用户名: 密码: 验证码:
女性系统性红斑狼疮若干基因的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统性红斑狼疮(systemic lupus erythematosus, SLE)是一慢性非传染性自身免疫疾病,遗传和环境因素在SLE的发病过程中均起重要作用。本研究采用病例对照研究、单纯病例研究及家系相关性研究设计,应用聚合酶链式反应(Polymerase Chain Reaction, PCR)-限制性片段长度多态性(Restriction Fragment Length Polymorphism, RFLP)等分子生物学技术,对中国长江以南汉族女性人群细胞毒性T淋巴细胞相关抗原4 (cytotoxic T lymphocyte-associated antigen 4, CTLA-4)、程序性细胞凋亡1 (programmed cell death-1, PDCD1)、甲基化CpG结合蛋白2(Methyl-CpG-binding protein 2, MECP2)基因的多态性,以及CTLA-4、PDCD1基因多态与环境因素的交互作用与SLE的相关性进行探索性研究。结果如下:
     一、系统性红斑狼疮CTLA-4、PDCD1基因多态与环境因素及其交互作用的研究
     (一)、系统性红斑狼疮CTLA-4、PDCD1基因多态性研究
     1.病例组与对照组CTLA-4基因启动子区-318位点基因型分布与等位基因频率差异均不存在统计学意义(χ2=2.248,P=0.325;χ2=0.80,P=0.370)。
     2.病例组与对照组CTLA-4基因启动子区-1722位点基因型分布不同,差异存在统计学意义(χ2=9.300,P=0.010),以CC基因型为参照,携带TC基因型者,其SLE患病风险升高(OR=2.004,95%CI:1.013-3.968),携带TT基因型者,其SLE患病风险也升高(OR=2.953,95%CI:1.451-6.010);病例组T等位基因频率高于对照(χ2=9.110,P=0.003),提示T等位基因可能增加SLE的易感性(OR=1.664,95%CI:1.194-2.318)。
     3.病例组与对照组PDCD1基因PD1.2位点基因型分布不同,差异存在统计学意义(χ2=20.596,P<0.001),以AA基因型为参照,携带AG基因型的个体,其SLE患病风险升高(OR=2.917,95%CI:1.780-4.780),携带GG基因型的个体,其SLE患病风险也升高(OR=3.111,95%CI:1.284-7.537);病例组G等位基因频率高于对照(χ2=17.000,P<0.001),提示G等位基因可能增加SLE的易感性(OR=2.121,95%CI:1.479-3.042)。
     4.病例组与对照组PDCD1基因PD1.5位点基因型分布不同,差异存在统计学意义(χ2=7.235,P=0.027),以CC基因型为参照,携带TC基因型者,其SLE患病风险升高(OR=1.681,95%CI:1.039-2.718);病例组T等位基因频率高于对照(χ2=6.020,P=0.014),提示T等位基因可能增加SLE的易感性(OR=1.661,95%CI:1.105-2.496)。
     5.病例组与对照组PDCD1基因PD1.6位点基因型频率分布不同,差异存在统计学意义(χ2=7.658,P=0.022),以AA基因型为参照,携带AG基因型的个体,其SLE患病风险升高(OR=1.756,95%CI:1.085-2.841);病例组G等位基因频率高于对照(χ2=7.070,P=0.008),提示G等位基因可能增加SLE的易感性(OR=1.698,95%CI:1.147-2.514).
     6.连锁不平衡检验显示,病例和对照人群CTLA-4基因-1722位点与-318位点等位基因之间未见连锁不平衡(D'=0.363,P>0.05):PDCD1基因PD1.2与PD1.5位点及PD1.2与PD1.6位点等位基因两两之间呈不完全连锁不平衡(D’=0.195,P<0.05:D'=0.035,P<0.05)。
     7.单倍型在病例与对照组的分布分析结果提示,由PD1.2G/A.PDl.5C/T. PD1.6G/A等位基因组成的A-C-A.G-T-A及G-C-G单倍型均与SLE有关,其他单倍型未发现显著性。在相加遗传模型中,G-T-A与G-C-G单倍型均与SLE相关(β=1.6619,Z=3.4976,P=0.0005,OR=5.2693;β=1.5567,Z=2.8338,P=0.0046,OR=4.7431),提示以不具有某种单倍型为参照,携带G-T-A和G-C-G单倍型的个体,其SLE患病风险均升高;在显性模型中,G-T-A与G-C-G单倍型也均与SLE相关(β=1.5799,Z=3.9499,P=0.0001,OR=4.8545;β=1.5722,Z=3.5024,P=0.0005,OR=4.8172),提示以不具有某种单倍型为参照,携带G-T-A和G-C-G单倍型的个体,其SLE患病风险升高;在隐性遗传模型中,A-C-A单倍型与SLE呈负相关(β=-0.8062,Z=-3.0525,P=0.0023,OR=0.4466),提示以不具有A-C-A单倍型为参照,携带A-C-A单倍型的个体,其SLE患病风险明显降低。且上述三个遗传模型中以相加模型最优(AIC值最小)。
     (二)、系统性红斑狼疮基因多态与环境危险因素的多因素分析
     1.多因素非条件Logistic回归分析表明,在遗传因素方面,在相加遗传模型中,CTLA-4基因-1722位点TT基因型(以CC基因型为参照)以及PD1.6位点AG基因型(以AA基因型为参照)均与SLE易感性有关;在显性遗传模型中,仅PD1.6位点AG或GG基因型(以AA基因型为参照)与SLE易感性有关;在隐性遗传模型中,仅CTLA-4基因-1722位点TT基因型(以CC基因型为参照)与SLE易感性有关。而在环境因素方面,冻疮史、居住环境潮湿史、光敏感史、紫外线暴露史、麻疹史及有害物质接触史在上述3种遗传模型中均为SLE的危险因素。且上述3个模型中以相加模型最优(AIC最小)。
     2.多因素非条件Logistic回归分析表明,在遗传因素方面,在相加遗传模型中,以不具有某种单倍型为参照,PDCD1基因的G-T-A与G-C-G单倍型均与SLE易感性有关;在显性遗传模型中,以不具有某种单倍型为参照,PDCD1基因G-T-A与G-C-G单倍型也均与SLE易感性有关;在隐性遗传模型中,以不具有某种单倍型为参照,PDCD1基因A-C-A单倍型与SLE呈负相关,提示A-C-A可能为SLE的保护单倍型;A-T-G单倍型与SLE的相关性在3个模型中均无显著的统计学意义。而在环境因素方面,冻疮史、居住环境潮湿史、光敏感史、紫外线暴露史、麻疹史及有害物质接触史在上述3种遗传模型下均为SLE的危险因素。且上述3种模型种以相加模型最优(AIC值最小)。
     (三)、系统性红斑狼疮基因多态与环境危险因素的交互作用研究
     1.对数线性模型分析结果显示,细胞凋亡生物学通路上可能存在凋亡相关基因与环境危险因素的交互作用,而未发现凋亡基因间及环境危险因素间的交互作用。在由CTLA-4基因-1722位点、PDCD1基因PD1.6位点、紫外线暴露史及年龄构建的模型中,按最优模型进行参数估计,在相加遗传模型中,CTLA-4-1722位点TT基因型与紫外线暴露史存在交互作用,OR值为4.744(95%CI:1.037-21.737);且TC基因型与紫外线暴露史也存在交互作用,OR值为4.973(95%CI:1.110-22.287);在PD1.6位点,GG基因型与紫外线暴露史存在交互作用,OR值为3.199(95%CI:1.023-10.004),而AG基因型未发现交互作用。在显性遗传模型中,CTLA-4-1722位点的TT或TC基因型与紫外线暴露史存在交互作用,OR值为4.874(95%CI:1.119-21.242);而在PD1.6位点基因型未发现交互作用。在隐性遗传模型中,CTLA-4-1722位点基因型未发现交互作用;PD1.6位点GG基因型与紫外线暴露史间存在交互作用,OR值为3.714(95%CI:1.235-11.179)。
     2.基因多态与环境危险因素间交互作用的Logistic回归分析表明,从基因型角度,仅在相加遗传模型中,发现CTLA-4基因-1722位点TT基因型与紫外线暴露史间存在显著的统计学上的交互作用(β=3.250,P=0.041),其他遗传模型中未发现具有显著性统计学意义的交互作用,其他基因多态与环境危险因素间的交互作用也未见统计学上的显著性:从单倍型角度,不同遗传模型中的基因多态与环境危险因素间的交互作用也未发现统计学上的显著性。
     二、系统性红斑狼疮MECP2基因的多态性研究
     (一)、系统性红斑狼疮以人群为基础的相关性研究
     1.病例组与对照组MECP2基因rs2239464位点基因型分布不同,差异存在统计学意义(χ2=6.902,P=0.009),以AG和GG基因型为参照,携带AA基因型的个体,其患病风险升高(OR=2378,95%CI:1.246-4.537);病例组A等位基因频率高于对照(z2=6.73,P=0.009),提示A等位基因可能增加SLE的易感性(OR=2.170,95%CI:1.196-3.937).
     2.病例组与对照组MECP2基因rs2075596位点基因型频率分布不同,差异存在统计学意义(χ2=14.432,P<0.001),以AG和GG基因型为参照,携带AA基因型的个体,其患病风险升高(OR=3.259,95%CI:1.772-5.995);病例组A等位基因频率高于对照(χ2=14.16,P<0.001),提示A等位基因可能增加SLE的易感性(OR=2.807,95%CI:1.613-4.884).
     3.连锁不平衡检验显示,病例和对照人群MECP2基因rs2239464与rs2075596位点等位基因之间呈不完全连锁不平衡(D’=0.19,P<0.05)。
     4.单倍型在病例与对照组的分布分析结果提示,由MECP2基因rs2239464A/G与rs2075596A/G等位基因组成的A-A及G-G单倍型与SLE有关,其余单倍型未见统计学上的显著性。在相加遗传模型中,A-A为SLE的危险性单倍型(β=1.0038, Z=2.7300, P=0.0063,OR=2.7286),提示以不具有A-A单倍型为参照,携带A-A单倍型的个体,其SLE患病风险升高;在显性遗传模型下,G-G为SLE的保护性单倍型(β=-0.9080, Z=-2.4191, P=0.0156, OR =0.4033),提示以不具有G-G单倍型为参照,携带G-G单倍型的个体,其SLE患病风险降低;在隐性遗传模型下,A-A为SLE的危险性单倍型(β=1.0076,Z=3.5349,P=0.0004,OR=2.739),提示以不具有A-A单倍型为参照,携带A-A单倍型的个体,其SLE患病风险升高。且上述模型中以相加遗传模型最优。
     (二)系统性红斑狼疮的家系相关性研究
     1. MECP2基因传递不平衡检验分析表明,在父母双亲至少一方为杂合子的家系中,rs2239464位点A等位基因由杂合子父母向SLE患病子女的传递未见显著增加(χ2=0.2,P>0.05);单个位点家系关联性检验(family-based association test, FBAT)分析显示,在相加模型及隐性遗传模型中均提示rs2239464位点A等位基因与SLE易感性无关(Z=0.447, P=0.655; Z=0.447, P=0.655);
     2. MECP2基因传递不平衡检验分析表明,在父母双亲至少一方为杂合子的家系中,rs2075596位点A等位基因由杂合子父母向SLE患病子女的传递显著增加(z2=6,P<0.05);单个位点FBAT分析显示,在相加模型及隐性遗传模型中均表明rs2075596位点A等位基因增加SLE发病风险(Z=2.646,P=0.008;Z=2.646,P=0.008),提示rs2075596位点A等位基因可能是SLE的保守易感等位基因。
Systemic lupus erythematosus(SLE) is a chronic noninfectious autoimmune disease, both genetic factors and environmental factors play important roles in the development of this disease. In order to explore the association of the genetic variations of several genetic factors (including cytotoxic T lymphocyte-associated antigen 4, programmed cell death-1, and Methyl-CpG-binding protein 2) with SLE, as well as interactions between genetic factors (including cytotoxic T lymphocyte-associated antigen 4 and programmed cell death-1) and environmental factors for SLE in Han nationality females in Southern regions of Yangtze River in China, study designs as case-control, case-only and family-based association were adopted, with the aid of some molecular biologic techniques, such as polymerase chain reaction(PCR) and restriction fragement length polymorphism(RFLP). The results are as follows:
     Part I Study on the main effect and interaction effect of genetic polymorphisms of the CTLA-4 and PDCD1 and environmental factors for SLE
     The study on association of genetic polymorphisms of the CTLA-4 and PDCD1 with SLE
     1. For locus CTLA-4 -318, both genotypic and allelic frequencies were not significantly different between SLE patients and controls (x2=2.248, P=0.325; x2=0.08, P=0.370).
     2. For locus CTLA-4-1722, the results showed that genotypic frequency in case group was significantly different from that in control group (x2=9.300, P=0.010) Individuals with genotype TC or TT had a higher onset risk of SLE as compared with those having genotype CC, with OR=2.004 for TC (95%CI: 1.013-3.968) and OR=2.953 for TT (95%CI:1.451-6.010). For the allelic frequencies of locus-1722, there was also significant difference between patients and controls (x2=9.110, P=0.003). There was a higher proportion of allele-1722T in SLE patients than that in controls, which may imply that the T allele of -1722 may increase the risk for SLE (OR=1.664,95%CI:1.194-2.318)
     3. For locus PDCD1-PD1.2, the results showed that genotypic frequency in case group was significantly different from that in control group (x2=20.596, P<0.001). Individuals with genotype AG or GG had a higher onset risk of SLE as compared with those having genotype AA(OR=2.031 for AG,95%CI:1.445-2.856; OR=3.111 for GG, 95%CI:1.284- 7.537). For the allelic frequency of PD1.2, there was significant difference between patients and in controls (x2=17.000, P<0.001), and there was a higher proportion of allele G in SLE patients than that in controls, which indicates that the G allele of PD1.2 may increase the risk for SLE(OR=2.121,95%CI: 1.479-3.042)
     4. For locus PDCD1-PD1.5, the results showed that genotypic frequency in case group was significantly different from that in control group (x2=7.235, P=0.027) Individuals with genotype TC had a higher onset risk of SLE as compared with those having genotype CC(OR=1.681,95%CI:1.039-2.718). For the allelic frequency of PD1.5, there was significant difference between patients and controls (x2=6.020, P=0.014), and there was a higher proportion of allele G in SLE patients than that in controls, which indicates that the T allele of PD1.5 may increase the risk for SLE(OR= 1.661,95%CI:1.105-2.496)
     5. For locus PDCD1-PD1.6, the results showed that genotypic frequency in case group was significantly different from that in control group (x2=7.658,P=0.022) Individuals with genotype AG had a higher onset risk of SLE as compared with genotype AA(OR=1.756,95%CI:1.085-2.841). For the allelic frequencies of PD16, there was also significant difference between patients and controls (x2=7.070, P=0.008), and there was a higher proportion of allele G in SLE patients than that in controls, which indicates that the G allele of PD1.6 may increase the risk for SLE(OR=1.698,95%CI:1.147-2.514)
     6. It was found that there was significant linkage disequilibrium between alleles of the locus PD1.2 and PD1.5, as well as between the alleles of the locus PD1.2 and PD1.6 of PDCD1 gene (D'=0.195, R0.05; D'=0.035, R0.05). However, no significant difference was found between alleles of two polymorphic sites of CTLA-4 gene (D'=0.363,P>0.05)
     7. It was found that the frequencies of haplotypes in PDCD1 gene were significantly different between SLE patients and controls. The haplotypes of A-C-A, G-T-A and G-C-G that were composed of the alleles of PD1.2, PD1.5 and PD1.6 were found significantly associated with SLE, while other haplotypes were not shown any significant association with SLE. When using individuals with no certain haplotype as reference, the haplotype of G-T-A and G-C-G in PDCD1 gene had a higher onset risk of SLE under the additive model (for G-T-A,β=1.6619, Z=3.4976, P=0.0005, OR=5.2693;for G-C-G,β=1.5567, Z=2.8338, P=0.0046,OR=4.7431); and the same effect was shown under the dominant model for haplotype G-T-A and G-C-G (for G-T-A,β=1.5799, Z=3.9499, P=0.0001, OR=4.8545; for G-C-G,β=1.5722, Z=3.5024, P=0.0005,OR=4.8172); whereas the haplotype of A-C-A in PDCD1 showed a protective effect on SLE under the recessive model(β=-0.8062, Z=-3.0525, P=0.0023, OR=0.4466). Moreover, the additive model was selected as the optimal model according to the value of Akaike's information criterion(AIC).
     Multiple logistic regression analysis of genes and environmental factors for SLE
     1. The multiple logistic regression model was fitted to by the variables of the relevant genotypes of CTLA-4, PDCD1 and environmental factors. It was shown that both genotypes of TT on -1722 site and AG on PD1.6 site were associated with SLE as compared with genotypes of CC and AA, respectively, under the additive model; and genotype of AG on PD1.6 site was associated with SLE as compared with genotype of AA under the dominant model; while genotype of TT on -1722 site was associated with SLE as compared with genotype of CC under the recessive model. However, the history of chilblain, damp of inhabited environment, photosensitivity, ultraviolet exposure, measles and hazardous substances exposure increased the onset risk of SLE under any of the above models. Moreover, the additive model was selected as the optimal model according to the value of AIC.
     2. The multiple logistic regression model was fitted to by the variables of the relevant haplotypes of PDCD1 and environmental factors. When using individuals with no certain haplotype as reference, it was shown that both the haplotypes of G-T-A and G-C-G in PDCD1 gene had higher onset risk of SLE under the additive model and dominant model, respectively; while the haplotype of A-C-A in PDCD1 showed a protective effect on SLE under the recessive model; and the haplotype of A-T-G was not responsible for the susceptibility of SLE in any of the above models. However, the history of chilblain, damp of inhabited environment, photosensitivity, ultraviolet exposure, measles and hazardous substances exposure increased the onset risk of SLE under any of the above models. Moreover, the additive model was selected as the optimal model according to the value of AIC.
     Interactions of gene polymorphisms of CTLA-4 and PDCD1 with environment risk factors for SLE
     1. In case-only study, we performed log-linear model analysis, the results showed that there were interactions between the genetic polymorphisms of CTLA-4 and PDCD1 and environmental factor. However, no interactions were found between genetic polymorphisms of CTLA-4 and PDCD1, and environmental factors. For the model composed of ultraviolet exposure history, locus-1722 of CTLA-4 gene and locus PD1.6 of PDCD1, according to the optimal model, it was found that interaction existed between the genotype of TT on -1722 site and ultraviolet exposure (OR=4.744,95% CI:1.037-21.737), as well as between the genotype of TC on -1722 site and ultraviolet exposure (OR=4.973,95% CI:1.110-22.287) under the additive model; and interaction was also found existed between the genotype of GG on PD1.6 site and ultraviolet exposure (OR=3.199,95% CI:1.023-10.004),while no statistical siginificance was found for interaction between the genotype of GG genotype on PD1.6 site and ultraviolet exposure under the additive model. For CTLA-4 locus, there existed interactions between the genotype of TT or TC on -1722 site and ultraviolet exposure under the dominant model (OR=4.874,95% CI:1.119-21.242); while no evidence was found that there were statistical significance for interaction between the genotypes on PD1.6 site and ultraviolet exposure under the dominant model. Moreover, interaction between the genotype of GG on PD1.6 site and ultraviolet exposure was found existed under the recessive model (OR=3.714,95% CI:1.235-11.179)
     2. In case-control study, we performed logistic regression analysis. The results showed that except for the interaction existed between the genotype of TT on -1722 site and UV exposure history (β=3.250, P=0.041) under the additive model, no statistical significance was found under other genetic models between the former two factors and between other genetic polymorphisms and risk environmental factors under different genetic models both from the view of genotype and haplotype.
     PartⅡStudy on the association of genetic polymorphisms of MECP2 with SLE
     Population-based genetic association study for SLE
     1. For locus MECP2-rs2239464, the results showed that genotypic frequency in case group was significantly different from that in control group (x2=6.902, P=0.009) Individuals with genotype AA had a higher onset risk of SLE as compared with those having genotype AG and GG(OR=2.378,95%CI:1.246-4.537). For the allelic frequencies of rs2239464, there was significant difference between patients and controls (x2=6.73, P=0.009), There was a higher proportion of allele A in SLE patients than that in controls, which indicates that the A allele of rs2239464 may increase the risk for SLE(OR=2.170,95%CI:1.196-3.937)
     2. For locus MECP2-rs2075596, the results showed that genotypic frequency in case group was significantly different from that in control group (x2=14.432, P<0.001). Individuals with genotype AA had a higher onset risk of SLE as compared with those having genotype AG and GG(OR=3.259,95%CI: 1.772-5.995). For the allelic frequencies of rs2075596, there was significant difference between patients and controls (x2=14.16, P<0.001). There was a higher proportion of allele A in SLE patients than that in controls, which indicates that the A allele of rs2075596 may increase the risk for SLE (OR=2.807,95%CI:1.613-4.884)
     3. It was found that there was significant linkage disequilibrium between the two sites of MECP2 gene (D'=0.19,P<0.05)
     4. The frequencies of haplotypes in MECP2 gene were significantly different between SLE patients and controls. The haplotypes of A-A and G-G that composed of the alleles of rs2239464A/G and rs2075596A/G were found significantly associated with SLE, while other haplotypes did not show any statistical significance. When using individuals with no certain haplotype as reference, the haplotype of A-A in MECP2 gene had a higher onset risk of SLE under the additive model (β=1.0038, Z=2.7300, P=0.0063, OR=2.7286); and the haplotype of G-G in MECP2 gene had a lower onset risk of SLE under the dominant model (β=-0.9080, Z=-2.4191,P=0.0156, OR=0.4033); while the haplotype of A-A in MECP2 gene had a higher onset risk of SLE under the recessive model (β=1.0076, Z=3.5349, P=0.0004, OR=2.739) Moreover, the additive model was selected as the optimal model according to the value of AIC.
     The family-based association test on SLE
     1. The transmission disequilibrium test showed that rs2239464 may not increase the transmission of the A allele from heterozygous parents to affected offspring (x2=0.2, P>0.05); and univariate (single-marker) family-based association tests demonstrated that alleles at SNP rs2239464 of the MECP2 gene was not associated with genetic susceptibility to SLE under either of the additive and recessive model, independently (for additive model, Z=0.447, P=0.655; for recessive model, Z=0.447, P=0.655)
     2. The transmission disequilibrium test showed that rs2075596 have an excess of transmission of the A allele from heterozygous parents to affected offspring (x2=6, P<0.05); and univariate (single-marker) family-based association tests demonstrated that A allele at rs2075596 site of the MECP2 gene was significantly associated with genetic susceptibility to SLE under additive and recessive mode, independently (for additive model, Z=2.646, P=0.008; for recessive model, Z=2.646, P=0.008), which indicates that A allele at rs2075596 site of the MECP2 gene may be a conservative susceptible allele.
引文
[1]Dabid P.系统性红斑狼疮.美国医学杂志中文版[J],2006,9(6):236-241.
    [2]Petri M. Epidemiology of systemic lupus erythematosus[J]. Best Practice & Research in Clinical Rheumatology,2002,16(5):847-858.
    [3]Danchenko N, Satia J, Anthony M. Epidemiology of systemic lupus erythematos-us:a comparison of worldwide disease burden[J]. Lupus,2006,15(5):308-318.
    [4]Wang J, Yang S, Chen JJ, et al. Systemic lupus erythematosus:a genetic epidemiology study of 695 patients from China[J]. Archives of Dermatological Research,2007,298(10):485-491.
    [5]Burton PR, Tobin MD, Hopper JL. Key concepts in genetic epidemiology[J]. Lancet,2005,366(9489):941-951.
    [6]姜综敏,孟炜,吴文育,等.系统性红斑狼疮的家庭聚集性研究[J].复旦学报(医学版),2005,32(3):270-274.
    [7]陈顺乐,陈嘉何.系统性红斑狼疮[M].上海:上海科学技术出版社;2004:43
    [8]Stewart JJ. The female X-inactivation mosaic in systemic lupus erythematosus[J]. Immunology Today,1998,19(8):352-357.
    [9]Cordell HJ, Clayton DG. Genetic epidemiology 3:Genetic association studies[J]. Lancet,2005,366(9491):1121-1131.
    [10]Hopper JL, Bishop DT, Easton DF. Genetic Epidemiology 6:Population-based family studies in genetic epidemiology[J]. Lancet,2005,366(9494):1397-1406.
    [11]Simard JF, Costenbader KH. What can epidemiology tell us about systemic lupus erythematosus? [J]. International Journal of Clinical Practice,2007,61 (7):1170-1180.
    [12]Tsao BP. The genetics of human systemic lupus erythematosus[J]. Trends in Immunology,2003,24(11):595-602.
    [13]Cooper GS, Gilbert KM, Greidinger EL, et al. Recent advances and opportunities in research on lupus:Environmental influences and mechanisms of disease[J]. Environmental Health Perspectives,2008,116(6):695-702.
    [14]Sarzi-Puttini P, Atzeni F, Iaccarino L, et al. Environment and systemic lupus erythematosus:An overview[J]. Autoimmunity,2005,38(7):465-472.
    [15]Hunter DJ. Gene-environment interactions in human diseases[J]. Nature Reviews Genetics,2005,6(4):287-298.
    [16]Kraft P, Yen YC, Stram DO, et al. Exploiting gene-environment interaction to detect genetic associations[J]. Human Heredity,2007,63(2):111-119.
    [17]Olden K. Commentary:From phenotype, to genotype, to gene-environment interaction and risk for complex diseases[J]. International Journal of Epidemiology, 2007,36(1):18-20.
    [18]Gaffney PM, Kearns GM, Shark KB, et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(25):14875-14879.
    [19]Lindqvist AKB, Steinsson K, Johanneson B, et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q[J]. Journal of Autoimmunity,2000,14(2):169-178.
    [20]Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways[J]. Immunological Reviews,2008,224:166-182.
    [21]Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity,1999,11 (2):141-151.
    [22]Velazquez-Cruz R, Orozco L, Espinosa-Rosales F, et al. Association of PDCD1 polymorphisms with childhood-onset systemic lupus erythematosus[J]. European Journal of Human Genetics,2007,15(3):336-341.
    [23]Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus:Evidence of population-specific effects[J]. Arthritis and Rheumatism,2004,50(8):2590-2597.
    [24]Arbuckle MR, McClain MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus[J]. New England Journal of Medicine,2003,349(16):1526-1533.
    [25]Edwards CJ, Cooper C. Early environmental exposure and the development of lupus[J]. Lupus,2006,15(11):814-819.
    [26]Baxter AG, Horsfall AC, Healey D, et al. Mycobacteria precipitate an SLE-like syndrome in diabetes-prone NOD mice[J]. Immunology,1994,83(2):227-231.
    [27]Edwards CJ. Environmental factors and lupus: are we looking too late? [J]. Lupus, 2005,14(6):423-425.
    [28]Dempfle A, Scherag A, Hein R, et al. Gene-environment interactions for complex traits: definitions, methodological requirements and challenges[J]. European Journal of Human Genetics,2008,16(10):1164-1172.
    [29]Greenland S. Interactions in Epidemiology:Relevance, Identification, and Estimation[J]. Epidemiology,2009,20(1):14-17.
    [30]Schork NJ. Genetics of complex disease :Approaches, problems, and solutions[J]. American Journal of Respiratory and Critical Care Medicine,1997,156(4):S103-S109.
    [31]Schulte PA. A conceptual framework for the validation and use of biologic markers[J]. Environmental Research,1989,48(2):129-144.
    [32]Kauffmann F, Nadif R. Candidate gene-environment interactions[J]. Journal of Epidemiology and Community Health,2010,64(3):188-189.
    [33]Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease[J]. Journal of Clinical Investigation,2008,118(5): 1590-1605.
    [34]Collins FS, Green ED, Guttmacher AE, et al. A vision for the future of genomics research[J]. Nature,2003,422(6934):835-847.
    [35]Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 million SNPs[J]. Nature,2007,449(7164):851-U853.
    [36]Murcray CE, Lewinger JP, Gauderman WJ. Gene-Environment Interaction in Genome-Wide Association Studies[J]. American Journal of Epidemiology,2009, 169(2):219-226.
    [37]俞顺章,蔡琳,穆丽娜,等.单纯病例研究方法在流行病学中的应用[J].中华流行病学杂志,2003,5(24):406-409.
    [38]Hudson LL, Rocca K, Song YW, et al. CTLA-4 gene polymorphisms in systemic lupus erythematosus:a highly significant association with a determinant in the promoter region[J]. Human Genetics,2002,111(4-5):452-455.
    [39]周树录,叶任高,张虹,等CTLA-4基因启动子区-318位点多态性与SLE的相关性研究[J].新医学,2003,34(5):291-293.
    [40]Zhang WH, Collins A, Maniatis N, et al. Properties of linkage disequilibrium (LD) maps[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(26):17004-17007.
    [41]Dudbridge F. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data[J]. Human Heredity,2008,66(2):87-98.
    [42]Rebbeck TR, Spitz M, Wu XF. Assessing the function of genetic variants in candidate gene association studies[J]. Nature Reviews Genetics,2004,5(8):589-597.
    [43]Gibbs RA, Belmont JW, Hardenbol P, et al. The International HapMap Project[J]. Nature,2003,426(6968):789-796.
    [44]Palmer LJ, Cordon LR. Genetic Epidemiology 4 - Shaking the tree: mapping complex disease genes with linkage disequilibrium[J]. Lancet,2005,366(9492): 1223-1234.
    [45]Lin DY, Zeng D, Millikan R. Maximum likelihood estimation of haplotype effects and haplotype-environment interactions in association studies[J]. Genetic Epidemiology,2005,29(4):299-312.
    [46]Chikuma S, Bluestone JA. CTLA-4 and tolerance - The biochemical point of view[J]. Immunologic Research,2003,28(3):241-253.
    [47]Gribben JG, Freeman GJ, Boussiotis VA, et al. CTLA4 mediates antigen-specific apoptosis of human T-cells[J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(3):811-815.
    [48]Orbach A, Rachmilewitz J, Parnas M, et al. CTLA-4. FasL induces early apoptosis of activated T cells by interfering with anti-apoptotic signals[J]. Journal of Immunology,2007,179(11):7287-7294.
    [49]Salomon B, Bluestone JA. Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation[J]. Annual Review of Immunology, 2001,19:225-252.
    [50]Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited[J]. Annual Review of Immunology,2005,23:515-548.
    [51]Aguilar F, Torres B, Sanchez-Roman J, et al. CTLA4 polymorphism in Spanish patients with systemic lupus erythematosus[J]. Human Immunology,2003,64(10): 936-940.
    [52]Ahmed S, Ihara K, Kanemitsu S, et al. Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population[J]. Rheumatology,2001,40(6):662-667.
    [53]Long EO. Regulation of immune responses through inhibitory receptors[J]. Annual Review of Immunology,1999,17:875-904.
    [54]Sidorenko SP, Clark EA. The dual-function CD150 receptor subfamily:the viral attraction[J]. Nature Immunology,2003,4(1):19-24.
    [55]Probst HC, McCoy K, Okazaki T, et al. Resting dendritic cells induce peripheral CD8(+) T cell tolerance through PD-1 and CTLA-4[J]. Nature Immunology, 2005,6(3):280-286.
    [56]Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance[J]. Trends in Immunology,2006,27(4):195-201.
    [57]Dong HD, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis:A potential mechanism of immune evasion[J]. Nat Med, 2002,8:793-800.
    [58]Lee YH, Woo JH, Choi SJ, et al. Association of programmed cell death 1 polymorphisms and systemic lupus erythematosus:a meta-analysis[J]. Lupus,2009, 18(1):9-15.
    [59]Thorburn CM, Prokunina-Olsson L, Sterba KA, et al. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort[J]. Genes and Immunity,2007,8(4):279-287.
    [60]Hedrich CM, Fiebig B, Hauck FH, et al. Chilblain lupus erythematosus:a review of literature[J]. Clinical Rheumatology,2008,27(8):949-954.
    [61]Doutre MS, Beylot C, Beylot J, et al. Chilblain lupus erythematosus: report of 15 cases[J]. Dermatology,1992,184(1):26-28.
    [62]Millard LG, Rowell NR. Chilblain lupus erythematosus(Hutchinson).A clinical and laboratory study of 17 patients[J]. British Journal of Dermatology,1978,98(5): 497-506.
    [63]孟炜,沈福民,胡应,等.系统性红斑狼疮的遗传流行病学调查[J].中国公共卫生学报,1995,14(6):321-323.
    [64]赵丽娟,崔宁,杨娉婷,等.紫外线对系统性红斑狼疮患者外周血T淋巴细胞Fas抗原表达的影响[J].中华物理医学与康复杂志,2005,27:92-94.
    [65]陈崑,常宝珠,郑家润.红斑狼疮光敏感性发生机制的研究进展[J].国外医学皮肤性病学分册,2002,28(2):87-90.
    [66]Kind P, Lehmann P, Plewig G. Phototesting in lupus erythernatosus[J]. Journal of Investigative Dermatology,1993,100(1):S53-S57.
    [67]Lehmann P, Homey B. Clinic and pathophysiology of photosensitivity in lupus erythematosus[J]. Autoimmunity Reviews,2009,8(6):456-461.
    [68]Furukawa F. Antinuclear antibody-keratinocyte interactions in photosensitive cutaneous lupus erythematosus[J].Histology and Histopathology,1999,14(2):627-633.
    [69]梁俊琴,普雄明.紫外线与皮肤免疫[J].中国免疫学杂志,2009,25(9):863-865.
    [70]Orteu CH, Sontheimer RD, Dutz JP. The pathophysiology of photosensitivity in lupus erythematosus[J]. Photodermatology Photoimmunology & Photomedicine, 2001,17(3):95-113.
    [71]严慧,邓丹琪.紫外线照射表皮细胞后凋亡机制的研究进展[J].环境与职业医学,2008,25(3):322-325.
    [72]Reich A, Meurer M, Viehweg A, et al. Narrow-band UVB-induced Externalization of Selected Nuclear Antigens in Keratinocytes:Implications for Lupus Erythematosus Pathogenesis[J]. Photochemistry and Photobiology,2009,85(1):1-7.
    [73]叶冬青,李向培,郑惠玲,等.合肥市系统性红斑狼疮危险因素的研究[J].中国公共卫生学报,1997,13(6):338-339.
    [74]张六通,梅家俊,黄志红,等.外湿致病机理的实验研究[J].中医杂志,1999,40(8):496-498.
    [75]黄永.水痘-带状疱疹病毒免疫逃避机制的研究进展[J].国外医学免疫分册,2005,28(5):305-308.
    [76]Kang TY, Lee HS, Kim TH, et al. Clinical and genetic risk factors of herpes zoster in patients with systemic lupus erythematosus[J]. Rheumatology International, 2005,25(2):97-102.
    [77]Lee PPW, Lee TL, Ho MHK, et al. Herpes zoster in juvenile-onset systemic lupus erythematosus: Incidence, clinical characteristics and risk factors[J]. Pediatric Infectious Disease Journal,2006,25(8):728-732.
    [78]Yang QH, Khoury MJ. Evolving methods in genetic epidemiology.3. Gene-environment interaction in epidemiologic research[J]. Epidemiologic Reviews, 1997,19(1):33-43.
    [79]Rothman K, Greenland S. Modern Epidemiology[M]. Philadelphia: Lippincott-Raven,1998.
    [80]Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic-models and case-only designs for assessing susceptibilty in population-based case-control studies[J]. Statistics in Medicine,1994,13(2):153-162.
    [81]Gatto NM, Campbell UB, Rundle AG, et al. Further development of the case-only design for assessing gene-environment interaction: evaluation of and adjustment for bias[J]. International Journal of Epidemiology,2004,33(5):1014-1024.
    [82]Wang LY, Lee WC. Population stratification bias in the case-only study for gene-environment interactions[J]. American Journal of Epidemiology,2008,168(2): 197-201.
    [83]Li DL, Conti DV. Detecting Gene-Environment Interactions Using a Combined Case-Only and Case-Control Approach[J]. American Journal of Epidemiology,2009, 169(4):497-504.
    [84]Ishida M, Iwai Y, Tanaka Y, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1[J], in the cells of lymphohematopoietic tissues. Immunology Letters,2002,84(1):57-62.
    [85]齐媛媛,杨晓惠,孔令杰,等CTLA-4启动子区多态性与江南地区汉族人群SLE临床表型的相关性研究[J].复旦学报(医学版),2008,35:806-810.
    [86]孔令杰,彭晖,孟炜,等PDCD1和CD22基因多态与中国南方汉族人群系统性红斑狼疮相关性研究[J].中国预防医学杂志,2008,9:321-324.
    [87]Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses[J]. Immunity,2007,27(1):111-122.
    [88]Keir ME, Francisco LM, Sharpe AH. PD-1 and its ligands in T-cell immunity[J]. Current Opinion in Immunology,2007,19(3):309-314.
    [89]Rose G. Sick individuals and sick populations[J]. International Journal of Epidemiology,2001,30(3):427-432.
    [90]Roses AD. Pharmacogenetics and drug development: The path to safer and more effective drugs[J]. Nature Reviews Genetics,2004,5(9):645-656.
    [91]Botto LD, Khoury MJ. Commentary: Facing the challenge of gene-environment interaction: The two-by-four table and beyond[J]. American Journal of Epidemiology, 2001,153(10):1016-1020.
    [92]Jones PL, Veenstra GJC, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription[J]. Nature Genetics,1998,19(2):187-191.
    [93]Nan XS, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex[J]. Nature,1998,393(6683):386-389.
    [94]Sawalha AH, Jeffries M, Webb R, et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients[J]. Genes and Immunity,2008,9(4):368-378.
    [95]Gorelik G, Richardson B. Aberrant T cell ERK pathway signaling and chromatin structure in lupus[J]. Autoimmunity Reviews,2009,8(3):196-198.
    [96]Sawalha AH, Webb R, Han SZ, et al. Common Variants within MECP2 Confer Risk of Systemic Lupus Erythematosus[J]. Plos One,2008,3(3).
    [97]Miltenberger-Miltenyi G, Laccone F. Mutations and polymorphisms in the human methyl CpG-binding protein MECP2[J]. Human Mutation,2003,22(2):107-115.
    [98]Dragich JM, Kim YH, Arnold AP, et al. Differential distribution of the Mecp2 splice variants in the postnatal mouse brain[J]. Journal of Comparative Neurology, 2007,501(4):526-542.
    [99]Kriaucionis S, Bird A. The major form of MeCP2 has a novel N-terminus generated by alternative splicing[J]. Nucleic Acids Research,2004,32(5):1818-1823.
    [100]Mnatzakanian GN, Lohi H, Munteanu I, et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome[J]. Nature Genetics,2004,36(4):339-341.
    [101]Chahrour M, Zoghbi HY. The story of Rett syndrome:From clinic to neurobiology[J]. Neuron,2007,56(3):422-437.
    [102]Bird AP, Wolffe AP. Methylation-induced repression - Belts, braces, and chromatin[J]. Cell,1999,99(5):451-454.
    [103]Chahrour M, Jung SY, Shaw C, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription[J]. Science,2008,320(5880):1224-1229.
    [104]Webb R, Wren JD, Jeffries M, et al. Variants Within MECP2, a Key Transcription Regulator, Are Associated With Increased Susceptibility to Lupus and Differential Gene Expression in Patients With Systemic Lupus Erythematosus[J]. Arthritis and Rheumatism,2009,60(4):1076-1084.
    [105]Lu Q, Wu A, Tesmer L, et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. Journal of Immunology,2007,179(9):6352-6358.
    [106]Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood[J]. Journal of Experimental Medicine,2003,197 (6):711-723.
    [107]Tan FK, Zhou X, Mayes MD, et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients[J]. Rheumatology,2006,45(6):694-702.
    [108]Kirou KA, Lee C, George S, et al. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease[J]. Arthritis and Rheumatism,2005,52(5):1491-1503.
    [109]Sawalha AH. Epigenetics and T-cell immunity[J]. Autoimmunity,2008,41(4): 245-252.
    [110]Agalioti T, Lomvardas S, Parekh B, et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter[J]. Cell, 2000,103(4):667-678.
    [111]Schaid DJ. General score tests for associations of genetic markers with disease using cases and their parents[J]. Genetic Epidemiology,1996,13(5):423-449.
    [112]Falk CT, Rubinstein P. Haplorype relative risks:An easy reliable way to construct a proper control sample for risk calculations[J]. Annals of Human Genetics, 1987,51:227-233.
    [113]Teare MD, Barrett JH. Genetic epidemiology 2:Genetic linkage studies[J]. Lancet,2005,366(9490):1036-1044.
    [114]Rabinowitz D, Laird N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information[J]. Human Heredity,2000,50(4):211-223.
    [115]Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium:The insulin gene region and insulin-dependent diabetes mellitus(IDDM) [J]. American Journal of Human Genetics,1993,52(3):506-516.
    [116]Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association[J]. American Journal of Human Genetics,1996,59(5): 983-989.
    [1]Petri M. Epidemiology of systemic lupus erythematosus[J]. Best Practice & Research in Clinical Rheumatology,2002,16(5):847-858.
    [2]Dabid P.系统性红斑狼疮[J].美国医学杂志中文版,2006,9(6):236-241.
    [3]Danchenko N, Satia J, Anthony M. Epidemiology of systemic lupus erythematosus:a comparison of worldwide disease burden[J]. Lupus,2006,15(5):308-318.
    [4]Wang J, Yang S, Chen JJ, et al. Systemic lupus erythematosus:a genetic epidemiology study of 695 patients from China[J]. Archives of Dermatological Research,2007,298(10):485-491.
    [5]Simard JF, Costenbader KH. What can epidemiology tell us about systemic lupus erythematosus? [J]. International Journal of Clinical Practice,2007,61 (7):1170-1180.
    [6]Tsao BP. The genetics of human systemic lupus erythematosus[J]. Trends in Immunology,2003,24(11):595-602.
    [7]Cooper GS, Gilbert KM, Greidinger EL, et al. Recent advances and opportunities in research on lupus:Environmental influences and mechanisms of disease[J]. Environmental Health Perspectives,2008,116(6):695-702.
    [8]Javierre BM, Fernandez AF, Richter J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus[J]. Genome Res,2009 December 22.[Epub ahead of print].
    [9]Bjornsson HT, Cui H, Gius D, et al. The new field of epigenomics:Implications for cancer and other common disease research[J]. Cold Spring Harbor Symposia on Quantitative Biology,2004,69:447-456.
    [10]Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(30):10604-10609.
    [11]Sarzi-Puttini P, Atzeni F, Iaccarino L, et al. Environment and systemic lupus erythematosus:An overview[J]. Autoimmunity,2005,38(7):465-472.
    [12]Kastan MB, Gowans BJ, Lieberman MW. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA[J]. Cell,1982,30(2):509-516.
    [13]Wang GS, Zhang M, Li XP, et al. Ultraviolet B exposure of peripheral blood mononuclear cells of patients with systemic lupus erythematosus inhibits DNA methylation[J]. Lupus,2009,18(12):1037-1044.
    [14]Arbuckle MR, McClain MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus[J]. New England Journal of Medicine,2003,349(16):1526-1533.
    [15]Edwards CJ, Cooper C. Early environmental exposure and the development of lupus[J]. Lupus,2006,15(11):814-819.
    [16]Baxter AG, Horsfall AC, Healey D, et al. Mycobacteria precipitate an SLE-like syndrome in diabetes-prone NOD mice[J]. Immunology,1994,83(2):227-231.
    [17]Edwards CJ. Environmental factors and lupus:are we looking too late? [J].Lupus, 2005,14(6):423-425.
    [18]赵丽娟,崔宁,杨娉婷,等.紫外线对系统性红斑狼疮患者外周血T淋巴细胞Fas抗原表达的影响[J].中华物理医学与康复杂志,2005,27:92-94.
    [19]Reich A, Meurer M, Viehweg A, et al. Narrow-band UVB-induced Externalization of Selected Nuclear Antigens in Keratinocytes:Implications for Lupus Erythematosus Pathogenesis[J]. Photochemistry and Photobiology,2009,85(1):1-7.
    [20]Wolffe AP, Matzke MA. Epigenetics: Regulation through repression. Science, 1999,286(5439):481-486.
    [21]Baylin SB. Tying it all together: Epigenetics, genetics, cell cycle, and cancer[J]. Science,1997,277(5334):1948-1949.
    [22]Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites[J]. Trends in Genetics,1997,13(8):335-340.
    [23]Suzuki MM, Bird A. DNA methylation landscapes:provocative insights from epigenomics[J]. Nature Reviews Genetics,2008,9(6):465-476.
    [24]Klose RJ, Bird AP. Genomic DNA methylation:the mark and its mediators[J]. Trends in Biochemical Sciences,2006,31(2):89-97.
    [25]陆嵘,房静远.表观遗传修饰与肿瘤[J].生命科学,2006,18:10-14.
    [26]Balada E, Ordi-Ros J, Vilardell-Tarres M. DNA methylation and systemic lupus erythematosus. In:Shoenfeld Y, Gershwin ME, editors. Autoimmunity[M], Pt D-Autoimmune Disease, Annus Mirabilis,2007:127-136.
    [27]Cornacchia E, Golbus J, Maybaum J, et al. Hydralazine and procainamide inhibit T-cell DNA methylation and induce auroreactivity[J]. Journal of Immunology, 1988,140(7):2197-2200.
    [28]Quddus J, Johnson KJ, Gavalchin J, et al. Treating activated CD4+ T-cells with either of 2 distinct DNA methyltransferase in hibitors,5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice[J]. Journal of Clinical Investigation,1993,92(1):38-53.
    [29]Richardson B, Scheinbart L, Strahler J, et al. Evidence for impaired T-cell DNA methylation in systemic lupus erythematousus and rheumatoid arthritis[J]. Arthritis and Rheumatism,1990,33(11):1665-1673.
    [30]Mizugaki M, Yamaguchi T, Ishiwata S, et al. Alteration of DNA methylation levels in MRL lupus mice[J]. Clinical and Experimental Immunology,1997,110(2): 265-269.
    [31]Long EO. Regulation of immune responses through inhibitory receptors[J]. Annual Review of Immunology,1999,17:875-904.
    [32]Sidorenko SP, Clark EA. The dual-function CD 150 receptor subfamily: the viral attraction[J]. Nature Immunology,2003,4(1):19-24.
    [33]Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(24):13866-13871.
    [34]Shinohara T, Taniwaki M, Ishida Y, et al. Structure and chromosomal localization of the human PD-1 gene(PDCD1) [J]. Genomics,1994,23(3):704-706.
    [35]Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms[J]. Molecular and Cellular Biology, 2005,25(21):9543-9553.
    [36]Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3 zeta signalosome and downstream signaling to PKC theta[J]. Febs Letters,2004,574(1-3):37-41.
    [37]Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes[J]. International Immunology, 1996,8(5):765-772.
    [38]Nishimura H, Agata Y, Kawasaki A, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4(-)CD8(-)) thymocytes[J]. International Immunology,1996,8(5):773-780.
    [39]Raimondi G, Shufesky WJ, Tokita D, et al. Regulated compartmentalization of programmed cell death-1 discriminates CD4(+)CD25(+) resting regulatory T cells from activated T cells[J]. Journal of Immunology,2006,176(5):2808-2816.
    [40]Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application[J]. International Immunology,2007,19(7):813-824.
    [41]Lindqvist AKB, Steinsson K, Johanneson B, et al. A susceptibility locus for human systemic lupus erythematosus (hSLEl) on chromosome 2q[J]. Journal of Autoimmunity,2000,14(2):169-178.
    [42]Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity,1999,11(2):141-151.
    [43]Probst HC, McCoy K, Okazaki T, et al. Resting dendritic cells induce peripheral CD8(+) T cell tolerance through PD-1 and CTLA-4[J]. Nature Immunology,2005, 6(3):280-286.
    [44]Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance[J]. Trends in Immunology,2006,27(4):195-201.
    [45]Dong HD, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis:A potential mechanism of immune evasion[J]. Nat Med,2002,8:793-800.
    [46]Lee YH, Woo JH, Choi SJ, et al. Association of programmed cell death 1 polymorphisms and systemic lupus erythematosus:a meta-analysis[J].. Lupus,2009, 18(1):9-15.
    [47]Velazquez-Cruz R, Orozco L, Espinosa-Rosales F, et al. Association of PDCD1 polymorphisms with childhood-onset systemic lupus erythematosus[J]. European Journal of Human Genetics,2007,15(3):336-341.
    [48]Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus:Evidence of population-specific effects [J]. Arthritis and Rheumatism,2004,50(8):2590-2597.
    [49]Mostowska M, Wudarski M, Chwalinska-Sadowska H, et al. The programmed cell death 1 gene 7209 C/T polymorphism is associated with the risk of systemic lupus erythematosus in the Polish population[J]. Clinical and Experimental Rheumatology,2008,26(3):457-460.
    [50]Wang Q, Ye DQ, Yin J, et al. Programmed cell death 1 genotypes are associated with susceptibility to systemic lupus erythematosus among Chinese[J]. Archives of Dermatological Research,2008,300(2):91-93.
    [51]Wang SC, Chen YJ, Ou TT, et al. Programmed death-1 gene polymorphisms in patients with systemic lupus erythematosus in Taiwan[J]. Journal of Clinical Immunology,2006,26(6):506-511.
    [52]Thorburn CM, Prokunina-Olsson L, Sterba KA, et al. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort[J]. Genes and Immunity,2007,8(4):279-287.
    [53]Gaffney PM, Kearns GM, Shark KB, et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(25):14875-14879.
    [54]Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways[J]. Immunological Reviews,2008,224:166-182.
    [55]Chikuma S, Bluestone JA. CTLA-4 and tolerance:The biochemical point of view[J]. Immunologic Research,2003,28(3):241-253.
    [56]Lenschow DJ, Zeng YJ, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic-islet grafts induced by CTLA4Ig[J]. Science,1992,257(5071): 789-792.
    [57]Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-lg with potent immunosuppressive properties[J]. American Journal of Transplantation,2005,5(3):443-453.
    [58]Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation[J]. Annual Review of Immunology, 2001,19:225-252.
    [59]Gribben JG, Freeman GJ, Boussiotis VA, et al. CTLA4 mediates antigen-specific apoptosis of human T-cells[J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(3):811-815.
    [60]Orbach A, Rachmilewitz J, Parnas M, et al. CTLA-4. FasL induces early apoptosis of activated T cells by interfering with anti-apoptotic signals[J]. Journal of Immunology,2007,179(11):7287-7294.
    [61]Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited[J]. Annual Review of Immunology,2005,23:515-548.
    [62]Hudson LL, Rocca K, Song YW, et al. CTLA-4 gene polymorphisms in systemic lupus erythematosus:a highly significant association with a determinant in the promoter region[J]. Human Genetics,2002,111(4-5):452-455.
    [63]Ahmed S, Ihara K, Kanemitsu S, et al. Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population[J]. Rheumatology,2001,40(6):662-667.
    [64]Aguilar F, Torres B, Sanchez-Roman J, et al. CTLA4 polymorphism in Spanish patients with systemic lupus erythematosus[J]. Human Immunology,2003,64(10): 936-940.
    [65]Wang XB, Zhao X, Giscombe R, et al. A CTLA-4 gene polymorphism at position-318 in the promoter region affects the expression of protein[J]. Genes and Immunity,2002,3(4):233-234.
    [66]Ligers A, Teleshova N, Masterman T, et al. CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms[J]. Genes and Immunity,2001, 2(3):145-152.
    [67]Lee YH, Harley JB, Nath SK. CTLA-4 polymorphisms and systemic lupus erythematosus (SLE):a meta-analysis[J]. Human Genetics,2005,116(5):361-367.
    [68]Margot JB, Cardoso MC, Leonhardt H. Mammalian DNA methyltransferases show different subnuclear distributions[J]. Journal of Cellular Biochemistry, 2001,83(3):373-379.
    [69]王志刚,吴建新.DNA甲基转移酶分类、功能及其研究进展[J].遗传,2009,31:903-912.
    [70]Deng C, Lu QJ, Zhang ZY, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling[J]. Arthritis and Rheumatism,2003,48(3):746-756.
    [71]袁敏,慕丽娟,崔慧娟,等.DNA甲基化转移酶在MRL/lpr狼疮鼠CD4+T淋巴细胞中的表达水平研究及功能分析[J].中华风湿病学杂志,2009,13:521-524.
    [72]Luo Y, Li Y, Su Y, et al. Abnormal DNA methylation in T cells from patients with subacute cutaneous lupus erythematosus[J]. British Journal of Dermatology,2008, 159(4):827-833.
    [73]伍洲炜,施伟民.DNA甲基转移酶1和CD11a基因在SLE患者中的表达[J].同济大学学报(医学版),2006,27:21-24.
    [74]Deng C, Kaplan MJ, Yang J, et al. Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients[J]. Arthritis and Rheumatism,2001,44(2):397-407.
    [75]Balada E, Ordi-Ros J, Serrano-Acedo S, et al. Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4(+) T cells from patients with systemic lupus erythematosus[J]. Immunology,2008,124(3):339-347.
    [76]Zhao S, Long H, Lu Q. Epigenetic Perspectives in Systemic Lupus Erythematosus: Pathogenesis, Biomarkers, and Therapeutic Potentials[J]. Clin Rev Allergy Immunol,2009 Jul 29. [Epub ahead of print].
    [77]Cebrian A, Pharoah PD, Ahmed S, et al. Genetic variants in epigenetic genes and breast cancer risk[J]. Carcinogenesis,2006,27(8):1661-1669.
    [78]Ezzikouri S, El Feydi AE, Benazzouz M, et al. Single nucleotide polymorphism in DNMT3B promoter and its association with hepatocellular carcinoma in a Moroccan population[J]. Infection Genetics and Evolution,2009,9(5):877-881.
    [79]Hu J, Fan H, Liu D, et al. DNMT3B Promoter Polymorphism and Risk of Gastric Cancer[J]. Dig Dis Sci,2009 Jun 11. [Epub ahead of print].
    [80]Fan H, Zhang F, Hu JB, et al. Promoter polymorphisms of DNMT3B and the risk of colorectal cancer in Chinese:a case-control study[J]. Journal of Experimental & Clinical Cancer Research,2008,27.
    [81]Chang KP, Hao SP, Tsang NM, et al. Gene expression and promoter polymorphisms of DNA methyltransferase 3B in nasopharyngeal carcinomas in Taiwanese people:A case-control study[J]. Oncology Reports,2008,19(1):217-222.
    [82]Fan H, Liu DS, Zhang SH, et al. DNMT3B 579 G/T promoter polymorphism and risk of esophagus carcinoma in Chinese[J]. World Journal of Gastroenterology, 2008,14(14):2230-2234.
    [83]Park BL, Kim LH, Shin HD, et al. Association analyses of DNA methyltransferase-1 (DNMT1) polymorphisms with systemic lupus erythematosus[J]. Journal of Human Genetics,2004,49(11):642-646.
    [84]Miltenberger-Miltenyi G, Laccone F. Mutations and polymorphisms in the human methyl CpG-binding protein MECP2[J]. Human Mutation,2003,22(2):107-115.
    [85]Dragich JM, Kim YH, Arnold AP, et al. Differential distribution of the Mecp2 splice variants in the postnatal mouse brain[J]. Journal of Comparative Neurology, 2007,501(4):526-542.
    [86]Kriaucionis S, Bird A. The major form of MeCP2 has a novel N-terminus generated by alternative splicing[J]. Nucleic Acids Research,2004,32(5):1818-1823.
    [87]Mnatzakanian GN, Lohi H, Munteanu I, et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome[J]. Nature Genetics,2004,36(4):339-341.
    [88]Cremer T, Cremer M, Dietzel S, et al. Chromosome territories - a functional nuclear landscape[J]. Current Opinion in Cell Biology,2006,18(3):307-316.
    [89]Chahrour M, Zoghbi HY. The story of Rett syndrome: From clinic to neurobiology[J]. Neuron,2007,56(3):422-437.
    [90]Moretti P, Zoghbi HY. MeCP2 dysfunction in Rett syndrome and related disorders[J]. Current Opinion in Genetics & Development,2006,16(3):276-281.
    [91]Bourdon V, Philippe C, Bienvenu T, et al. Evidence of somatic mosaicism for a MECP2 mutation in females with Rett syndrome:diagnostic implications[J]. Journal of Medical Genetics,2001,38(12):867-870.
    [92]Dragich J, Houwink-Manville I, Schanen C. Rett syndrome:a surprising result of mutation in MECP2[J]. Human Molecular Genetics,2000,9(16):2365-2375.
    [93]Young JI, Zoghbi HY. X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of Rett syndrome[J]. American Journal of Human Genetics,2004,74(3):511-520.
    [94]Bird AP, Wolffe AP. Methylation-induced repression :Belts, braces, and chromatin [J]. Cell,1999,99(5):451-454.
    [95]Jones PL, Veenstra GJC, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription[J]. Nature Genetics,1998,19(2):187-191.
    [96]Sawalha AH, Jeffries M, Webb R, et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients[J]. Genes and Immunity,2008,9(4):368-378.
    [97]Gorelik G, Richardson B. Aberrant T cell ERK pathway signaling and chromatin structure in lupus[J]. Autoimmunity Reviews,2009,8(3):1-96-198.
    [98]Webb R, Wren JD, Jeffries M, et al. Variants Within MECP2, a Key Transcription Regulator, Are Associated With Increased Susceptibility to Lupus and Differential Gene Expression in Patients With Systemic Lupus Erythematosus[J]. Arthritis and Rheumatism,2009,60(4):1076-1084.
    [99]Nan XS, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex[J]. Nature,1998,393(6683):386-389.
    [100]Chahrour M, Jung SY, Shaw C, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription [J]. Science,2008,320 (5880): 1224-1229.
    [101]Lu Q, Wu A, Tesmer L, et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. Journal of Immunology,2007,179(9):6352-6358.
    [102]Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood[J]. Journal of Experimental Medicine, 2003,197(6):711-723.
    [103]Tan FK, Zhou X, Mayes MD, et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients[J]. Rheumatology,2006,45(6):694-702.
    [104]Kirou KA, Lee C, George S, et al. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease[J]. Arthritis and Rheumatism,2005,52(5):1491-1503.
    [105]Sawalha AH. Epigenetics and T-cell immunity[J]. Autoimmunity,2008,41 (4):245-252.
    [106]Agalioti T, Lomvardas S, Parekh B, et al. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter[J]. Cell, 2000,103(4):667-678.
    [107]Sawalha AH, Webb R, Han SZ, et al. Common Variants within MECP2 Confer Risk of Systemic Lupus Erythematosus[J]. Plos One,2008,3(3).
    [108]Suarez-Gestal M, Calaza M, Endreffy E, et al. Replication of recently identified systemic lupus erythematosus genetic associations:a case-control study[J]. Arthritis Research & Therapy,2009,11(3).
    [109]Richardson BC, Strahler JR, Pivirotto TS, et al. Phenotypic and functional similarities between 5-azacytidine treated T-cells and a T-cell subset in patients with active systemic lupus erythematosus[J]. Arthritis and Rheumatism,1992,35(6): 647-662.
    [110]Yung R, Powers D, Johnson K, et al. Mechanisms of drug-induced lupus.2. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice[J]. Journal of Clinical Investigation, 1996,97(12):2866-2871.
    [111]梁虹,张璃,徐世正.系统性红斑狼疮患者外周血细胞黏附分子CD11a、CD11b、CDllc、CD54的表达[J].中华皮肤科杂志,2006,39:356.
    [112]Kaplan MJ, Deng C, Yang J, et al. DNA methylation in the regulation of T cell LFA-1 expression[J]. Immunological Investigations,2000,29(4):411-425.
    [113]王俭勤,李幼姬,李志坚,等.淋巴细胞功能相关抗原1共刺激作用在活动性狼疮肾炎中的作用[J].中华肾脏病杂志,2003,19:20-23.
    [114]王俭勤,李幼姬,夏延龄,等.LFA-1与抗CD3 mAb共刺激对狼疮肾炎PBMC增殖和IgG合成的影响[J].细胞与分子免疫学杂志,2003,19:369-371.
    [115]Zhang ZY, Deng C, Lu QJ, et al. Age-dependent DNA methylation changes in the ITGAL (CD 11 a) promoter[J]. Mechanisms of Ageing and Development, 2002,123(9):1257-1268.
    [116]Richardson B. Primer: epigenetics of autoimmunity[J]. Nature Clinical Practice Rheumatology,2007,3(9):521-527.
    [117]丁艳,肖嵘,李亚萍,等1.T细胞DNA低甲基化在SLE的研究进展[J].国外医学皮肤性病学分册,2005,31:232-234.
    [118]Lens SMA, Tesselaar K, van Oers MHJ, et al. Control of lymphocyte function through CD27-CD70 interactions[J]. Seminars in Immunology,1998,10(6):491-499.
    [119]Oelke K, Lu QJ, Richardson D, et al. Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors[J]. Arthritis and Rheumatism,2004,50(6):1850-1860.
    [120]Gorelik G, Richardson B. Key role of ERK pathway signaling in lupus[J]. Autoimmunity Reviews,2009 Dec 7. [Epub ahead of print].
    [121]Kobata T, Jacquot S, Kozlowski S, et al. CD27-CD70 interactions regulate B-cell activation by T-cells[J]. Proceedings of the National Academy of Sciences of the United States of America,1995,92(24):11249-11253.
    [122]Lu QJ, Wu AL, Richardson BC. Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs[J]. Journal of Immunology,2005,174(10):6212-6219.
    [123]李亚萍,陆前进.系统性红斑狼疮的表观遗传学发病机制[J].国际皮肤性病学杂志,2006,32:359-361.
    [124]Richardson B. DNA methylation and autoimmune disease[J]. Clin Immunol, 2003,109:72-79.
    [125]Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic-models and case-only designs for assessing susceptibilty in population-based case-control studies[J]. Statistics in Medicine,1994,13(2):153-162.
    [126]Gatto NM, Campbell UB, Rundle AG, et al. Further development of the case-only design for assessing gene-environment interaction:evaluation of and adjustment for bias[J]. International Journal of Epidemiology,2004,33(5):1014-1024.
    [127]Wang LY, Lee WC. Population stratification bias in the case-only study for gene-environment interactions[J]. American Journal of Epidemiology,2008,168(2): 197-201.
    [128]Li DL, Conti DV. Detecting Gene-Environment Interactions Using a Combined Case-Only and Case-Control Approach[J]. American Journal of Epidemiology, 2009,169(4):497-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700