发电,2007,33(9).
    [11]杨海学,吴小放,邓建峰.沙河抽水蓄能电站两台机组水泵工况跳机原因分析[J].水力发电,2007,33(9):73-75.
    [12]胡旭光.水泵水轮机不稳定运行的初步探讨[J].水电站机电技术,2001(2).
    [13]林福军,杨洪涛.天堂抽水蓄能电厂开机不成功原因分析及对策[J].水电自动化与大坝监测,2006,30(5):77-80.
    [14]Hasmatuchi V, Farhat M, Roth S, et al. Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME,2011,133(0511045).
    [15]端润生.混流式可逆机“S特性”的试验研究[J].水力发电,1985(06):33-38.
    [16]Hasmatuchi V, Farhat M, Maruzewski P, et al. Experimental investigation of a pump-turbine at off-design operation conditions[Z]. Brno:2009339-347.
    [17]陈德新,谢辉.低比速水泵水轮机“S”特性区的内部流动[J].水利学报,2000(2):76-78.
    [18]徐岚.水泵水轮机内部流动可视化与图像处理方法研究[D].保定:华北水利水电学院,2002.
    [19]V H, S R, F B, et al. High-speed flow visualization in a pump-turbine under off-design operating conditions[Z]. Timisoara:IOP Publishing,2010.
    [20]Bjarne J B, Sverre K D. Numerical computation of the pump turbine characteristics[Z]. Lausanne:2002.
    [21]王国玉,霍毅,张博,等.湍流模型在轴流泵性能预测中的应用与评价[J].北京理工大学学报.2009,29(4).
    [22]Spalart P R. Strategies for turbulence modelling and simulations [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW,2000,21(3):252-263.
    [23]Wilcox D C. Turbulence Modeling for CFD[M]. California:DCW Industries, Inc.La Canada,1998.
    [24]Menter F R, Kuntz M, Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model [J]. Turbulence, Heat and Mass Transfer,2003(4):1-8.
    [25]Cummings R M, Forsythe J R, Morton S A, et al. Computational challenges in high angle of attack flow prediction [J]. Progress in Aerospace Sciences,2003(39):369-384.
    [26]Yin J L, Liu J T, Wang L Q, et al. Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode[J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2010,53(12):3302-3309.
    [27]Wang L Q, Yin J L, Jiao L, et al. Numerical investigation on the " S " characteristics of a reduced pump turbine model [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011,54:1-8.
    [28]梁开洪,曹树良,陈炎,等.轴流泵叶轮内部流场大涡模拟及分析[J].流体机械,2009(11):9-14.
    [29]Spalart P R, Shur M. On the sensitization of turbulence models to rotation and curvature[J]. AEROSPACE SCIENCE AND TECHNOLOGY,1997,1(5):297-302.
    [30]Reif Pettersson B A, Durbin P A, Ooi A. Modeling rotational effects in eddy-viscosity closures[J]. Heat and Fluid Flow,1999,20:563-573.
    [31]William D Y, Walters D K, James H L. A simple and robust linear eddy-viscosity formulation for curved and rotating flows [J]. International Journal of Numerical Methods for Heat & Fluid Flow,2009,19(6):745-776.
    [32]Wylier E B, Streetor V L. Hydraulic Transients[M]. New York:McGraw-Hill BookCo,1967.
    [33]Nicolet C, Alligne S, Kawkabani B. Stability study of Francis pump-turbine at runaway[Z]. Brno:2009371-384.
    [34]Nicolet C. Unstable operation of Francis Pump turbine at runway:rigid and elastic water column oscilation modes[Z]. iguassu:IAHR,2008.
    [35]常近时.混流式水泵水轮机装置泵工况断电过渡过程的解析计算方法[J].水利学报,1991(11).
    [36]常近时,白朝平.高水头抽水蓄能电站复杂水力装置过渡过程的新计算方法[J].水力发电,1995(2):51-55.
    [37]梅祖彦,陈乃祥,张扬军,等.抽水蓄能电站中水力干扰下的过渡过程及其稳定问题的研究[J].水利学报,1996(10):68-74.
    [38]王林锁,索丽生,曹小红.抽水蓄能电站过渡过程调节控制计算模型研究[J].水电能源科学,2003,21(4):75-77.
    [39]杨琳,陈乃祥.水泵水轮机转轮全特性与蓄能电站过渡过程的相关性分析[J].清 华大学学报(自然科学版),2003,43(10):1424-1427.
    [40]陈世玉.阳江抽水蓄能电站水力过渡过程的分析[J].甘肃水利水电技术,2005,15(1):28-30.
    [41]刘洁颖.不同比转速可逆式机组特性曲线变化规律及其对过渡过程影响的研究[D].武汉大学,2005.
    [42]鲍海艳,杨建东,付亮.水电站功率调节过渡过程数值模拟[J].武汉大学学报(工学版),2009,42(1).
    [43]石卫兵,刘德祥,杨建东.白莲河抽水蓄能电站首台机组低扬程下水泵工况抽水断电水力过渡过程研究[J].水利与建筑工程学报,2009,7(3):129-131.
    [44]宋春华.深圳抽水蓄能电站水力过渡过程分析[J].广东水利水电,2008(4):31-34.
    [45]陈世玉.阳江抽水蓄能电站水力过渡过程的分析[J].甘肃水利水电技术,2005,15(1):28-30.
    [46]陈乃祥,徐岚,崔桂香,等.可逆转轮单通道流动大涡模拟[J].水力发电学报,2007,26(4).
    [47]王福军,张玲,黎耀军,等.轴流式水泵非定常湍流数值模拟的若干关键问题[J].机械工程学报,2008,44(8):73-77.
    [48]Nicolet, Francois A, Ruchonnet N, et al. Hydroacoustic Modeling of Rotor Stator Interaction in Francis Pump-Turbine[Z]. Barcelona:IAHR Int,2006.
    [49]Taguchi T, Umeda N, Tezuka K. SPLITTER RUNNER FOR PUMPED STORAGE POWER PLANT [Z]. Lausanne:2002.
    [50]Tani K, Okumura H. Performance Improvement of Pump-turbine for large Capacity pumped storage plant in USA[J]. Hitachi Review,2009,58(198-202).
    [51]Backman G. CFD Validation of Pressure Fluctuations in a Pump Turbine[D]. Lulea: Lulea University of technology,2008.
    [52]王乐勤,刘锦涛,梁成红,等.水泵水轮机水轮机制动区的流动特性[J].排灌机械工程学报,2011,29(1):1-5.
    [53]Li Z F, Wu D Z, Wang L Q, et al. Numerical Simulation of the Transient Flow in a Centrifugal Pump During Starting Period[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME,2010,132(0811028).
    [54]Li Z F, Wu D Z, Wang L Q. Transient flow around an impulsively started cylinder using a dynamic mesh method[J]. International Journal of Computational Fluid Dynamics, 2007,21(3):127-135.
    [55]李志峰,吴大转,戴维平,等.离心泵启动过程瞬态特性与流动的实验研究[J].工程热物理学报,2010(12):2019-2022.
    [56]Bakker A, Laroche R D, Wang M H, et al. Sliding Mesh Simulation of Laminar Flow in Stirred Reactors[J]. Chemical Engineering Research and Design,1997,75(1):42-44.
    [57]Li J W, Liu S H, Zhou D Q, et al.3D unsteady turbulent simulation of the runaway transients of the Francis turbine[J]. Journal of hydroelectric engineering,2009,28(1): 178-182.
    [58]李金伟,刘树红,吴玉林,等.混流式水轮机飞逸过渡过程的试验与数值模拟[J].大电机技术,2010(06):44-49.
    [59]Luo J Y, Issa R I, Gosman A D. Prediction of Impeller-Induced Flows in Mixing Vessels Using Multiple Frames of Reference[Z]. UK:Rugby:1994549-556.
    [60]J Y, J K, U S, et al. compressible simulation of rotor-stator interaction in a pump turbine[Z]. brno:2009261-270.
    [61]Song C C S. Compressibility Boundary Layer Theory And its significance in computational hydrodynamics[J]. Journal of Hydrodynamics,1996(2):92-101.
    [62]沈剑初,周杰.响水涧抽水蓄能电站水泵水轮机主要参数复核与优化[C].2009.
    [63]P N, M S, P B. Modern Design of Pump-turbines [Z]. IEEE,20091-7.
    [64]周志宏,刘扬松,彭兴黔.离心泵叶轮轴面流道设计的一种新方法[J].江汉石油学院学报,1995(04):75-79.
    [65]杨琳,陈乃祥,樊红刚.水泵水轮机全流道双向流动三维数值模拟与性能预估[J].工程力学,2006,23(5):157-162.
    [66]李凤超,樊红刚,陈乃祥.水泵水轮机双向流动控制优化设计[J].水力发电学报,2010(01):223-228.
    [67]Wu J C, Shimmei K, Tani K, et al. CFD-based design optimization for hydro turbines[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2007,129(2):159-168.
    [68]卢金铃,席光,祁大同.反问题与神经网络相结合的混流泵叶片优化设计[J].西安交通大学学报,2004(03):308-312.
    [69]Goto A, Zangeneh M, Goto A, et al. Hydrodynamic design of pump diffuser using inverse design method and CFD; Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME; JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME,2002,124; 124(2; 2):319-329.
    [70]Zangeneh M, Goto A, Harada H. On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME,1998,120(4):723-735.
    [71]Zangeneh M, Goto A, Harada H. On the role of three-dimensional inverse design methods in turbomachinery shape optimization[J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE,1999,213(1):27-42.
    [72]Westra R W. Inverse-design and optimization methods for centrifugal pump impellers[D]. Enschede,The Netherlands:University of Twente,2008.
    [73]Bonaiuti D, Zangeneh M, Aartojarvi R, et al. Parametric Design of a Waterjet Pump by Means of Inverse Design, CFD Calculations and Experimental Analyses[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME,2010,132(0311043).
    [74]Okamoto H, Goto A, Furukawa M. Design of a propeller fan using 3-D Inverse Design Method and CFD for high efficiency and low aerodynamic noise[C]. Vail, CO, United states:American Society of Mechanical Engineers,2009.
    [75]Daneshkah K, Zangeneh M. Parametric design of a Francis turbine runner by means of a three-dimensional inverse design method[C]. Timisoara, Romania:Institute of Physics Publishing,2010.
    [76]郑建兴,张俊芝,曾再祥,等.黑麇峰蓄能电站水泵水轮机模型验收试验及性能分析[J].水力发电,2010(07):63-65.
    [77]熊涛.宜兴抽水蓄能电站水泵水轮机性能与结构特点[J].水电站机电技术,2010(05):13-15.
    [78]何少润.导叶不同步装置在天荒坪抽水蓄能电站的应用[J].水力发电学报,2002(3):88-99.
    [79]刘杰.可逆式水泵水轮机技术及在中国的经验[J].水电站机电技术,2008,31(1):4-9.
    [80]李莉萍.水泵—水轮机模型试验研究与实践[D].华中科技大学,2006.
    [81]手塜光太郎,梗本保之,久保田乔一正,等.长短叶片新型转轮在抽水蓄能电站中开发和应用[C].2011.
    [82]Gatski T B, Speziale C G. On explicit algebraic stress models for complex turbulent flows[J]. Jounal of fluid mechanics,1993,254:59-78.
    [83]Girimaji S S. A Galilean invariant explicit algebraic Reynolds stress model for turbulent curved flows[J]. PHYSICS OF FLUIDS,1997,9(4):1067-1077.
    [84]Wallin S, Johansson A V. Modelling streamline curvature effects in explicit algebraic Reynolds stress turbulence models[J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW,2002,23(5):721-730.
    [85]Gatski T B, Jongen T. Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows[J]. PROGRESS IN AEROSPACE SCIENCES,2000, 36(8):655-682.
    [86]Wang X, Thangam S. Development and application of an anisotropic two-equation model for flows with swirl and curvature[C]. Honolulu, HI, United states:American Society of Mechanical Engineers,2003.
    [87]Rumsey C L, Gatski T B, Anderson W K, et al. Isolating curvature effects in computing wall-bounded turbulent flows[J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW,2001,22(6):573-582.
    [88]Monson B J, Seegmiller H L, Mcconnaughey P K. Comparison of LDV measurements and Navier-Stokes solutions in a two-dimensional 180-degree turn-around duct[J]. AIAA,1989:89-275.
    [89]Wu Y L, Liu S H, Wu X J, et al. turbulent flow computation through a model Francis turbine and its performance prediction[Z]. Timisoara:Engineering Conference Online, 20108.
    [90]Kim W J, Patel V C. An experimental study of boundary-layer flow in a curved rectangular duct[Z]. Washing, DC:ASME Fluids Eng. DIV.,199313-28.
    [91]Yakinthos K, Vlahostergios Z, Goulas A. Modeling the flow in a 90o rectangular duct using one Reynolds-stress and two eddy viscosity models[J]. International Journal of Heat and Fluid Flow,2008,29:35-47.
    [92]Shenyang Research Institute Of Pum P. handbook of vane pump[M]. Beijing:China Machine Press,1983.
    [93]Ullum U, Wright J, Dayi O, et al. Prediction of rotating stall within an impeller of a centrifugal pump based on spectral analysis of pressure and velocity data[J]. Journal of Physics:Conference Series,2006(52):36-45.
    [94]Pedersen N, Larsen P S, Jacobsen C B. Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I:Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements[J]. Journal of Fluids Engineering,2003,125: 61-72.
    [95]Rikke B K, Christian J B. Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part II:Large Eddy Simulations[J]. Journal of Fluids Engineering, 2003.125:73-83.
    [96]Sinha M, Pinarbasi A, Katz J. The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump[J]. Journal of Fluids Engineering,2001,123:490-499.
    [97]Wu D Z, Xu B J, Li Z F, et al. Analysis of internal clearance flow and leakage loss in the multi-stage centrifugal pump[J]. Journal of Zhejiang University (engineering science), 2011, submitted.
    [98]刘德民.基于空化计算的混流式水轮机叶道涡和尾水涡数值分析[D].北京:清华大学,2011.
    [99]王乐勤,刘锦涛,梁成红,等.水泵水轮机水轮机制动区的流动特性[J].排灌机械工程学报,2011(01):1-5.
    [100]Emmons, W. H, Kronauer, et al. A survey of stall propagation—experiment and theory [J]. Trans ASME, J. Basic Engng,1959,81(409-416).
    [101]Arpad, Fay A. Does rotating stall occur in Francis runners causing fluctuations?[Z]. Brno:2009.
    [102]Sano T, Yoshida Y, Tsujimoto Y, et al. Numerical study of rotating stall in a pump vaned diffuser[J]. Trans. ASME,2002,124:363-370.
    [103]王福军.CFD在水力机械湍流分析与性能预测中的应用[J].中国农业大学学报,2005(04):75-80.
    [104]张兰金,纪兴英,常近时.水泵水轮机泵工况转轮流场分析[J].农业机械学报,2008,39(4):69-72.
    [105]徐宇,唐学林,吴玉林.水泵水轮机转轮内水泵工况紊流分析[J].水力发电学报,2000(3):75-83.
    [106]周晓泉,瞿伦富,吴玉林.水轮机蜗壳内部流动的数值模拟[J].东方电机,2001(01):7-13.
    [107]吴墒锋,吴玉林,刘树红.轴流转桨式水轮机性能预测及运行综合特性曲线绘制[J].水力发电学报,2008(04):121-125.
    [108]吴志旺.基于环量分布的高比转速混流泵设计、数值模拟及试验研究[D].江苏大学,2009.
    [109]Zangeneh M, Goto A, Harada H. On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers[J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME,1998,120(4):723-735.
    [110]廉玲军.混流式水轮机转轮设计方法的研究[D].西华大学,2009.
    [111]赵锦屏,朱俊华.轴流式泵设计中环量分布规律的分析[J].华中工学院学报,1982(02):93-100.
    [112]何柳,单鹏.基于环量分布的轴流双级风扇三维数值优化[J].航空动力学报,2010(12):2660-2672.
    [113]姜晓东,戴韧.离心压气机叶轮的“可控涡”设计及其CFD比较分析[J].工程热物理学报,2005(05):782-784.
    [114]袁寿其,陈次昌.离心泵叶轮和泵体形状对扬程曲线驼峰的影响[J].流体工程,1993,21(6):12-17.
    [115]王焕茂.混流式水泵水轮机驼峰区数值模拟及试验研究[D].华中科技大学,2009.
    [116]刘德有,孙华平,游光华,等.含MGV装置的可逆机组过渡过程计算数学模型[J].河海大学学报(自然科学版),2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700