用户名: 密码: 验证码:
吸附材料的制备及其对重金属离子和染料吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,近代工业也取得了长足的发展,而由此引发的环境问题也变的日益严重。尤其是重金属和有机染料的污染引起了人们的广泛关注,这是由于重金属离子不能够分解,在生物体内易累积,再通过食物链进入到人体中,会危害人类的健康。由于有机染料废水中含有大量有毒的有机残留物、酸、碱及无机物而毒害环境,其中有些染料中的对二胺联苯类的有毒化学物质可能会引发癌症和诱导有机突变,有机染料废水排放到水体中不仅会影响水体的美观,而且会降低阳光的透射率从而导致光合作用的减少。因此,能够有效地去除重金属离子和染料变得非常有必要。
     油页岩又称为干酪根,是分布在岩石中的一种沉积岩,由碳氢有机化合物构成的固体物质。油页岩被认为是世界上最大的能源之一。近年来,由于石油价格的上升,油页岩被看作是石油的替代能源。然而,在油页岩的燃烧过程中会产生大量的副产品油页岩灰渣,这些灰渣会产生严重的环境问题。因此,非常有必要对灰渣进行妥善处理和利用。目前,一些研究人员致力于使用石油页岩灰作为一种低成本且有效的吸附剂材料来去除废水中的重金属离子。
     本文以油页岩灰渣作为原料成功地合成了Na-A沸石,并以合成的沸石作为吸附剂去除水溶液中的重金属离子和有机染料;还以油页岩灰渣中的铝作为铝源,成功地制备了疏水的氧化铝气凝胶。这些工作为油页岩灰渣的综合利用提供了新的方向,具有很大的理论和现实意义。本论文主要进行了以下几方面的工作:
     1.以油页岩灰渣为原料成功的制备了Na-A沸石,并对合成的沸石中NaOH/OSA的质量比进行了探索和优化,确定了NaOH/OSA最佳质量比的比值为1.6。并对合成的产品进行了表征,合成的沸石具有立方体结构,平均粒径在2μm左右,由孔径分析表明合成的沸石属于介孔材料,合成沸石的比表面积比油页岩灰渣提高一倍,由此表明此沸石具有作为高效吸附材料的潜力。
     2.以合成的Na-A沸石与油页岩灰渣去除水溶液中的重金属离子Cu2+,探讨了吸附剂的浓度及溶液的pH值对吸附的影响,同时也研究了吸附等温线、动力学和热力学,实验结果表明:合成Na-A沸石在去除Cu2+离子溶液时,pH值在5-6最佳;吸附等温线研究表明吸附的过程符合Langmuir吸附等温线,Na-A沸石吸附效果远高于油页岩灰渣吸附效果,Na-A沸石对Cu2+最大吸附量为156.7mg/g,油页岩灰渣的仅为38.9mg/g;动力学结果表明吸附过程符合拟二级动力学过程;热力学数据分析表明ΔG值为负, Δ H值为正,表明吸附过程为自发的吸热过程。
     3.以合成的Na-A沸石作为吸附剂去除水溶液中的亚甲基蓝和刚果红,研究了影响吸附的各种因素。通过对吸附等温线的拟合,发现吸附过程符合Langmuir吸附等温方程,计算得到了沸石对亚甲基蓝和刚果红理论的最大吸附量分别为18.73mg/g和31.05mg/g。对实验数据进行拟一级动力学方程和拟二级动力学方程拟合后,计算得到各种参数及相关系数。结果表明:吸附的过程倾向于符合拟二级动力学方程。
     4.以油页岩灰渣中的铝作为铝源成功地制备了疏水的氧化铝气凝胶。使用了三甲氧基甲基硅烷(MTMS)和正硅酸乙酯(TEOS)作为改性剂对气凝胶进行疏水改性,且对改性后的性质进行了研究。与未改性前相比,使用MTMS和TEOS改性后的接触角分别为54°和110°。此性能利于其作为吸附剂载体及吸附剂在水处理方面的应用。MTMS及TEOS改性后的气凝胶作为吸附剂去除水溶液中的亚甲基蓝吸附量分别达到了22.36mg/g和24.31mg/g。在去除废水方面有一定应用的潜力。
     5.本文还合成了磁性壳聚糖复合材料,并研究了该材料对重金属离子Cu2+和Pb2+的吸附性能,对于Cu2+和Pb2+去除的最佳pH值分别为5.0和6.0,符合Langmuir吸附等温线,最大吸附量分别为64.35mg/g和224.21mg/g。动力学符合拟二级动力学过程,热力学过程属于放热过程。
With the rapid development of economy, the modern industry has made greatdevelopment, and the resulting environmental problems have become increasinglyserious. Especially the contamination of heavy metals and organic dye caused theattention of people because the heavy metal ions can't decompose and introduce thepotential danger of bioaccumulation, which may eventually affect man through thefood chain. Dyes can cause hazards to the environment due to the presence of a largenumber of contaminants like toxic organic residues, acids, bases and inorganiccontaminants. Some of the dyes are carcinogenic and mutagenic because they wereformerly made by hazardous chemicals such as benzidine, metals, etc.. The dischargeof colored wastes into the receiving water bodies not only affects their aestheticnature but also interferes with the transmission of sunlight and therefore reduces thephotosynthetic activity. Therefore, it is very necessary to remove effectively heavymetal ions and dyes from waterbodies.
     Oil shale, called kerogen, is a kind of sedimentary rock containing varying amountsof a solid, waxy mixture of hydrocarbon compounds and disseminates throughout the rock. The oil shale is considered one of the largest energy resources in the world. Inrecent years, oil shale has been widely used as an alternative source of energy with theincrease of oil price. However,(the) large quantities of oil shale ash (OSA)(which isa by-product ash) are generated due to the direct combustion process of oil shale. Thiskind of ash is considered a serious environmental problem. Therefore, it is necessaryto make a proper strategy for ash handling, disposal and utilization. At present, someresearchers are focusing on using oil shale ash as a low cost, promising and efficientadsorbent material for the removal of heavy metals and dyes from wastewater.
     In the paper, Na-A zeolite was successfully synthesized based on the oil shale ashas raw materials and used as an adsorbent to remove heavy metal ions and dyes fromaqueous solution. Hydrophobic alumina aerogel was also prepared using oil shale ashas aluminum source. This work provided a new direction for the comprehensiveutilization of oil shale ash and had great theoretical and practical significance. Thedetailed novelties of this thesis can be categorized as following:
     1. The Na-A zeolite was successfully synthesized by the alkaline fusion methodusing oil shale ash as raw materials. The effect of weight ratio of NaOH/OSA onthe preparation of zeolite was studied. The optimum weight ratio of NaOH/OSAfor synthesizing zeolite is1.6. The synthesized zeolite was characterized by analysis techniques. SEM image shows that the as-synthesized zeolite is cube andits average diameter is about2μm. Pore size distributions reveal that zeolitebelongs to the mesoporous material. The surface area of the synthesized zeolite iscomparatively twice higher than that of the oil shale ash, indicating that the zeolitehas great potential as an efficient adsorption material.
     2. The synthesized Na-A zeolite and oil shale ash were used to remove Cu2+ionsfrom aqueous solution. Effects of initial concentration and pH value on theadsorption have been discussed. The adsorption isotherm, kinetics andthermodynamics have also been investigated. The results showed that the optimalpH value for removing Cu2+was about5-6. The adsorption data were fitted withLangmuir model. The maximum adsorption capacities of the obtained zeolite andoil shale ash from Langmuir adsorption isotherm were found to be156.7mg/g and38.9mg/g for Cu2+, respectively. The batch kinetic data fitted with thepseudo-second order equation better. The negative ΔG and positive Δ Hatdifferent temperatures confirmed that the adsorption processes were spontaneousand endothermic.
     3. The prepared Na-A zeolite was used to remove methylene blue and congo redfrom aqueous solution. The effects of various factors on adsorption have beenstudied. The experimental data were correlated with the Langmuir model. Themaximum adsorption capacities of methylene blue and congo red were18.73mg/gand31.05mg/g, respectively. Adsorption kinetics data were correlated to thepseudo-first-order and pseudo-second-order equation. The batch kinetic data fittedwith the pseudo-second order equation better.
     4. Hydrophobic alumina aerogels were successfully prepared using oil shale ash asalumina source. The effects of methyltrimethoxysilane (MTMS) andtetraethylorthosilicate (TEOS) used as surface modifying agents on thephysicochemical properties of the alumina aerogels were investigated. Comparedwith the unmodified aerogels, the water contact angles of alumina aerogelsfunctionalized with TEOS and MTMS were54°and110°, respectively. Thesurface area of the modified aerogels was higher than that of unmodified aerogels,which has great potential as efficient adsorption material. The maximumadsorption capacities of the modified aerogels and modified with MTMS andTEOS from Langmuir adsorption isotherm were found to be22.36mg/g and24.31mg/g for methylene blue.
     5. Magnetic–chitosan composites were synthesized, characterized and were used forthe adsorption Pb2+and Cu2+ions from aqueous solution. The optimum pH value is5.0for Cu2+and6.0for Pb2+.The maximum adsorption capacities of Pb2+and Cu2+ions based on the Langmuir isotherm model were224.21mg/g and64.35mg/g,respectively. Adsorption kinetics data fitted with the pseudo-second orderequation better. The thermodynamic results demonstrated that the adsorptionprocess was exothermic under natural conditions.
引文
[1] DUFFUS J H.“Heavy Metals”-A meaningless term [J]. Pure and AppliedChemistry,2002,74(5):793-807.
    [2] MEENA A K, MISHRA G K, SATISH K, et al.Adsorption of cadmium ions fromaqueous solution using different adsorbents [J]. Indian Journal of Scientific&Industrial Research,2004,63:410-416.
    [3] SOFFIOTI U, WAGONER J K. Occupational Carcenogenesis[M]. New YorkAcademy of Science,1976.
    [4] ALEYA BEGUM, MD NURUL AMIN, et al. Selected elemental compositon ofthe muscle tissue of three species of fish, Tilapia niltica, Cirrhina mrigala andClarius batrachus from the freshwater Dhanmondi Lake in Bangladesh [J]. FoodChemistry,2005,93:439-443.
    [5] CHANDER M,ARORA D S.Evaluation of some white-rot fungi for theirPotential to decolorize industrial dyes [J].Dyes and Pigments,2007,72:192-198.
    [6] MALIK P K, SAHA S K. Oxidation of direct dyes with hydrogen peroxide usingferrous ion as catalyst [J]. Separation and Purification Technology,2003,31:241-250.
    [7] GUO Y P,YANG S F, FU W Y,et al.Adsorption of malachite green on miero-andmesoporous rice hus-based active carbon [J]. Dyes and Pigments,2003,56:219-229.
    [8] BALTPURVINS K A, BURNS R C, LAWRANCE G A, et al. Effect of electrolytecomposition on zinc hydroxide precipitation by lime [J]. Water Research,1997,31:973-980.
    [9] HUISMAN J L, SCHOUTEN G, SCHULTZ C. Biologically produced sulphide forpurification of process streams, effluent treatment and recovery of metals in themetal and mining industry [J]. Hydrometallurgy,2006,83:106-113.
    [10] MIRBAGHERI S A, HOSSEINI S N. Pilot plant investigation on petrochemicalwastewater treatment for the removal of copper and chromium with theobjective of reuse [J]. Desalination,2005,171:85-93.
    [11] CHEN Q Y, LUO Z, HILLS C, et al. Precipitation of heavy metals fromwastewater using simulated flue gas: sequent additions of fly ash, lime andcarbon dioxide [J]. Water Research,2009,43:2605-2614.
    [12] KU Y, JUNG I L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UVirradiation with the presence of titanium dioxide [J]. Water Research,2001,35:135-142.
    [13] ZVERDI A, ERDEM M. Cu2+, Cd2+and Pb2+adsorption from aqueoussolutions by pyrite and synthetic iron sulphide [J]. Journal of HazardousMaterials,2006,137:626-632.
    [14] KANG S Y, LEE J U, MOON S H, et al. Competitive adsorption characteristicsof Co2+, Ni2+, and Cr3+by IRN-77cation exchange resin in synthesizedwastewater [J]. Chemosphere,2004,56:141-147.
    [15] ALYüZ B, VELI S. Kinetics and equilibrium studies for the removal of nickeland zinc from aqueous solutions by ion exchange resins [J]. Journal ofHazardous Materials,2009,167:482-488.
    [16] GODE F, PEHLIVAN E. Removal of chromium (III) from aqueous solutionsusing Lewatit S100: the effect of pH, time, metal concentration and temperature[J].Journal of Hazardous Materials,2006,136:330-337.
    [17] ABO-FARHA S A, ABDEL-AAL A Y, ASHOURB I A, et al. Removal of someheavy metal cations by synthetic resin purolite C100[J]. Journal of HazardousMaterials,2009,169:190-194.
    [18] MOTSI T, ROWSON, N A, SIMMONS M J H. Adsorption of heavy metals fromacid mine drainage by natural zeolite [J]. International Journal of MineralProcessing,2009,92:42-48.
    [19] DOULA M K, DIMIRKOU A. Use of an iron-overexchanged clinoptilolite forthe removal of Cu2+ions from heavily contaminated drinking water samples [J].Journal of Hazardous Materials,2008,151:738-745.
    [20] SHAHALAM A M, AL-HARTHY A, AL-ZAWHRY A. Feed water pretreatmentin RO systems in the Middle East [J]. Desalination,2002,150:235-245.
    [21] MOHSEN-NIA M, MONTAZERI P, MODARRESS H. Removal of Cu2+andNi2+from wastewater with a chelating agent and reverse osmosis processes [J].Desalination,2007,217:276-281.
    [22] ZHANG L N, WU Y J, QU X Y, et al. Mechanism of combination membrane andelectro-winning process on treatment and remediation of Cu2+polluted waterbody [J].Journal of Environmental Sciences,2009,21:764-769.
    [23] CHAN B K C, DUDENEY A W L. Reverse osmosis removal of arsenic residuesfrom bioleaching of refractory gold concentrates [J]. Minerals Engineering,2008,21:272-278.
    [24] IPEK U. Removal of Ni(II) and Zn(II) from an aqueous solution by reverseosmosis [J]. Desalination,2005,174:161-169.
    [25] LANDABURU-AGUIRRE J, GARCíA V, PONGRáCZ E,et al.The removal ofzinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statisticaldesign of experiments [J]. Desalination,2009,240:262-269.
    [26] SAMPERA E, RODRíGUEZA M, DE LA RUBIA M A, et al. Removal of metalions at low concentration by micellar-enhanced ultrafiltration (MEUF) usingsodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS)[J].Separation and Purification Technology,2009,65:337-342.
    [27] LI X, ZENG G M, HUANG J H, et al. Recovery and reuse of surfactant SDSfrom a MEUF retentate containing Cd2+or Zn2+by ultrafiltration [J]. Journal ofMembrane Science,2009,337:92-97
    [28] MOLINARI R, POERIO T, ARGURIO P. Selective separation of copper(II) andnickel(II) from aqueous media using the complexatione-ultrafiltration process[J]. Chemosphere,2008,70:341-348.
    [29] AROUA M K, ZUKI F M, SULAIMAN N M. Removal of chromium ions fromaqueous solutions by polymer-enhanced ultrafiltration [J]. Journal of HazardousMaterials,2007,147:752-758.
    [30] FENG X H, ZHAI L M, TAN W F, et al. Adsorption and redox reactions ofheavy metals on synthesized Mn oxide minerals [J]. Environmental Pollution,2007,147:366-373.
    [31] TAN W, LIU F, FENG X, et al. Adsorption and redox reactions of heavy metalson Fe–Mn nodules from Chinese soils [J]. Journal of Colloid and InterfaceScience,2005,284:600-605.
    [32] LANSON B, DRITS V A, BOUGEROL-CHAILLOUT C, et al. Structure ofheavy-metal sorbed birnessite: Part1. Results from X-ray diffraction [J].American Mineralogist,2002,87:1631-1645.
    [33] MATOCHA C J, ELZINGA E J, SPARK D L. Reactivity of Pb(II) at theMn(III,IV)(oxyhydr)oxide-water interface [J]. Environmental Science&Technology,2001,35:2967-2972.
    [34] SHAUGHNESSY D A, NITSCHE H, BOOTH C H, et al. Molecular interfacialreactions between Pu(VI) and manganese oxide minerals manganite andhausmannite [J]. Environmental Science&Technology,2003,37:3367-3374.
    [35] SHINDO H, HUANG P M. Signification of Mn(IV) oxide in abiotic formation oforganic nitrogen complexes in natural environments [J]. Nature,1984,308:57-58.
    [36] GUPTA V K, JAIN R, MITTAL A, et al. Photo-catalytic degradation of toxic dyeamaranth on TiO2/UV in aqueous suspensions [J]. Materials Science andEngineering C,2012,32:12-17.
    [37] WUA Z C,ZHANG Y, TAO T X, et al. Silver nanoparticles on amidoxime fibersfor photo-catalytic degradation of organic dyes in waste water [J]. AppliedSurface Science,2010,257:1092-1097.
    [38] UPADHYAY R K, SHARMA M, SINGH D K,et al. Photo degradation ofsynthetic dyes using cadmium sulfide nanoparticles synthesized in the presenceof different capping agents [J]. Separation and Purification Technology,2012,88:39-45.
    [39] GOMATHI DEVI L., NARASIMHA MURTHY B, GIRISH KUMAR S.Heterogeneous photo catalytic degradation of anionic and cationic dyes overTiO2and TiO2doped with Mo6+ions under solar light: Correlation of dyestructure and its adsorptive tendency on the degradation rate [J]. Chemosphere,2009,76:1163-1166.
    [40] ABD EL-REHIM H A, HEGAZY E A, DIAA D A. Photo-catalytic degradationof Metanil Yellow dye using TiO2immobilized into polyvinyl alcohol/acrylicacid microgels prepared by ionizing radiation [J]. Reactive&FunctionalPolymers,2012,72:823-831.
    [41] LEANDRO V A G, OSVALDO K J, ROSSIMIRIAM P F, et al. Adsorption ofCu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose andmercerized cellulose chemically modified with succinic anhydride [J].Bioresource Technology,2008,99:3077-3083.
    [42] LI Q, YUE Q Y, SUN H J, et al. A comparative study on the properties,mechanism and process designs for the adsorption of non-ionic or anionic dyesonto cationic-polymer/bentonite [J]. Journal of Environmental Management,2010,91:1601-1611.
    [43] BABEL S, KURNIAWAN T A. Cr (VI) removal from synthetic wastewater usingcoconut shell charcoal and commercial activated carbon modified withoxi-dizing agents and/or chitosan [J]. Chemosphere,2004,54:951-967.
    [44] SHABANI A M H, DADFARNIA S, DEHGHANI Z. On-line solid phaseextraction system using1,10-phenanthroline immobilized on surfactant coatedalumina for the flame atomic absorption spectrometric determination of copperand cadmium [J]. Talanta,2009,79:1066-1070.
    [45] YANG D J, PAUL B, XU W J, et al. Alumina nanofibers grafted with functionalgroups: a new design in efficient sorbents for removal of toxic contaminantsfrom water [J]. Water Research,2010,44:741-750.
    [46] AGUAYO-VILLARREAL I A, HERNáNDEZ-MONTOYA V, BONILLA-PETRICIOLET A, et al. Role of acid blue25dye as active site for the adsorptionof Cd2+and Zn2+using activated carbons [J]. Dyes and Pigments,2013,96:459-466.
    [47] PYRZYNSKA K, BYSTRZEJEWSKI M. Comparative study of heavy metalions sorption onto activated carbon,carbon nanotubes, and carbon-encapsulatedmagnetic nanoparticles [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2010,362:102-109.
    [48] BYSTRZEJEWSKI M, PYRZYNSKA K. Kinetics of copper ions sorption ontoactivated carbon, carbon nanotubes and carbon-encapsulated magneticnanoparticles [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2011,377:402-408.
    [49] ERDEM E, KARAPINAR N, DONAT R. The removal of heavy metal cationsby natural zeolites [J]. Journal of Colloid and Interface Science,2004,280:309-314.
    [50] WANG S, TERDKIATBURANA T, TAD′E M O. Adsorption of Cu(II), Pb(II)and humic acid on natural zeolite tuff in single and binary systems [J].Separation and Purification Technology,2008,62:64-70.
    [51] OREN A H, KAYA A. Factors affecting adsorption characteristics of Zn2+on twonatural zeolites. Journal of Hazardous Materials,2006, B131:59-65.
    [52] LEE M Y, HONG K J, KAJIUCHI T, et al. Synthesis of chitosan-basedpolymeric surfactants and their adsorption properties for heavy metals and fattyacids [J]. International Journal of Biological Macromolecules,2005,36:152-158.
    [53] PAULINO A T, GUILHERME M R, REIS A V,et al. Capacity of adsorption ofPb2+and Ni2+from aqueous solutions by chitosan produced from silkwormchrysalides in different degrees of deacetylation [J]. Journal of HazardousMaterials,2007,147:139-147.
    [54] SARKAR M, MAJUMDAR P. Application of response surface methodology foroptimization of heavy metal biosorption using surfactant modified chitosan bead[J]. Chemical Engineering Journal,2011,175:376-387.
    [55] YIN P, XU Q, QU R, et al. Adsorption of transition metal ions from aqueoussolutions onto a novel silica gel matrix inorganic-organic composite material [J].Journal of Hazardous Materials,2010,173:710-716.
    [56] CHEN K L, MYLON S E, ELIMELECH M, Enhanced aggregation ofalginate-coated iron oxide (hematite) nanoparticles in the presence of calcium,strontium, and barium cations [J]. Langmuir,2007,23:5920-5928.
    [57] MANJU G N, KRISHNAN K A, VINOD V P, et al. An investigation into thesorption of heavy metals from wastewaters by polyacrylamide-grafted iron (III)oxide [J]. Journal of Hazardous Materials,2002,91:221-238.
    [58] BOUJELBEN N, BOUZID J, ELOUEAR Z. Adsorption of nickel and copperonto natural iron oxide-coated sand from aqueous solutions: study in single andbinary systems [J]. Journal of Hazardous Materials,2009,163:376-382.
    [59] VEERA M B, KRISHNAIAH A, ANN J R,et al. Removal of copper(II) andnickel (II) ions from aqueous solutions by a composite chitosan biosorbent[J].Separation Science and Technology,2008,43:1365-1381.
    [60] POPURI S R, VIJAYA Y, BODDU V M, et al. Adsorptive removal of copperand nickel ions from water using chitosan coated PVC beads [J]. BioresourceTechnology,2009,100:194-199.
    [61] CIMINO G, PASSERINI A, TOSCANO G. Removal of toxic cations and Cr(VI)from aqueous solution by hazelnut shell [J]. Water Research,2000,34:2955-2962.
    [62] DAKIKY M, KHAMIS M, MANASSRA A, et al. Selective adsorption of Cr(VI)in industrial wastewater using low-cost abundantly available adsorbents [J].Advances in Environmental Research,2002,6:533-540.
    [63] E. DEMIRBAS. Adsorption of Cobalt (II) from aqueous solution onto activatedcarbon prepared from hazelnut shells [J]. Adsorption Science&Technology,2003,21:951-963.
    [64] JOHNSON P D, WATSON M A, BROWN J, et al. Peanut hull pellets as a singleuse sorbent for the capture of Cu(II) from wastewater [J]. Waste Management,2002,22:471-480.
    [65] HASHEM A, ABDEL-HALIM E S, EL-TAHLAWY KH F, et al. Enhancementof adsorption of Co (II) and Ni (II) ions onto peanut hulls though esterificationusing citric acid [J]. Adsorption Science&Technology,2005,23:367-380.
    [66] BRYANT P S, PETERSEN J N, LEE J M, et al. Sorption of heavy metals byuntreated red fir sawdust [J]. Appllied Biochemistry Biotechnology,1992,34-35:777-778.
    [67] BIN Y. Adsorption of copper and lead from industrial wastewater by maplesawdust [C]. Thesis, Lamar University, Beaumont, USA,1995.
    [68] AJMAL M, KHAN A H, AHMAD S, et al, Role of sawdust in the removal ofcopper (II) from industrial wastes [J]. Water Research,1998,22:3085-3091.
    [69] ZARRAA M A. A study on the removal of chromium (VI) from waste solutionby adsorption on to sawdust in stirred vessels [J]. Adsorption Science&Technology,1995,12:129-138.
    [70] VAZQUEZ G, ANTORRENA G, PARAJO J C. Studies on the utilization of Pinuspinaster bark Part1: chemical constituents [J].Wood Science Technology,1987,21:65-74.
    [71] FREER J, BAEZA J, MATURANA H, et al. Removal and recovery of uraniumby modified Pinus Equilib D. Don bark [J]. Journal of Chemical Technology&Biotechnology,1989,46:41-48.
    [72] LOW K S, LEE C K, NG A Y. Column study on the sorption of Cr(VI) usingquaternized rice hulls [J]. Bioresource Technology,1999,68:205-208.
    [73] BETANCUR, M, BONELLI, P R, VELASQUEZ, J A, et al. Potentiality of ligninfrom the Kraft pulping process for removal of trace nickel from wastewater:effect of demineralization [J]. Bioresource Technology,2009,100:1130-1137.
    [74] SHENG G D, WANG S W, HUA J, et al. Adsorption of Pb(II) on diatomite asaffected via aqueous solution chemistry and temperature [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2009,339:159-166.
    [75] LU A H, ZHONG S J, CHEN J. Removal of Cr(VI) and Cr(III) from aqueoussolutions and industrial wastewaters by natural clinopyrrhotite [J].Environmental Science&Technology,2006,40:3064-3069.
    [76] MOHAN D, CHANDER S. Removal and recovery of metal ions from acid minedrainage using ligniteda low cost sorbent [J]. Journal of Hazardous Materials,2006,137:1545-1553.
    [77] KOHLER S J, CUBILLAS P, RODRIGUEZ-BLANCO J D, et al. Removal ofcadmium from wastewaters by aragonite shells and the influence of otherdivalent cations [J]. Environmental Science&Technology,2007,41:112-118.
    [78] APIRATIKUL R, PAVASANT P. Sorption of Cu2+, Cd2+, and Pb2+using modifiedzeolite from coal fly ash [J]. Chemical Engineering Journal,2008,144:245-258.
    [79] AL-JLIL S A, ALSEWAILEM F D. Saudi Arabian clays for lead removal inwastewater [J]. Applied Clay Science,2009,42:671-674.
    [80] GU X Y, EVANS L J. Surface complexation modelling of Cd(II), Cu(II), Ni(II),Pb(II) and Zn(II) adsorption onto kaolinite [J]. Geochimca et Cosmochimca Acta,2008,72:267-276.
    [81] LIU Z R, ZHOU L M, WEI P, et al. Competitive adsorption of heavy metal ionson peat [J]. Journal of China University of Mining and Technology,2008,18:255-260.
    [82] DACI M N, DACI N M, ZENELI L, et al. Coal ash as adsorbent for heavy metalions in standard solutions, industrial wastewater and streams [J]. Ecohydrology&Hydrobiology,2011,11:129-132.
    [83] HUI K S, CHAO C Y H, KOT S C. Removal of mixed heavy metal ions inwastewater by zeolite4A and residual products from recycled coal fly ash [J].Journal of Hazardous Materials,2005, B127:89-101.
    [84] JHA V K, NAGAE M, MATSUD M. Zeolite formation from coal fly ash andheavy metal ion removal characteristics of thus-obtained Zeolite X inmulti-metal systems [J]. Journal of Environmental Management,2009,90:2507-2514.
    [85] WANG S, SOUDI M, LI L, et al. Coal ash conversion into effective adsorbentsfor removal of heavy metals and dyes from wastewater [J]. Journal of HazardousMaterials,2006, B133:243-251.
    [86] PAPANDREOU A, STOURNARAS C J, PANIAS D. Copper and cadmiumadsorption on pellets made from fired coal fly ash [J]. Journal of HazardousMaterials,2007,148:538-547.
    [87] ALTUN NE, HICYILMAZ C, HWANG JY, et al. Oil shales in the world andTurkey; reserves, current situation and future prospects: a review [J]. Oil Shale,2006,23(3):211-227.
    [88] AL-HARAHSHEH A, AL-OTOOM AY, SHAWABKEH RA. Sulfur distributionin the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale[J]. Energy,2005,30(15):2784-2795.
    [89] HEPBASLI A. Oil shale as an alternative energy source [J]. Energy Sources,2004,26(2):107-118.
    [90] CHEN SB, ZHU YM, WANG HY, et al. Shale gas reservoir characterisation: atypical case in the southern Sichuan Basin of China [J]. Energy,2011,36(11):6609-6616.
    [91] JIANG XM, HAN XX, CUI ZG. New technology for the comprehensiveutilization of Chinese oil shale resources [J]. Energy,2007,5(32):772-777.
    [92] L. OIPUU, R. ROOTAMM. Environmental pollution by burning pulverized oilshale [J]. Transation TallinnUniversity of Technology,1994,739:79-85.
    [93] SORLIE J E, BITYUKOVA L, SAETHER O M, et al. Estonia, the Oil ShaleIndustry, Risk Based Environmental Site Assessment of Landfills, Report Reg.No. FS32989, NGI, Oslo,2004.
    [94]陈洁渝,严春杰,李子冲,等.油页岩灰渣的综合利用[J].矿产保护与利用,2006,(6):42-45.
    [95]杨春明.油页岩灰渣在建筑材料中的应用研究[D].吉林:吉林大学化学学院,2011.
    [96]甘树才,徐吉静,刘招君,等.专利申请号CN101200358A.2008.
    [97]郭立,严春杰,王焰新.专利公开号CN1872782A.2006.
    [98]鲍长利,张建会,刘招君,等.利用油页岩研制多孔建筑陶瓷[J].吉林大学学报,2008,38(4):105-306.
    [99]王文颖.油页岩灰渣提取铝与纳米氧化铝粉体的制备研究[D].吉林:吉林大学化学学院,2008.
    [100] GAO G M, ZOU H F, GAN S C, et al. Preparation and properties of silicananoparticles from oil shale ash [J]. Powder Technology,2009,(191):47-51.
    [101] SHAWABKEH R, AL-HARAHSHEH A, HAMI M, et al.Conversion of oilshale ash into zeolite for cadmium and lead removal from wastewater [J]. Fuel,2004,83:981-985.
    [102] FERNANDES-MACHADO N R C, MIOTTO D M M. Synthesis of Na–A and–X zeolites from oil shale ash [J]. Fuel,2005,84:2289-229
    [1]张秋民,关,何德民.几种典型的油页岩干馏技术[J].吉林大学学报(地球科学版),2006,36(6):1019-1026.
    [2]柳蓉,刘招君.国内外油页岩资源现状及综合开发潜力分析[J].吉林大学学报(地球科学版),2006,36(6):892-898.
    [3]苏瞳,李爱民,栾敬德.酸化油页岩灰吸附Ni(Ⅱ)的研究[J].安全与环境学报,2009,9(2):53-56.
    [4]冯宗玉,薛向欣,李勇.油页岩灰陶粒吸附苯酚的实验研究[J].材料与冶金学报,2007,6(3):230-233.
    [5]刘艳辉,薛向欣,宋海.油页岩渣制备沸石及其吸附Cr6+性能[J].过程工程学报,2008,8(6):1108-1111.
    [6]李勇,薛向欣,冯宗玉.改性油页岩灰吸附Cu2+的研究[J].材料与冶金学报,2007,6(4):302-305.
    [7]李勇,薛向欣,冯宗玉.改性油页岩吸附水中苯酚的研究[J].材料导报,2007,12(9):150-152.
    [8] GHARAIBEH S H, ABU-EL-SHA’R W Y, AL-KOFAHI M M,Removal ofselected heavy metals from aqueous solutions using a solid by-product from theJordanian oil shale refining[J]. Environmental Geology,1999,39(2):113-116.
    [9] AL-QODAHA Z, SHAWAQFEHB A T, LAFIA W K, Adsorption of pesticidesfrom aqueous solutions using oil shale ash [J].Desalination,2007,208:294-301.
    [10]SHAWABKEH R, AL-HARAHSHEH A, HAMI M, KHLAIFAT A.Conversionof oil shale ash into zeolite for cadmium and lead removal from wastewater[J].Fuel,2004,83:981-985.
    [11] SHAWABKEH R. Equilibrium study and kinetics of Cu2+removal from waterby zeolite prepared from oil shale ash[J]. Process Safety and EnvironmentalProtection,2009,87:261-266.
    [12] SHAWABKEH R, AL-HARAHSHEH A, AL-OTOOM A. Copper and zincsorption by treated oil shale ash [J].Separation and purification technology,2004,40:251-257.
    [13] FERNANDES MACHADO N R C, MALACHINI MIOTTO D M. Synthesis ofNa–A and–X zeolites from oil shale ash[J]. Fuel,2005,84:2289–2294.
    [14]中国科学院大连化学物理研究所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [15]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [16]刘长山,陈季英,林民.我国油页岩的主要性质[J].石油学报(石油加工),1992,8(2):103一107.
    [17]李双应,岳书仓,杨建,等.皖北新元古代刘老碑组页岩的地球化学特征及其地质意义[J].地质科学,2003,38(2):241-253.
    [1]于晓莉,刘强.水体重金属污染及其对人体健康影响的研究[J].绿色科技,2011(10):123-126.
    [2] BI KUP B, SUBOTI′B. Kinetic analysis of the exchange processes betweensodium ions from zeolite A and cadmium, copper and nickel ions from solutions[J]. Separation and Purification Technology,2004,37:17-31.
    [3] FU F, XIE L, TANG B, et al. Application of a novel strategy-AdvancedFenton-chemical precipitation to the treatment of strong stability chelated heavymetal containing wastewater [J]. Chemical Engineering Journal,2012,189-190:283-287.
    [4] CHAUDHARI L B, MURTHY Z V P.Separation of Cd and Ni frommulticomponent aqueous solutions by nanofiltration and characterization ofmembrane using IT model [J]. Journal of Hazardous Materials,2010,180:309-315.
    [5] DUTRA A J B, ROCHA G P, POMBO F R. Copper recovery and cyanideoxidation by electrowinning from a spent copper-cyanide electroplatingelectrolyte [J]. Journal of Hazardous Materials,2008,152:648–655.
    [6]BOROWIAK-RESTERNA A, CIERPISZEWSKI R, PROCHASKA K. Kineticand equilibrium studies of the removal of cadmium ions from acidic chloridesolutions by hydrophobic pyridinecarboxamide extractants [J]. Journal ofHazardous Materials,2010,179:828–833.
    [7] MOHSEN-NIA M, MONTAZERI P, MODARRESS H. Removal of Cu2+and Ni2+from wastewater with a chelating agent and reverse osmosis processes [J].Desalination,2007,217:276–281.
    [8] LLANOS J, WILLIAMS P M, CHENG S, et al. Characterization of a ceramicultrafiltration membrane in different operational states after its use in aheavy-metal ion removal process [J].Water research,2010,44:3522-3530.
    [9] LIU S S, LEE C K, CHEN H C,et al. Application of titanate nanotubes for Cu(II)ions adsorptive removal from aqueous solution [J]. Chemical EngineeringJournal,2009,147:188-193.
    [10] SAFIUR RAHMAN M, RAFIQUL ISLAM M. Effects of pH on isothermsmodeling for Cu(II) ions adsorption using maple wood sawdust [J]. ChemicalEngineering Journal,2009,149:273–280
    [11] EL-KAMASH A M, ZAKI A A, ABED EL GELEEL M. Modeling batchkinetics and thermodynamics of zinc and cadmium ions removal from wastesolutions using synthetic zeolite A [J]. Journal of Hazardous Materials,2005,B127:211-220.
    [12] GOTOH T, MATSUSHIMA K, KIKUCHI K I. Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions [J].Chemosphere,2004,55:135-140.
    [13] NASCIMENTO M, SOARES P S M, SOUZA V P D. Adsorption of heavy metalcations using coal fly ash modified by hydrothermal method [J]. Fuel,2009,88:1714-1719.
    [14] SHARMA Y C, UMAA, SINGH S N,et al. Fly ash for the removal of Mn(II)from aqueous solutions and wastewaters [J]. Chemical Engineering Journal,2007,132:319-323.
    [15] GONZALEZ A, MORENOC N, NAVIA R,et al. Development of anon-conventional sorbent from fly ash and its potential use in acid wastewaterneutralization and heavy metal removal [J]. Chemical Engineering Journal,2011,166:896-905.
    [16] CRUZ-OLIVARESA J, P é REZ-ALONSOA C, BARRERA-D í AZB C,etal.Thermodynamical and analytical evidence of lead ions chemisorption ontoPimenta dioica [J]. Chemical Engineering Journal,2011,166:814-821.
    [17] KUMAR U, BANDYOPADHYAY M. Sorption of cadmium from aqueoussolution using pretreated rice husk [J]. Bioresource Technology,2006,97:104-109.
    [18] WANG L H, LIN C I. Adsorption of Lead(II) Ion from Aqueous Solution UsingRice Hull Ash [J]. Ind. Eng. Chem. Res.,2008,47:4891-4897.
    [19] NAMASIVAYAM C, SANGEETHA D. Recycling of agricultural solid waste,coir pith: Removal of anions,heavy metals, organics and dyes from water byadsorption onto ZnCl2activated coir pith carbon [J]. Journal of HazardousMaterials,2006, B135:449-452.
    [20] SHAWABKEH R. Equilibrium study and kinetics of Cu2+removal from waterby zeolite prepared from oil shale ash [J]. Process Safety and EnvironmentalProtection,2009,87:261-266.
    [21] GHARAIBEH S H, ABU-EL-SHA’R W Y, AL-KOFAHI M M. Removal ofselected heavy metals from aqueous solutions using a solid by-product from theJordanian oil shale refining [J]. Environmental Geology,1999,39(2):113-116.
    [22] SHAWABKEH R, AL-HARAHSHEH A, AL-OTOOM A. Copper and zincsorption by treated oil shale ash [J]. Separation and Purification Technology,2004,40:251-257.
    [23] LIU Z, ZHANG F S. Removal of lead from water using biochars prepared fromhydrothermal liquefaction of biomass [J]. Journal of Hazardous Materials,2009,167:933-939.
    [24] PIMENTEL P M, MELO M A F, MELO D M A, et al. Kinetics andthermodynamics of Cu(II) adsorption on oil shale wastes [J]. Fuel ProcessingTechnology,2008,89:62-67.
    [25] HSU T C, YU C C, YEH C M. Adsorption of Cu2+from water using raw andmodified coal fly ashes [J]. Fuel,2008,87:1355-1359.
    [26] HUI K S, CHAO C Y H, KOT S C. Removal of mixed heavy metal ions inwastewater by zeolite4A and residual products from recycled coal fly ash [J].Journal of Hazardous Materials,2005, B127:89-101.
    [27] APIRATIKUL R, PAVASANT P. Sorption of Cu2+, Cd2+, and Pb2+usingmodified zeolite from coal fly ash [J]. Chemical Engineering Journal,2008,144:245-258.
    [28] ERDEM E, KARAPINAR N, DONAT R. The removal of heavy metal cationsby natural zeolites [J].Journal of Colloid Interface Science,2004,280:309-314.
    [29] LEE MG, AHN B J, RODDICK F. Conversion of Coal Fly Ash into Zeolite andHeavy Metal removal Characteristics of the Prodducts [J]. Korean J. Chem. Eng.,2000,17:325-331.
    [30] CHIOU M S, LI H Y. Adsorption behavior of reactive dye in aqueous solutionon chemical cross-linked chitosan beads [J]. Chemosphere,2003,50:1095-1105.
    [31] WANG Y, MU Y, ZHAO Q B, et al. Isotherms, kinetics and thermodynamics ofdye biosorption by anaerobic sludge [J]. Separation and Purification Technology,2006,50:1-7.
    [32] Wan Ngah W S, Fatinathan S. Adsorption of Cu(II) ions in aqueous solutionusing chitosan beads,chitosan–GLA beads and chitosan–alginate beads [J].Chemical Engineering Journal,2008,143:62-72.
    [33] PEHLIVAN E, ARSLAN G. Removal of metal ions using lignite in aqueoussolution-Low cost biosorbents [J].Fuel Processing Technology,2007,88:99-106.
    [34] PANAYOTOVA M I.Kinetics and thermodynamics of copper ions removal fromwastewater by use of zeolite [J]. Waste Management,2001,21:671-676.
    [35] BOSCO S M D, JIMENEZ R S, CARVALHO W A. Removal of toxic metalsfrom wastewater by Brazilian natural scolecite [J]. Journal of Colloid InterfaceScience,2005,281:424-431.
    [36] AMARASINGHE B M W PK. WILLIAMS R A. Tea waste as a low costadsorbent for the removal of Cu and Pb from wastewater [J]. ChemicalEngineering Journal,2007,132:299-309.
    [37] LV L, HOR M P, SU F, ZHAO X S. Competitive adsorption of Pb2+, Cu2+, andCd2+ions on microporous titanosilicate ETS-10[J]. Journal of Colloid andInterface Science,2005,287:178–184.
    [38] NIGHTINGALE JR. E R. Phenomenological theory of ion solvation effectiveradii of hydrated ions [J]. The Journal of Physical Chemistry,1959,63:1381-1387.
    [39] RICORDEL S, TAHA S, CISSE I, et al. Heavy metals removal by adsorptiononto peanut husks carbon: characterization, kinetic study and modeling [J].Separation and Purification Technology,2001,24:389–401.
    [1] HAMEED B H, DIN A T M, AHMAD A L. Adsorption of methylene bule ontobamboo-based activated carbon: kinetics and equilibrium studies [J]. Journal ofHazardous Materials,2007,141:819-825.
    [2] TASTAN B E, ERTUGRUL S, DONMEZ G. Effective bioremoval of reactivedye andheavy metals by aspergillus versicolor [J]. Bioresource Technology,2010,101:870-876.
    [3] CHIOU M S, LI H Y. Equilibrium and kinetic modeling of adsorption of reactivedye on cross-linked chitosan beads [J]. Journal of Hazardous Materials,2002, B93:233-248.
    [4] KYUNG H, LEE J, CHOI W. Simultaneous and synergistic conversion of dyesand heavy metal ions in aqueous TiO2suspensions under visible-light illumination[J].Environmental Science and Technology,2005,39:2376-2383.
    [5] DOGAN M, OZDEMIR Y, ALKAN M. Adsorption kinetics and mechanism ofcationic methyl violet and methylene blue dyes onto sepiolite [J].Dyes andpigments,2007,75:701-713.
    [6] Lee C K, Liu S S, Juang L C, et al.Application of titanate nanotubes for dyesadsorptive removal from aqueous solution [J]. Journal of Hazardous Materials,2007,148:756-760.
    [7] CHIOU M S, LI H Y. Adsorption behavior of reactive dye in aqueous solution onchemical cross-linked chitosan beads [J]. Chemosphere,2003,50:1095-1105.
    [8] O¨ZACAR M, SENGIL I A. Adsorption of reactive dyes on calcined alunite fromaqueous solutions [J].Journal of Hazardous Materials,2003,98:211–224.
    [9] NAMASIVAYAM C, RADHIKA R, SUBA S. Uptake of dyes by a promisinglocally available agricultural solid waste: coir pith [J]. Waste Management,2001,21:381–387.
    [10] WU Y J, ZHANG L J, GAO C L,et al. Adsorption of copper ions and methyleneblue in a single and binary system on wheat straw [J].Jornal of Chemical andEngineering Data,2009,54:3229-3234.
    [11] WANG Y Q, WANG G Z, WANG H Q, et al.Chemical-template synthesis ofmicro-nanoscale magnesium silicate hollow spheres for waste-water treatment[J]. Chemistry-a European Journal,2010,16:3497-3503.
    [12] HUI C W, CHEN B N, MCKAY G. Pore-surface diffusion model for batchadsorption processes [J]. Langmuir,2003,19:4188-4196.
    [13] VISA M, BOGATU C, DUTA A. Simultaneous adsorption of dyes and heavymetals from multicomponent solutions using fly ash [J]. Applied Surface Science,2010,256:5486-5491.
    [14] VELI S, ALYUZ B. Adsorption of copper and zinc from aqueous solutions byusing natural clay [J].Journal of Hazardous Materials,2007,149:226-233.
    [15] XU S, WANG J, WU R, et al. Adsorption behaviors of acid and basic dyes oncrosslinked amphoteric starch [J]. Chemical Engineering Journal,2006,117:161–167.
    [16] ANNADURAI G, JUANG R S, LEE D J. Use of cellulose-based wastes foradsorption of dyes from aqueous solutions [J]. Journal of Hazardous Materials,2002, B92:263–274.
    [17] MOHANTY K, NAIDU J T, MEIKAP B C, et al. Removal of crystal violet fromwastewater by activated carbons prepared from rice husk [J]. Industry&Engineering Chemistry Research,2006,45(14):5165–5171.
    [18] VASANTH KUMAR K, RAMAMURTHI V, SIVANESAN S. Modeling themechanism involved during the sorption of methylene blue onto fly ash [J].Journal of Colloid and Interface Science,2005,284:14–21.
    [19] LINA J X, ZHAN S L, FANG M H,et al. Adsorption of basic dye from aqueoussolution onto fly ash [J].Journal of Environmental Management,2008,87:193-200.
    [20] WANG S, BOYJOO Y, CHOUEI A. Removal of dyes from aqueous solutionusing fly ash and red mud [J]. Water Research,2005,39:129-138.
    [21] LI L, WANG S, ZHU Z. Geopolymeric adsorbents from fly ash for dye removalfrom aqueous solution [J]. Journal of Colloid and Interface Science,2006,300:52–59.
    [22] WANG S, ZHU Z H. Sonochemical treatment of fly ash for dye removal fromwastewater [J].Journal of Hazardous Materials,2005, B126:91–95.
    [23] WANG S, BOYJOO Y, CHOUEIB A. A comparative study of dye removalusing fly ashtreated by different methods [J]. Chemosphere,2005,60:1401-1407.
    [24] WANG C, LI J, WANG L. Adsorption of Dye from Wastewater by ZeolitesSynthesized from Fly Ash: Kinetic and Equilibrium Studies [J].Chinese Journalof Chemical Engineering,2009,17(3):513-521.
    [25] YE Y, ZENG X, QIAN W. Synthesis of pure zeolites from supersaturated siliconand aluminum alkali extracts from fused coal fly ash [J]. Fuel,2008,87:1880–1886.
    [26]WANG SB,BOYJOO Y,CHOUEIB A.Zeolitisation of fly ash for sorption of dyesin aqueous solutions [J]. Studies in Surface Science and Catalysis,2005,158:161-168.
    [27] MALL I D, SRIVASTAVA V C, AGARWAL N K, et al.Removal of Congo redfrom aqueous solution by bagasse fly ash and activated carbon: kinetic study andequilibrium isotherm analyses [J]. Chemosphere,2005,61:492-501.
    [28]WANG S,ZHU ZH,COOMES A,et al.The physical and surface chemicalcharacteristics of activated carbons and the adsorption of methylene blue fromwastewater [J]. Journal of Colloid and Interface Science,2005,284(2):440-446.
    [29] VADIVELAN V,VASANTH KUMAR K. Equilibrium,kinetics,mechanism,and Process design for the sorption of methylene blue onto rice husk [J].Journalof Colloid and Interface Seience,2005,286(1):90-100.
    [30] WARANUSANTIGUL P,POKETHITIYOOK P,KRUATRACHUE M, etal.Kinetics of basic dye (methylene blue) biosorption by giant duckweed(spirodela polyrrhiza)[J]. Environmental Pollution,2005,125(3):385-392.
    [31] KUMAR K V. Linear and non-linear regression analysis for the sorption kineticsof methylene blue onto activated carbon [J]. Journal of Hazardous Materials,2006,137(3):1538–1544.
    [32] REDDAD Z, GERENTE C, ANDRES Y, et al. Adsorption of several metal ionsonto a low-cost biosorbent: kinetic and equilibrium studies, EnvironmentalScience&Technology [J].2002,36(9):2067–2073.
    [33] OZACAR M, SENGIL I A. A two stage batch adsorber design for methyleneblue removal to minimize contact time [J]. Journal of EnvironmentalManagement,2006,80(4):372–379.
    [34] RUDZINSKI W, PLAZINSKI W. Kinetics of solute adsorption at solid/solutioninterfaces: a theoretical development of the empirical pseudo-first andpseudo-second order kinetic rate equations, based on applying the statistical ratetheory of interfacial transport [J].The Journal of Physical Chemistry B,2006,110(33):16514–16525.
    [35] ZHANG Z, MOGHADDAM L, O’HARA I M, et al.Congo Red adsorption byball-milled sugarcane bagasse [J]. Chemical Engineering Journal,2011,178:122-128.
    [1]KANAMORI K, AIZAWA M,NAKANISHI K, et al. New transparentmethylsilsesquioxane aerogels and xerogels with improved mechanical properties[J]. Advanced Materials,2007,19:1589–1593.
    [2] WEI T Y, LU S Y, CHANG Y C. A new class of opacified monolithic aerogels ofultralow high-temperature thermal conductivities [J]. The Journal of PhysicalChemistry C,2009,113:7424–7428.
    [3] AL-YASSIR N, VAN MAO R L. Thermal stability of alumina aerogel doped withyttrium oxide, used as a catalyst support for the thermocatalytic cracking (TCC)process: an investigation of its textural and structural properties [J]. AppliedCatalysis A,2007,317:275–283.
    [4] TAO Y S, ENDO M, KANEKO K. Hydrophilicity-controlled carbon aerogelswith high mesoporosity [J]. Journal of the Ameican Chemical Society,2009,131:904–905.
    [5] BAUMANN T F, GASH A E, CHINN S C,et al.Synthesis of high-surface-areaalumina aerogels without the use of alkoxide precursors [J]. Chemistry ofMaterials,2005,17:395–401.
    [6] GURAV J L, NADARGI D Y, RAO A V. Effect of mixed Catalysts system onTEOS based silica aerogels dried at ambient pressure [J]. Applied SurfaceScience,2008,255:3019–3027.
    [7] ZHAO Z Q, JIAO X L, CHEN D R. Preparation of TiO2aerogels by a sol-gelcombined solvothermal route [J]. Journal of Materials Chemistry,2009,19:3078–3083.
    [8] MCHALE J M, AUROUX A, PERROTTA A J, et al. Surface energies andthermodynamic phase stability in nanocrystalline aluminas [J]. Science,1997,277:788-791.
    [9] JI L, LIN J, TAN K L,et al. Synthesis of high-surface-area alumina usingaluminum tri-sec-butoxide-2,4-pentanedione-2-propanol-nitric acid precursors[J]. Chemistry of Materials,2000,12:931–939.
    [10] SUN Z X, ZHENG T T, BO Q B, et al. Effects of calcination temperature on thepore size and wall crystalline structure of mesoporous alumina [J]. Journal ofColloid Interface Science,2008,319:247-251.
    [11] TOKUDOME Y,NAKANISHI K,KANAMORI K, et al. Structuralcharacterization of hierarchically porous alumina aerogel and xerogel monoliths[J]. Journal of Colloid and Interface Science,2009,338:506-513
    [12] WU L, HUANG Y, WANG Z, et al. Fabrication of hydrophobic alumina aerogelmonoliths by surface modification and ambient pressure drying [J]. AppliedSurface Science,2010,256:5973-5977.
    [13] ZU G, SHEN J, WEI X, et al. Preparation and characterization of monolithicalumina aerogels [J]. Journal of Non-Crystalline Solids,2011,357:2903-2906.
    [14] AN B, JI G, WANG W, et al. Azeotropic distillation-assisted preparation ofnanoscale gamma-alumina powder from waste oil shale ash [J]. ChemicalEngineering Journal,2010,157:67–72.
    [15] AN B, WANG W, JI G,et al. Preparation of nano-sized a-Al2O3from oil shaleash [J]. Energy,2010,35:45-49.
    [16] JI G, LI M, LI G,et al. Hydrothermal synthesis of hierarchical micron flower-likeγ-AlOOH and γ-Al2O3superstructures from oil shale ash [J]. Powder Technology,2012,215-216:54–58.
    [17]NADARGI D Y, RAO A V. Methyltriethoxysilane: New precursor forsynthesizing silica aerogels [J]. Journal of Alloys and Compounds,2009,467:397-404.
    [18]徐子颉,甘礼华,庞颖聪,等.常压干燥法制备Al2O3块状气凝胶[J].物理化学学报,2005,21(2):221-224.
    [19] SARAWADE P B, KIM J K, HILONGA A,et al. Production of low-densitysodium silicate-based hydrophobic silica aerogel beads by a novel fast gelationprocess and ambient pressure drying process [J]. Solid State Sciences,2010,12:911-918.
    [20] LEE S, CHA Y C, HWANG H J, et al. The effect of pH on the physicochemicalproperties of silica aerogels prepared by an ambient pressure drying method [J].Materials Letters,2007,61:3130-3133.
    [21] YANG J, CHEN J, SONG J. Studies of the surface wettability and hydrothermalstability of methyl-modified silica films by FT-IR and Raman spectra [J].Vibrational Spectroscopy,2009,50:178–184.
    [22] SAH A, CASTRICUM H L, BLIEK A, et al. Hydrophobic modification ofγ-alumina membranes with organochlorosilanes [J]. Journal of Membrane Science,2004,243:125-132.
    [23] RAO A P, RAO A V, PAJONK G M. Hydrophobic and physical properties ofthe ambient pressure dried silica aerogels with sodium silicate precursor usingvarious surface modification agents [J]. Applied Surface Science,2007,253:6032–6040.
    [24] BHAGAT S D, KIM Y H, SUH K H,et al. Superhydrophobic silica aerogelpowders with simultaneous surface modification, solvent exchange and sodiumion removal from hydrogels [J]. Microporous and Mesoporous Materials,2008,112:504–509.
    [25] MOHANAN J L, BROCK S L. Influence of Synthetic and Processing Parameterson the Surface Area, Speciation, and Particle Formation in Copper Oxide/SilicaAerogel Composites [J]. Chemistry of Materials,2003,15:2567-2576.
    [1] JEON C, HOLL W H. Application of the surface complexation model to heavymetal sorption equilibria on to aminated chitosan [J]. Hydrometallurgy,2004,71:421-428.
    [2] TAN T W, HE X J, DU W X. Adsorption behavior of metal ions on imprintedchitosan adsorbent [J].Journal of Chemical Technology&Biotechnology,2001,76:191-195.
    [3] ZHU Y, HU J, WANG J. Competitive adsorption of Pb(II), Cu(II) and Zn(II) ontoxanthate-modified magnetic chitosan [J]. Journal of Hazardous Materials,2012,221-222:155-161.
    [4] ZHOU L, WANG Y, LIU Z,et al. Characteristics of equilibrium, kinetics studiesfor adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magneticchitosan microspheres [J]. Journal of Hazardous Materials,2009,161:995-1002.
    [5] ZHOU L, LIU Z, LIU J, et al. Adsorption of Hg(II) from aqueous solution byethylenediamine-modified magnetic crosslinking chitosan microspheres [J].Desalination,2010,258:41-47.
    [6] DINU M V, DRAGAN E S. Evaluation of Cu2+, Co2+and Ni2+ions removal fromaqueous solution using a novel chitosan/clinoptilolite composite: Kinetics andisotherms [J]. Chemical Engineering Journal,2010,160:157-163.
    [7] SWAYAMPAKULA K, BODDUB V M, NADAVAL S K,et al. Competitiveadsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueoussolutions using chitosan-coated perlite beads as biosorbent [J]. Journal ofHazardous Materials,2009,170:680-689.
    [8] TIRTOM V N, DINCER A, BECERIK S,et al. Comparative adsorption of Ni(II)and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads inaqueous solution [J]. Chemical Engineering Journal,2012,197:379-386.
    [9] FUTALAN C M, KAN C C, DALIDA M L, et al. Comparative and competitiveadsorption of copper, lead, and nickel using chitosan immobilized on bentonite [J].Carbohydrate Polymers,2011,83:528-536.
    [10] LIU X D,TOKURA S,HARUKI M,et al. Surface modification of nonporousglass beads with chitosan and their adsorption property for transition metal ions[J]. Carbohydrate Polymers,2002,49:103-108.
    [11] CHEN A H, LIU S C, CHEN C Y, et al. Comparative adsorption of Cu(II),Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan withepichlorohydrin [J]. Journal of Hazardous Materials,2008,154:184-191.
    [12] WAN NGAH W S, FATINATHAN S. Adsorption characterization of Pb(II) andCu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium andthermodynamic studies [J]. Journal of Environmental Management,2010,91:958-969.
    [13] TANYOLAC D, OZDURAL A R. A new low cost magnetic material: magneticpolyvinylbutyral microbeads [J]. Reactive and Functional Polymers,2000,43:279-286.
    [14] VIEIRA R S, BEPPU M M. Dynamic and static adsorption and desorption ofHg(II) ions on chitosan membranes and spheres [J]. Water Research,2006,40:1726-1734.
    [15] CHANG Y C, CHANG S W, CHEN D H. Magnetic chitosan nanoparticles:studies on chitosan binding and adsorption of Co(II) ions [J]. Reactive andFunctional Polymers,2006,66:335-341.
    [16] LIAO M H, CHEN D H. Preparation and characterization of a novel magneticnano-adsorbent [J]. Journal of Materials Chemistry,2002,12:3654-3659.
    [17] CHANG Y C, CHEN D H. Preparation and adsorption properties ofmonodisperse chitosan-bound Fe3O4magnetic nanoparticles for removal ofCu(II) ions [J]. Journal of Colloid Interface Science,2005,283:446-451.
    [18] QU S, YANG H, REN D, et al. Magnetite Nanoparticles Prepared byPrecipitation from Partially Reduced Ferric Chloride Aqueous Solutions [J].Journal of Colloid Interface Science,1999,215:190-192.
    [19] ZAWADZKI J, KACZMAREK H. Thermal treatment of chitosan in variousconditions [J]. Carbohydrate Polymers,2010,80:394-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700