用户名: 密码: 验证码:
水泵水轮机“S”特性预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泵水轮机运行工况复杂多变,作为水泵水轮机瞬态过渡过程中最重要的环节,水泵水轮机“S”特性是制约水泵水轮机安全、稳定运行的关键因素。严重的水泵水轮机“S”特性会导致机组不能由空载直接带负荷,造成机组水轮机工况并网启动困难;“S”特性较为明显的水泵水轮机,在甩负荷后会出现水轮机空载运行不稳定现象。水泵水轮机“S”特性研究对我国抽水蓄能技术的发展意义显著。
     根据水力机械实验原理,提出了一种基于CFD的全新水泵水轮机“S”特性预测方法。在“定转速、定水头”的初始条件下对水泵水轮机“S”特性进行数值预测;利用数值计算水头反算求解单位转速,获得“S”特性单位转速与单位流量的对应关系;通过水泵水轮机“S”特性计算结果与实验结果的比较,验证预测方法的可行性。
     针对水泵水轮机“S”特性定“转速、定水头预测方法”的不足,提出了水泵水轮机“S”特性单位转速和单位流量的修正公式。并应用数值计算验证数学修正的有效性和可行性,从“S”特性修正验证结果与实验结果的比较来看,修正公式可以较大程度的纠正数值预测方法的误差,尤其是对于低转速大流量计算工况可以起到极好的修正作用,这对于水泵水轮机过渡过程“四象限”全特性的预测有着重要意义。
     应用“水泵水轮机‘S’特性预测方法”,计算了两种翼型结构的“空间曲面活动导叶”对水泵水轮机“S”特性的作用,通过两种翼型空间曲面导叶与常规导叶“S”特性修正结果比较,确认“空间曲面活动导叶”对水泵水轮机“S”特性作用显著,其中“空间曲面活动导叶”翼型NACA_1可以改善甚至消除水泵水轮机“S”特性。在两种翼型空间曲面导叶“S”特性计算结果基础上浅析了水泵水轮机“S”特性的形成机理。
     在“定转速、定水头”的初始条件下,采用SST k-ω模型对边界层网格细化的水泵水轮机启动工况进行数值计算,以数值计算水头反映水轮机启动工况单位转速与单位流量的关系,预测水泵水轮机“S”特性。在此基础上针对计算方法存在的不足提出了数值预测结果的修正公式,并应用数值计算验证了修正结果,通过修正验证结果与试验结果的比较可以看出:修正计算结果与模型实验结果有着良好的近似关系,可以很好的反映水泵水轮机“S”特性。从而得到了一种较为准确的低比转速水泵水轮机“S”特性的预测方法。应用“水泵水轮机‘S’特性预测方法”计算了两种翼型空间曲面导叶对水泵水轮机‘S’特性的影响,确认“空间曲面活动导叶”翼型NACA_1可以显著改善水泵水轮机“S”特性。在此基础上浅析了水泵水轮机“S”特性的形成机理。
As the operation conditions of pump turbine are very complicated and various, the "S" characters of pump turbine are the most important part in the transient process of pump turbine. It is the key factor to restrict pump turbine to operate safely and stably. The serious "S" characters of pump turbine may result in the failure from no load of units to on load directly, so it is hard to connect the grid with start-up in the turbine mode. If "S" characters of pump-turbine are obvious, no load condition in the turbine mode will be unstable after the load rejection. Therefore, to research the "S" characters of pump-turbine are significant to develop the pumped storage.
     According to the test principle of hydraulic machinery, it is proposed that a new prediction method of "S" characters of pump-turbine is formed based on CFD Numerical prediction of "S" characters of pump-turbine is performed at the initial conditions of constant speed and constant head. Then unit speed is calculated by numerical calculated head and the corresponding relationship of unit speed and unit discharge for "S" characters is obtained. Comparing the results between the calculation and the "S" character of pump turbine, it is proved that the new prediction method is feasible.
     However, there is deficiency to predict "S" characters of pump turbine with above predicted method at constant speed and constant head. A rectification formula for unit speed and unit discharge at "S" character zone is proposed. It is proved that mathematical rectification is effective and feasible by the way of numerical calculation. From the comparative results between modified "S" character and test, it is shown that the rectification formula can significantly reduce the error of numerical prediction; especially it can play a great role to operate condition at low speed and large discharge. It is very significant to predict the "four quadrants" character at the transient process of pump turbine.
     Based on the "S" character prediction method of pump turbine, two profile structures of guide vane of space curved surface are computed to study their effects to "S" characters of pump turbine. Comparing with corrected results between guide vane of space curved surface for two profile structures and convention guide vane, it is confirmed that guide vane of space curved surface plays a significant role to improve "S" characters of pump turbine. The guide vane of space curved surface with profile structure NACA_1can improve and even eliminate the "S" character of pump turbine. The paper presents the formative principle of "S" character on the basis of "S" characters computer results by two profile structures of guide vane of space curved surface.
     By the initial condition of constant speed and constant head, numerical calculation of start-up condition of pump turbine is performed by boundary layer mesh refinement with SST k-w model. The relation of unit speed and unit flow at start-up operation condition is reflected by numerical head, and then the "S" characters of pump turbine can be predicted. As the deficiency of computation method, the rectification formula of numerical prediction method is proposed and it has been proved by numerical computation. According to the comparison of the correct results with test results, both of them have good approximation relationships and the former can reflect the "S" characters of pump turbine well. Thus, it is obtained that the accurate prediction method is used to predict "S" characters of low specific speed pump turbine. It is confirmed that profile NACA_1of guide vane of space curved surface can remarkably improve the "S" characters by calculating two profile structures of guide vane of space curved surface with the prediction method of "S" characters of pump turbine. The formative principle of "S" characters is discussed.
引文
[1].晏志勇等.全国水力资源复查工作概述.水力发电,2006(1):8-11+25.
    [2].李菊根与史立山.我国水力资源概况.水力发电,2006(1):3-7.
    [3].晏志勇.我国水电建设现状及未来.水利水电施工,2010(2):1-4.
    [4].全国七大流域规划概要丛书.1998:中国水利水电出版社.
    [5].中国水力发电工程.2000:中国电力出版社.
    [6].李如成.我国水力资源分布及开发利用情况.贵州水力发电,2006(2):1-3.
    [7].李世东.陈萍,刘一兵,中国水力资源状况及开发前景.水力发电,2001(10):33-37.
    [8].周彤.中国水力发电事业的起源及其历史启示.四川水力发电,1997(3):93-95.
    [9].晏志勇.贯彻落实科学发展观加快我国水电开发.水力发电,2010(10):1-2+44.
    [10].粟运华.新安江水电站综合利用效益调查综述.水力发电,1989(11):21-24+45.
    [11].马一太与邢英丽.我国水力发电的现状和前景.能源工程,2003(4):1-4.
    [12].弋舟.矗立在水中的丰碑——刘家峡水电站.发展,2009(10):41-44.
    [13].梁维燕.中国大型水电机组制造工业的成就.水力发电工程学会,2009.
    [14].黄伯明与刘克煌.葛洲坝176MW巨型水轮机运行成功的初步分析.长江科学院院报,1993(2):1-8+15.
    [15].季昌化.葛洲坝水利工程在我国水利水电建设史上的地位和意义.中国三峡,2011(11):24-29.
    [16].汪恕诚.历史跨越 世纪辉煌——祝贺中国水电装机容量突破1亿kW.水力发电,2004(12):1-2.
    [17].陈明泉与刘景旺.三峡工程装机进度研究.人民长江,2009(2):22-25+28.
    [18].沈国舫.三峡工程对生态和环境的影响.科学中国人,2010(B08):48-53.
    [19].柳百成.掌握核心技术增强自主创新能力.科技成果纵横,2005(6):31-32.
    [20].孔德安,刘一兵,杨华.“十五”期间水电前期工作取得重要成就.水力发电,2006(1):68-69.
    [21].钱钢粮与严秉忠.中国水力资源及主要特大型水电站规划设想.西北水电,2008(3):4-8.
    [22].李淑华与王继业.中国水电发展概况.水电站机电技术,2009(3):105-107.
    [23].钟波.中国水电装机容量突破二亿千瓦跃居世界第一.广西电业,2010(8):4.
    [24].周云虎.中国的水电资源开发现状及前景.红水河,2009(1):1-8.
    [25].张国宝.科学发展:电力工业赢得挑战的根本路径.求是,2009(7):25-27.
    [26].国家发展改革委制定《可再生能源发展“十一五”规划》.节能,2008(4):29.
    [27].晏志勇与翟国寿.我国抽水蓄能电站发展历程及前景展望.水力发电,2004(12):73-76.
    [28].中国水力发电年鉴.2011,北京:中国电力出版社.
    [29].梅祖彦.抽水蓄能发电技术.2000,北京:机械工业出版社.
    [30].陈宗器.我国亟待兴建抽水蓄能电站.电器工业,2002(5):7-9.
    [31].黄国祯.广蓄电厂在电网运行中的作用.广东电力,1995(2):40-43.
    [32].何世恩,董新洲.大规模风电机组脱网原因分析及对策.电力系统保护与控制,2012(1):131-137+144.
    [33].郭需,王春华,高培生.长岭地区风电场风机脱网事故分析及对策.吉林电力,2012(1):38-40.
    [34].张琳与仇卫东.大规模风电脱网事故的几点思考.电力建设,2012(3):11-14.
    [35].寇兴魁.酒泉风电脱网事故原因及应对措施.上海电力学院学报,2011(4):323-326.
    [36].宋豪等.抽水蓄能电站对山东电网风电接纳能力的影响.山东大学学报(工学版),2011(5):138-142.
    [37].·胡泽春,丁华杰,孔涛.风电—抽水蓄能联合日运行优化调度模型.电力系统自动化,2012(2):36-41+57.
    [38].谭志忠等.风电-抽水蓄能联合系统的优化运行模型.河海大学学报(自然科学版),2008(1):58-62.
    [39].刘德有,谭志忠,王丰.风电一抽水蓄能联合运行系统的可行性研究.上海电力,2007(1):39-42.
    [40].高丹等.风电-抽水蓄能系统优化运行建模与河北南网案例分析.现代电力,2011(3):57-61.
    [41].李瑞师.抽水蓄能电站与常规水电、火电联合运行效益分析.水电能源科学,2005(4):76-77+88-94.
    [42].梅祖彦.抽水蓄能技术.1988,北京:机械工业出版社.
    [43].张滇生等.日本抽水蓄能电站在电网中的作用研究.电力技术,2010(1):15-19.
    [44].D. Hayes日本重视抽水蓄能电站建设.Water Power and Dam Construction,2002(11).
    [45].吴世东,蒋杏芬.日本抽水蓄能电站发展经验对华东电网的借鉴作用.水力发电,2011(12):5-7+21.
    [46].肖贡元.日本抽水蓄能电站技术的新进展.水利水电科技进展,2003(1):61-65.
    [47].李世东.水电比重的的电力系统建抽水蓄能的必要性.水力发电, 2002(11):5-8.
    [48].K.Tezuka,Y.Enomoto, N.Umeda. Development and Application of New Type Runner with Splitter Blades to Pumped Storage Power Plants, Proc.8th Asian International Conference on Fluid Machinery-Yichang,2005.
    [49].K.Ikeda, M.Inagaki, K.Niikura, K.Oshima.700m 400MW Class Ultrahigh-Head Pump Turbine. Hitachi Review,2000.Vol.49(2):p.81-87.
    [50].M.Kiyoshi, S.Kaneo, T.Kotaro. Refurishment of Existing Pump-Turbines in Aging Pumped Storage Power Plants. Toshiba Review,2002.Vol.57(9):p.58-61.
    [51].T.Taguchi, N.Umeda, K.Tezuka,Y.Enomoto, K.Matsumoto. Splitter Runner for Pumped Storage Power Plant. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems,2002.
    [52].R.R. Miller, M. Winters抽水蓄能在支持美国可再生能源目标中的发展机遇.水利水电快报,2011(7):P13-14+21.
    [53].Kepler, L.James, Jenkins, W.Thomas. Case Study for the Upgrade and Rehabilitation of a Pumped Storage Installation Muddy Run Powerhouse, Proceedings of the International Conference on Hydropower-Waterpower,1997, Vol.3.
    [54].S.C.Light, E.M.White.美国拉孔山抽水蓄能电站的改造.水利水电快报,2002(21):9-10.
    [55].盛树仁,宝泉、惠州、白莲河抽水蓄能电站机组统一招标技术引进,抽水蓄能电站工程建设文集2005:276-278.
    [56].贺建华,尹国军,陶喜群.东电抽水蓄能机组技术引进消化吸收回顾.东方电机,2009(6):1-5.
    [57].戴庆忠.日本抽水畜能机组技术发展近况.东方电气评论,2008.22(4):2-11.
    [58].新仓和夫,佐藤让之良.日立水泵水轮机的技术动向.水利水电技术,2001(5):64-66.
    [59]黄萍.水轮机长短叶片转轮丛本原理及应用现状.调峰调频技术,2011.2(4):43-49.
    [60].Yoshida, Minoru. Okutataragi Pumped Storage Power Station. International Water Power and Dam Construction,1975.Vol 27(7).
    [61].K.Kubota, S.Watanabe, Y.Shindo, K.Tezuka. Advantages of Splitter Runner Applied to Ultra High-Head and Large-Capacity Pump-Turbines.23rd IAHR Symposium,2006.
    [62].Y.Nishiwaki. A Proposal to Realize Sustainable Development of Large Hydropower Project, EIT-JSCE International Symposium,2008.
    [63].K.Ikeda, S.Watanabe, K.Tezuka, K.Mastsumoto, H.Komiya. Study of Ultra High Head Pump-Turbine for Wide Operating Range "Performance Evaluation of Splitter Runner", Proc, Annual Conference of Power and Energy Society, The Institute of Electrical Engineers ofJapan,1999.
    [64].K.Miyagawa, H.Matsushita. Effect of Runner with Splitter Blade for Francis Turbine Performance Improvement, Turbomachinery,1999.Vol.27(6).
    [65].Fujiki, Terasaki, Miyagawa, Iwasaki. Development of Super High Head and Large Capacity Pump-Turbine, Mitsubishi Heavy Industries Technical Review,1992.Vol29(2).
    [66].郭海峰.交流励磁可变速抽水蓄能机组技术及其应用分析.水电站机电技术,2011.Vo134(2):1-4.
    [67].沈宏,张凯.抽水蓄能发电系统中的新技术.电网与水力发电进展,2008(5):66-68.
    [68].W.B.Gish, An Adjustable Speed Synchronous Machine for Hydrelectic Power Application. IEEE.1981,100(5):2171-2175.
    [69].Tsutomu Michgami. The Improvement of Power System Stability of An Adjustable-Speed Pumped-Storage Generator/Motor. T.IEE,1994,114-B(2):33-38.
    [70].姜茜,武杰.国外公司抽水蓄能机组技术评述.东方电机,2004(2):44-54.
    [71].程云山.水泵水轮机“S”特性区危害及解决对策.水力发电,2008(6):第70-73页.
    [72].游光华,孔令华,刘德有.天荒坪抽水蓄能电站水泵水轮机“S”形特性及其对策[J].水力发电学报,2006,25(6):136-139.
    [73].徐广文,郑源,周晓艳.水泵水轮机“S”特性对机组水头低时发电影响及对策分析[J].西北水力发电,2007,23(2):54-58.
    [74].游光华.天荒坪机组甩负荷实验压力钢管压力上升分析.水电站机电技术,2002(2):第76-78页.
    [75].李成军与孙洁民.抽水蓄能电站过渡过程实测成果分析.水力机械信息,2010(11).
    [76].C.S. MARTIN, HORLACHER H.. Conversion of Pump-Turbine Characteristics at Zero Flow, Locked Rotor Position and Runaway Condition. Proceedings of 15th IAHR Symposium, Belgrade,1990.
    [77].C.S. MARTIN. Instability of Pump-Turbine with S-Shaped Characters. Proceedings of 20th IAHR Symposium, Charlotte,2000.
    [78].K. Pettersen, T. K. Nielsen, An Explanation to the Steep Speed-Flow Characteristics of RPTs. Proceedings of 22nd IAHR Symposium, Stockholm,2004.
    [79].邵卫云.含导叶不同步装置的水泵水轮机全特性的内特性解析[J].水力发电学报,2007,26(6):116-119.
    [80].陈德新,谢辉.低比速水泵水轮机“S”特性区的内部流动[J].水利学报,2001,32(2):76-79.
    [81].徐岚.水泵水轮机内部流动可视化与图像处理方法研究[D].保定:华北水利水电学院,2002.
    [82].V. Hasmatuchi, et al. High-Speed Flow Visualization in a Pump-Turbine under Off-Design Operating Conditions. Timisoara:IOP Publishing,2010.
    [83].V. Hasmatuchi, et al. Experimental Investigation of a Pump-Turbine at Off-Design Operating Conditions. Brno:2009.
    [84].B.Borresen, S. D. Knutsen. Numerical computation of the Pump Turbine Characteristics. Proceedings of 21st IAHR Symposium, Lausanne,2002.
    [85].张兰金,王正伟,常近时.混流式水泵水轮机全特性曲线S形区流动特性[J].农业机械学报,2001,42(1):39-43.
    [86].Yin J. L., Liu J. T. Wang L. Q.. Performance Perdiction and Flow Analysis in the Vaned Distributor of a Pump Turbine under Low Flow Rate in Pump Mode. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,2010,53(12):3302-3309.
    [87].H. Grein, K. M. L. Baumann. Commissioning Problems of a Large Pump Turbine. Water Power and Dam Construction.1975.12:457.
    [88]. H. Grein, K. M. L. Baumann. Hydraulic torque on misaligned guide vanes. Water Power and Dam Construction,1976.
    [89]. D. klemm. Stabilizing the Characteristics of a Pump Turbine in the Range between Turbine Part Load and Reverse Pump Operation. Voith Research and Construction,1982,28e:2-8.
    [90].孙洁民,朱玉祥,韩增祥.大荒坪抽水蓄能电站1号机低水头空载稳定性的改善.水力发电,2001,(6):60-63.
    [91].何少润.导叶非步装置在天荒坪抽水蓄能电站中的应用.水力发电学报,2002,(3):88-100.
    [92].Troskolanski Adem Tadeusz and Lazarkiewicz Stephan. Kreiselpumpen:Berechnugn Und Konstruktion. Birkhauser Press,1976.
    [93].罗惕乾,程兆雪,谢永曜 流体力学.机械工业出版社,1999.
    [94].L.普朗特著.郭永怀,陆士嘉译.流体力学概论.科学出版社,北京,1981.
    [95].B.E. Launder, D. B. Spalding. Lectures in mathematical Models of Turbulence. Academic Press, London,1972.
    [96]. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California, 1998.
    [97]. LIU Demin, LIU Shuhong, WU Yulin. LES numerical simulation of cavitation bubble shedding on ALE 25 ALE 15 hydrofoils[J].Journal of Hydrodynamics, Ser. B,2009, 21(6):807-813.
    [98].戴会超,槐文信,吴玉林,等.水利水电工程水流精细模拟理论与应用[M].科学出版社,2006.
    [99]. PENG Yucheng, CHEN Xiyang. Numerical study of cavitation on the surface of the guide van in three gorges hydropower unit[J].Journal of Hydrodynamics, Ser. B,2010, 22(5):703-708.
    [100]. F. R. Menter. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA-93-2906 1993.
    [101]. F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal,1994,32(8):1598-1605
    [102]. L. Kleiser, T.A. Zang. Numerical Simulation of Transition in Wall-Bounded Shear Flows. Annual Review Fluid Mech.,1991,23:495-537.
    [103]. F. R. Menter, M. Kuntz, R. Langtry. Ten Years of Industrial Experience with the SST Turbulence Model, Turbulence, Heat and Mass Transfer 4,2003.
    [104]. F. R. Menter. Review of the Shear-Stress Transport Turbulence Experience from an Industrial Perspective, International Journal of Computational Fluid Dynamics, 2009,Vol.23(4):305-316.
    [105]. E. Laurien, L. Kleiser, Numerical Simulation of Boundary-Layer Transition and Transition Control. Journal of Fluid Mech.1989,199:403-440.
    [106]. ANSYS CFX Release 12 Documentation.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700