用户名: 密码: 验证码:
预应力锚杆柔性支护法机理与力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力锚杆柔性支护法是一种新的深及超深基坑支护技术,目前采用该技术支护的大连远洋大厦深基坑深度为25.6m,大连国际金融中心超深基坑已经达到30.0m。预应力锚杆柔性支护技术主要由预应力锚杆、锚下承载结构以及喷射混凝土面层组成,具有造价低、工期短、施工占地小、施工便捷、安全可靠等优点,并广泛适用于风化岩层和中等强度及以上的岩土层,应用十分普遍。本文主要针对预应力锚杆柔性支护法技术,重点以压力型锚杆锚固机理、喷射混凝土面层上的土压力、锚下承载结构的承载力以及基坑的力学行为作为研究对象,利用理论分析、解析计算、试验对比和数值模拟等多种研究手段,得到了一些可直接应用于工程或供理论参考的研究成果。主要研究内容如下:
     (1)综合考虑锚固体弹性模量和泊松比,岩土体粘聚力、内摩擦角、弹性模量、泊松比,以及锚固体与岩土体界面上的粘结力以及外摩擦角,并引入锚固体与岩土体界面粘结力工作条件系数,推导了压力型锚杆锚固体与岩土体界面剪应力和锚固体轴力的计算公式并进行了参数影响分析。结果表明:压力型锚杆锚固段上剪应力和轴力均呈指数分布,且随到承载体处距离的增加而逐渐衰减。考虑锚固体与岩土体界面粘结力影响后,得到的锚固体界面上的剪应力比不考虑界面粘结力得到的剪应力要小,而轴力要大。在此基础上,分析了压力型单孔复合锚的锚固机理,推导了其锚固体上的剪应力和轴力计算公式,其荷载传递规律及参数影响研究结果表明:岩土体相对越坚硬,即岩土体弹性模量越大、泊松比越小、粘聚力越大、内摩擦角越大,则剪应力分布越不均匀,且剪应力和轴力衰减越快。压力型单孔复合锚由于在锚杆钻孔内同时设置多个承载体,形成多级锚固单元共同受力,各承载体单元受到的荷载大大降低,界面上的剪应力也大大降低,各单元锚固段上的侧摩阻力都得到较好的发挥,受力更加均匀合理。
     (2)采用解析的方法,对压力型锚杆在受拉荷载及锚固体系极限承载力时的最大锚固长度进行了研究,得出了相应的锚固长度的计算方法,并分析了不同参数对锚固长度的影响,结果表明:岩土体弹性模量越大,泊松比越小,粘聚力越大,内摩擦角越大,则荷载在锚固段上传递的长度越小;泊松比对荷载传递长度的影响很小,几乎可以忽略不计。通过与压力型锚杆的室内模型试验结果对比,理论计算的荷载传递长度与模型试验测试结果吻合较好。另外,本文得出的压力型锚杆的锚固长度计算方法计算的结果与规范值比较吻合,由于规范假定侧摩阻力均匀分布,当实际锚固长度大于规范值或大于本文方法的计算值时,有可能会因为超出部分锚固段上的侧阻力得不到发挥而导致锚杆的锚固力达不到设计要求。本文得出的锚固长度计算方法,简单实用,可以较好地指导指导实际工程设计与施工。
     (3)基于土拱效应,建立了预应力锚杆柔性支护法喷射混凝土面层土压力的分析模型,推导得出了作用在喷射混凝土面层上的土压力计算公式,并与简仓法和规程法进行了对比分析,结果表明:基于主动土压力的土钉规程法计算面层土压力明显偏高;本文法计算结果与简仓法比较吻合,但是简仓法由于没有考虑面层与岩土体间的外摩擦角以及岩土体的粘聚力影响,计算结果相对比较粗糙。通过进一步研究分析,提出了预应力锚杆柔性支护法喷射混凝土面层上土压力的简化计算公式。并将土拱效应应用于粘性填土的平动刚性挡土墙,推导了考虑土拱效应的挡土墙上主动土压力解析式,在不同情况下该解的简化解与现有经典解析结果及前人推导结果完全吻合,计算结果表明:土拱效应使挡土墙的主动土压力呈非线性分布,考虑土拱效应后,挡土墙中上部的土压力要大于经典土压力计算结果,而在中下部尤其是底部,得到的主动土压力偏小
     (4)采用三维有限元分析软件,对预应力锚杆柔性支护法的锚下承载结构进行了数值试验分析,研究了不同型号槽钢组合形式下锚下承载结构的承载力,结果表明:厚垫板和竖向肋筋在一定程度上可以适当提高锚下承载结构的承载力;喷射混凝土约束可以有效控制锚下承载结构的侧向变形,增强结构的稳定性;且喷射混凝土全约束时,约束混凝土和槽钢形成复合承载结构,锚下承载结构的承载力得到较大提高,而喷射混凝土半约束时基本不提高结构的承载力;在槽钢上翼缘指定位置设置水平连接筋能有效控制结构的侧向变形,且设置水平连接筋后,喷射混凝土约束对控制槽钢侧向变形的效果大幅削弱。工程应用结果表明,通过数值试验得到的锚下承载结构承载力能很好地满足工程需要。本文得到的数值试验结果可为预应力锚杆柔性支护设计和施工提供科学依据和技术指导。
     (5)结合预应力锚杆柔性支护深基坑工程案例,通过锚杆的拉拔试验,分析了锚杆在风化岩层中的抗拔力及锚固段侧模阻力分布规律,结果表明:锚杆的侧摩阻力呈非线性分布,锚杆的抗拔力并不随锚杆长度的增加而线性增加,仅仅采用增加锚杆锚固段长度的方法来提高锚杆的抗拔力是不合理的。采用FLAC软件对预应力锚杆柔性支护基坑进行了数值模拟,模拟得到的水平位移与实际工程监测值吻合较好。并重点分析了锚杆预应力对基坑变形及滑移场的影响,结果表明:锚杆预应力能有效控制基坑变形并改善基坑的滑移场,在一定范围内,预应力越大效果越明显,但是当锚杆预应力超过一定范围后,继续增大预应力几乎不起作用,反而在一定程度上延长工期。相关研究结论对预应力锚杆柔性支护基坑的合理设计与优化施工都具有一定的参考作用。
Prestressed anchor flexible supporting system is a new technology for retaining of deep and ultra-deep excavation. Currently, the depth of excavation of Dalian Yuan-yang Building using this technology is25.6meter, and the depth of ultra-deep excavation of Dalian International Finance Centre Building is near30meter. Prestressed anchor flexible supporting system mainly consists of shotcret, prestressed anchor, bearing structure under anchor head. For the advantage of low cost, short construction period, small covered area, construction convenient, safe and reliable, and so on, the system is wildly used in engineering, especially with construction sites contain weathered rock, medium intensity and stiff soil. According to the prestressed anchor flexible supporting system, some studies, which are focused on the anchorage mechanism of pressure-anchor, earth pressure on the shotcret, bearing capacity of bearing structure under anchor head and the mechanical behavior of foundation pit, are inverstigated by theoretical analysis, analytic calculations, comparison between experimental results and theoretical results, and numerical test. The main contents are as follows:
     (1) The computational formula of axial force of anchorage body and shear stress on the interface between anchorage body and soil mass are derived. Analysis of parameters, such as elastic modulus and Poisson's ratio of anchorage body, cohesion, internal friction angle, elastic modulus and Poisson's ratio of soil mass, adhesion and external friction angle of interface between anchorage body and soil mass, and the conditional coefficient of adhesion, is also carried out. The results show that the distributions of shear stress and axial force on the anchorage body of comparison anchor are exponential, and decrease as the distance to the bearing body. When considering the influence of adhesion on the interface between anchorage body and soil mass, the shear stress becomes small and axial force becomes large. The anchorage mechanism of the single bore multiple comparison anchor is analyzed, and the computational formula of shear stress on the interface and axial force of anchorage body are derived. Analysis results of the rule of load transferring and parameters influence show that distribution of shear stress becomes uneven and the shear stress and axial force decrease quickly when the soil mass is stiff (that is to say the values of soil mass modulus, cohesion and internal friction angle are large, and the value of Poisson's ratio is small). Because the multiple bearing bodies bear the load together in the single bore multiple comparison anchor, the load on each bearing body reduces greatly, as well as the shear stress on the interface. Lateral friction and force on each anchorage body are developed sufficiently and the distributions are more uniform.
     (2) The anchorage lengths of comparison anchor under load and ultimate bearing capacity of the anchorage system are studied analytically, and the appropriate method for calculating the anchorage length is derived. Analysis results of the influence of parameters on the anchorage length show that the load transferring length is small for the condition with great modulus, small Poisson's ratio, great cohesion and internal friction angle of soil mass. The influence of Poisson's ration on the load transferring length is too little and can be neglected. Comparison between the theoretical calculated load transferring length and that from monitoring in the model experiment shows great agreement, as well as the comparison between the calculated anchorage length in this paper and that specified in the code. If the actual calculated length is large than specified values in the code or calculated values, the pull-out force may be less than the designed value because of the insufficient development of the lateral friction of the excessed anchorage length, duing to the assumption of uniform distribution of lateral friction. The calculated formulation, which is simple and practical, of anchorage length can provide better guidance for engineering design and construction.
     (3) Based on soil arching effect, the analysis model for calculating earth pressure on the shotcrete in prestressed anchor flexible supporting system is established and the relevant formula are derived. Comparative analysis of calculating results with those from silos method and code method shows that the calculated earth pressure on the shotcrete from code method, which is based on the active earth pressure, is large apparently. Calculated results from the derive formula are agreement with those from silos method. However, the values calculated from silos method are relatively imprecise because of the ignorance of soil cohesion and external friction angle. By further analysis, the simplified formula for calculating the earth pressure on the shotcrete is proposed. While considering the soil arching effect in the backfill of rigid retaining wall with a horizontal translating, the formulation for calculating the active earth pressure acting on the rigid retaining wall is derived, which show fully agreement with those from the classical analytical formula and those derived by earlier researchers. Analytical results show that the distribution of active earth pressure on the wall is non-linear because of the arching effect, and the earth pressure are larger than that from classical formula in the upper zone while smaller in the lower zone.
     (4) Numerical tests about the bearing structure under anchor head are carried out for prestressed anchor flexible supporting system by using three-dimensional finite element analysis software. The analysis results of bearing capacity of structure under anchor head for different types of channel steel show that thick plate and vertical ribs can increase the capacity of structure to a certain extent. Confined shotcrete can effectively control the lateral deformation and enhance the stability of the structure. Because fully confined shotcrete and channel steel can form a composite bearing structure, the capacity of the structure can be improved greatly. But half confined shotcrete can not improve the capacity of structure. Horizontal connecting rebar in the proper location can effectively control the lateral deformation of structure. The influence of confined shotcrete on the lateral deformation reduces greatly when the horizontal connecting rebar is installed. Engineering application results show that, capacities of bearing structure obtained by numerical tests can meet the project well. Results from numerical tests can provide scientific and technical guidance for the design and construction of prestressed anchor flexible supporting system.
     (5) Based on the actual engineering with prestressed anchor flexible supporting system, the pulling resistance of anchor and the distribution of lateral friction on the interface between anchorage body and soil mass are analyzed through pull-out tests of anchor. Results show that the distribution of lateral friction is non-linear and the pulling resistance of anchorage does not increase linearly with the anchorage length. So it may be unreasonable to improve the anchor pullout resistance just by increasing the anchorage length. An actual project with prestressed anchor flexible supporting system is simulated using FLAC software and the horizontal displacement is in great agreement with that from monitoring. The prestress influence is analyzied emphasizly on the displacement and slip field of the foundation pit in this paper. The results show that prestress of anchor can control the displacement and improve slip field of the foundation pit. However, when the prestress exceeds a certain range, the continued prestress has nearly no effect but extend schedule. Related results can provide a certain reference value for rational design and optimized construction for prestressed anchor flexible supporting system.
引文
[1]耿永常.地下空间建筑与防护结构[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [2]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1):7-9.
    [3]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(1):112-113.
    [4]宋青君,王卫东.上海世博500kV地下变电站圆形深基坑逆作法变形与受力特性实测分[J].建筑结构学报,2010,31(5):181-187.
    [5]王卫东,朱伟林,陈铮等.上海世博500kV地下变电站超深基坑工程的设计、研究与实践[J].岩土工程学报,2008,30(S):564-576.
    [6]王卫东,翁其平,吴江斌.上海世博500kV地下变电站超深抗拔桩的设计与分析[J].建筑结构,2007,37(5):107-110.
    [7]王卫东,翁其平,陈峥,等.上海世博500kV地下变电站超深一柱一桩的设计与分析[J].土木工程学报,2007,40(S):312-318.
    [8]王旭军.上海中心大厦裙房深大基坑工程围护墙变形分析[J].岩石力学与工程学报,2012,31(2):421-430.
    [9]郑刚,刘庆晨,邓旭等.天津站地下换乘中心基坑工程2标段盖挖逆作法的实测分析[J].天津大学学报,2012,45(10):930-937.
    [10]丘建金,高伟,周赞良等.超深基坑及超大直径挖孔桩施工对邻近地铁变形影响分析及对策[J].岩石力学与工程学报,2012,31(6):1081-1088.
    [11]陈希,徐伟,段朝静.双圆环形超深基坑支护结构的数值模拟与监测分析[J].同济大学学报,2012,40(2):179-185.
    [12]刘国彬,王卫东.基坑工程手册[M].北京:中国建筑工业出版社,2009.
    [13]陈仲颐,叶书麟.基础工程学[M].北京:中国建筑工业出版社,1990.
    [14]河上房義(赵焕斌译).工程土力学计算题详解[M].哈尔滨:黑龙江科学技术出版社,1987.
    [15]赵维茂.上海水华人楼深基坑开挖及支护技术[J].施工技术,1994,(9):31-33.
    [16]姜晨光,贺勇,刘波等.基坑开挖坑壁土压力原位监测及分析[J].岩土工程学报,2006,28(S):1874-1876.
    [17]杨光华.深基坑开挖中多支撑支护结构的土压力问题[J].岩土工程学报,1998,20(6):113-115.
    [18]陈林靖,戴自航.深基坑内撑式支护结构计算的综合刚度和双参数法[J].岩土力学,2010,31(3):891-895.
    [19]周爱其,龚晓南,刘恒新等.内撑式排桩支护结构的设计优化研究[J].岩土力学,2010,31(S):245-255.
    [20]袁海庆,张光文.排桩-内支撑深基坑支护体系的等效转换与简化计算[J].岩土工程学报,2011,33(5):725-729.
    [21]钟铮,许亮,王祺国等.紧邻保护建筑的深基坑逆作法设计与实践[J].岩土工程学报,2010,32(S):249-255.
    [22]万志辉,陆钟伟,戴斌.上海曹安商贸城逆作法施工技术[J].岩土工程学报,2006,28(S):1776-1780.
    [23]张有桔,丁文其,赖允瑾.复合土钉墙结合逆作法基坑设计施工关键技术[J].岩土工程学报,2010,32(S):420-425.
    [24]宋青君,王卫东,翁其平.“两墙合一”深基坑工程设计中的若干技术问题与对策[J].岩土工程学报,2006,28(S):1590-1595.
    [25]翁其平,王卫东,周建龙.超深圆形基坑逆作法“两墙合一”地下连续墙设计[J].建筑结构学报,2010,31(5):26-32.
    [26]邸国恩,黄炳德,王卫东.敏感环境条件下深基坑工程设计与实践[J].岩土工程学报,2010,32(S):383-387.
    [27]岳建勇,姚激,黄绍铭.软土地区敏感条件下深基坑工程设计与实践[J].岩土工程学报,2011,33(S):271-277.
    [28]范庆国,赵锡宏.深基坑工程逆作法的理论与计算[J].岩土力学,2006,27(12):2169-2176.
    [29]宋青君,王卫东.天津第一高楼津塔基坑工程的设计与实践[J].岩土工程学报,2008,30(S):644-650.
    [30]郑宏,傅金栋,宋凯等.天津滨海新区61m深异形地下连续墙施工技术[J].施工技术,2010,39(10):50-53.
    [31]王卫东,徐中华.深基坑支护结构与主体结构相结合的设计与施工[J].岩土工程学报,2010,32(S):191-199.
    [32]丁伟详,黄得建.天津滨海地区软塑地质条件下不同深基坑支护形式设计与施工探讨[J].岩土工程学报,2008,30(S):355-362.
    [33]尹骥,管飞,李象范.直径210m超大圆形支撑基坑设计分析[J].岩土工程学报,2006,28(S):1596-1599.
    [34]黄炳德,翁其平,王卫东.某大厦深基坑工程的设计与实践[J].岩土工程学报,2010,32(S):363-369.
    [35]LIU G B. NG Charles W W. WANG Z W. Observed performance of a deep multistrutted excavation in Shanghai soft clay[J].journal of Geotechnical & Geoenvironmental Engineering. 2005,131(8):1004-1013.
    [36]陈永才,李镜培,邸国恩等.某深基坑降水对周边环境影响的分析及处理措施[J].岩土工程学报,2008,30(S):319-322.
    [37]周勇,朱彦鹏,王卫华.黄土边坡框架预应力锚杆支挡结构的优化设计[J].四川建筑科学研究,2006,3(6):121-125.
    [38]周勇,朱彦鹏.黄土边坡框架预应力锚杆支挡结构的理论分析与工程实践[J].建筑科学,2006,22(6):48-53.
    [39]周勇,朱彦鹏.框架预应力锚杆支护结构中锚杆长度的研究[J].地下空间与工程学报,2008,4(3):406-410.
    [40]周勇,朱彦鹏.框架预应力锚杆柔性支护结构坡面水平位移影响因素[J].岩土工程学报,2011,33(3):470-476.
    [41]周勇,朱彦鹏,叶帅华.框架预应力锚杆柔性边坡支护结构设计和施工中的若干问题探讨[J].岩土力学,2011,32(S):437-443.
    [42]周勇,朱彦鹏.黄土地区框架预应力锚杆支护结构设计参数的灵敏度分析[J].岩石力学与工程学报,2006,25(S):3115-3122.
    [43]周勇,朱彦鹏.框架预应力锚杆边坡支护的稳定性分析方法及其应用[J].工程地质,2008,16(3):376-382.
    [44]杨茜,张明聚,孙铁成.软弱土层复合土钉支护实验研究[J].岩土力学,2004,25(9):1401-1408.
    [45]檀西乐,巩玉志,赵占山.桩锚支护体系在深基坑工程中的应用[J].工业建筑,2009,39(S):732-734.
    [46]贾金青.预应力锚杆柔性支护法研究[D].北京:清华大学,2003.
    [47]贾金青.一种基坑侧壁的柔性支护方法[P].中华人民共和国:02130834.9,2004.
    [48]贾金青,陈国周,孟祥波.改进的杆系有限元在预应力锚杆柔性支护法中应用[J].岩土力学,2007,28(11):2314-2318.
    [49]贾金青,郑卫锋.预应力锚杆那柔性支护法的研究与应用[J].岩土工程学报,2005,27(11):1257-1261.
    [50]贾金青,郑卫锋,陈国周.预应力锚杆柔性支护技术的数值分析[J].岩石力学与工程学报,2005,24(21):3978-3982.
    [51]郑卫锋,邵龙潭,贾金青.深基坑预应力锚杆锚固段应力分布规律与应用[J].辽宁工程技术大学学报,2008,27(6):862-865.
    [52]朱亚林,孔宪京,邹德高等.深基坑预应力锚杆柔性支护的非线性有限元分析[J].岩土力学,2005,26(2):323-327.
    [53]贾金青,涂兵雄.预应力锚杆柔性支护法在超深基坑中的实践[J].岩土工程学报,2012,34(S):530-535.
    [54]中国建筑科学研究院.建筑基坑支护技术规程[S].北京:建筑工业出版社,2012.
    [55]杨光华.深基坑支护结构的实用计算方法及其应用[M].北京:地质出版社,2004.
    [56]邸国恩,王卫东.“中心岛顺作、周边环板逆作”的设计方法在单体50000m2深基坑工程中的实践[J].岩土工程学报,2006,28(S):1633-1637.
    [57]董雪,李爱民,柯静懿等.超大超宽深基坑放坡开挖中心岛施工基坑围护结构设计[J].岩土工程学报,2008,30(S):619-624.
    [58]胡励耘,候天顺,黄雄.水泥土重力式挡墙在基坑支护中的应用[J].岩土工程界,2006,10(5):51-52.
    [59]钱玉林,绪伯通,陈滨等.SMW支护结构分析[J].岩石力学与工程学报,2002,21(12):1877-1880.
    [60]顾士坦,施建勇.深基坑SMW工法模拟试验研究及工作机理分析[J].岩土力学,2008,29(4):1121-1126.
    [61]Lutz L. and Gergeley P. Mechanics of band and slip of deformed bars in concrete[J]. Journal of Anerican Concrete Institute,1967,64(11):711-721.
    [62]Hansor N.W. Influence of surface roughness of prestressing strand on band performance[J]. journal of Prestressed Concrete Institute,1969,14(1):32-45.
    [63]Goto Y. Cracks formed in concrete around deformed tension bars[J]. Journal of American Concrete Institute,1971,68(4):244-251.
    [64]Ostermayer H, Scheele F. Research on ground anchor in non-cohesive soils[A]. Proceedngs of the 9th International Conference on Soil Mechanics and Foundation engineering. Tokyo:The Japanese Society of Soil Mechanics and Foundation Engineering,1977,92-97.
    [65]Kilic A, Yasar E, Celik A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunneling and Underground Space Technology,2002,17(4):355-362.
    [66]Briaud J.L. William F. David E. Should grouted anchors have short tendon bond length[J]. Journal of Geotechnical and Geoenvironmental engineering,1998,124(2):110-119.
    [67]Phillips S.H.E. Factors affecting the design of anchorage in rock[M]. Cementation Research Ltd. London.1970.
    [68]Farmer I W, Holmberg A. Stress distribution along a resin grouted rock anchor[J]. International Journal of Rock mechanics and Mining Sciences and Geomechanics Abstracts,1975,12(11): 347-351.
    [69]Stillborg. B. Experimental investigation of steel cables for rock reinforcement in hard rock[D]. Lulea Univertity of Technology, Sweden,1984.
    [70]Hyet, A. J., Bawden, W. A, Reichert, R. D. The Effect of Rock Mass Confinement on the Bond Strength of Fully Frouted Cable Bolts [J]. Int. J. Rock Mech. Min. Sic.& Genomic. Abstr.1992, 29(5):503-524.
    [71]Cai Y, Esaki T, Jiang Y J. An analytical model to predict axial load in grouted rock bolt for soft rock tunneling[J]. Tunneling and Underground Space Technology,2004,19(6):607-618.
    [72]Benmokrane B, Chennouf A, Mitri H S. Laboratory evaluation of cement-based grouts and grouted rock anchors[J]. International Journal of Rock mechanics and Mining Sciences and Geomechanics, 1995,32(7):633-642.
    [73]Eligehausen R, Mallee R, Rehm G. Befestigungstechnik[A]. In:Betonkalender, Verlag Flur Architektur and Technische Wissenschaften[C]. Berlin:Ernst and Sohn,1997.
    [74]Rehm G. Langzeitverhalten von Hilti-Verbundankern Hva[M]. Gutachtliche Stellungnahme Vom, 1978.
    [75]Cook R A, Kunz J, Fuchs W, et al. Behavior and design of single adhesive anchors under tensile load in uncracked concrete[J]. Structural journal,1998,95(1):9-26.
    [76]Eligehausen R, Mallee, Rehm G. Fixings formed with resin anchors[J]. Betonwerk Fertigterl Technik,1984,10(10):781-785.
    [77]Cook R A. Behavior of chemically bonded anchors[J]. Journal of Structural Engineering,1993, 119(9):2774-2762.
    [78]冯永烜,王明恕.全长锚固锚杆的工作机理[J].煤炭学报,1988,2(2):31-42.
    [79]顾金才,郑全平,沈俊等.预应力锚索对均质岩体的加固效应模拟试验研究[J].华北水利水电学院学报,1994,3(3):69-76.
    [80]何思明,田金昌,周建庭.胶结式预应力锚索锚固段荷载传递特性研究[J].岩石力学与工程学报,2006,25(1):117-121.
    [81]肖世国,周德培.非全长黏结型锚索锚固段长度的一种确定方法[J].岩石力学与工程学报,2004,23(9):1530-1534.
    [82]荣冠,朱焕春,周创兵.螺纹钢与圆钢锚杆工作机制对比试验研究[J].岩石力学与工程学报,2004,23(3):469-475.
    [83]程良奎,胡建林.土层锚杆的几个力学问题[C].岩土工程中的锚固技术.北京:人民交通出版社,1996.
    [84]顾金才,明治清,沈俊等.预应力锚索内锚固段受力特点现场试验研究[C].岩土锚固新技术.北京:人民交通出版社,1998.
    [85]WU S X. Dynamic experimental study of bond-slip between bars and the concrete in Xiaowan arch dam[C]. New Developments in Dam Engineering Wieland. London:Taylor and Francis Group,2004:951-959.
    [86]李国维,高磊,黄志怀等.全长黏结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验[J].岩石力学与工程学报,2007,26(8):1653-1664.
    [87]张幼振,石智军,张晶.岩石锚杆锚固段荷载分布试验研究[J].岩土力学,2010,31(S):184-188.
    [88]宋志飞,徐波,石荟琦.砂浆锚杆锚固段的界面力学特性[J].煤炭学报,2008,33(9):988-991.
    [89]付宏渊,蒋中明,李怀玉等.锚固岩体力学特性试验研究[J].中南大学学报,2011,42(7):2095-2101.
    [90]覃卫民,葛修润,王浩.砂固结内锚头预应力锚杆试验研究及应用[J].岩石力学与工程学报,2007,26(4):769-774.
    [91]谭忠盛,喻渝,王明年等.大断面浅埋黄土隧道锚杆作用效果的试验研究[J].岩土力学,2008,29(2):491-496.
    [92]王钊,王金忠,曾繁平等.玻璃钢螺旋锚的现场拉拔试验[J].岩土工程学报,2007,29(10):1439-1442.
    [93]朱焕春,荣冠,肖明等.张拉荷载下全长粘结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379-384.
    [94]李欢欢,张福明,赵玉祥.淤泥质土中锚杆锚固力现场试验及其应用[J].岩石力学与工程学报,2000,19(S):922-925.
    [95]唐孟雄.基坑工程预应力锚索锚固力试验研究[J].岩石力学与工程学报,2007,26(6):1158-1163.
    [96]Massarsch K R, Oikawa K. Design and practical application of Soilex anchors[C].Proceedings of Ground Anchorages and Anchored Structures. London:Thomasa Telford,1997:118-124.
    [97]Serrano A, Olalla C. Tensile resistance of rock anchors[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(4):449-474.
    [98]Kilic A, Yasar E, Atis C D. Effect of bar shape on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and Underground Space Technology,2002,18(1):1-6.
    [99]Kilic A, Yasar E, Celik A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunnelling and Underground Space Technology,2002,17(4):355-362.
    [100]尤春安,战玉宝.预应力锚索锚固段界面滑移的细观力学分析[J].岩石力学与工程学报,2009,28(10):1976-1985.
    [101]曾宪明,赵林,李世民等.锚固类结构杆体临界锚固长度与判别方法试验研究[J].岩土工程学报,2008,30(S):404-409.
    [102]曾宪明,杜云鹤,范俊奇等.锚固类结构第二交结面剪应力演化规律、衰减特性与计算方法探讨[J].岩石力学与工程学报,2005,24(S):4610-4626.
    [103]曾宪明,林大路,李世民等.锚固类结构杆体临界锚固长度问题综合研究[J].岩石力学与工程学报,2009,28(S2):3609-3625.
    [104]李宁,张平,李国玉.岩质边坡预应力锚固的设计原则与方法探讨[J].岩石力学与工程学报,2004,23(17):2972-2976.
    [105]Kim N K. Performance of tension and compression anchors in weathered soil[J].Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1138-1150.
    [106]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-12.
    [107]尾高英雄,张满良,岛山三树男.关于荷载分散型锚杆及周边岩土层剪切应力的研究[A].岩土锚固工程技术的应用于发展-国际岩土锚固工程技术研讨会论文集[C].程良奎,刘启琛.北京:万国学术出版社,1996.
    [108]Barley, A. D., Chris R W. Recent advances in ground anchor and ground reinforcement technology with reference to the deveiopment of the art proc[A]. International conference on Geotechnical and Geotechnical Engineering[C]. Melbourne,2000.
    [109]Barley, A. D. The single bore multiple anchor system[J]. Proc., Conf. on Ground Anchorages and Anchored Structures, Institution of Civil Engineers, London,1997a.
    [110]Barley, A. D. Properties of anchor grout in a confined state[J]. Proc., Conf. on Ground Anchorages and Anchored Structures, Institution of Civil Engineers, London,1997b.
    [111]杨庆,朱训国,栾茂田.压力型锚索锚固段应力分布及影响参数分析[J].岩石力学与工程学报,2006,25(S2):4065-4070.
    [112]曹兴松,周德培压力分散型锚索锚固段的设计方法[J].岩土工程学报,2005,27(9):1033-1039.
    [113]尤春安.压力型锚索锚固段的受力分析[J].岩土工程学报,2004,26(6):828-831.
    [114]芮瑞,夏元友,顾金才等.压力分散型锚索锚固段受力特性试验分析[J].岩土工程学报,2012,34(5):917-923.
    [115]叶观宝,何志宇,高彦斌等.压力分散型锚索锚固段荷载分布特征的现场试验研究[J].岩土力学,2011,32(12):3561-3565.
    [116]廖军,涂兵雄.压力型锚杆锚固段长度确定方法研究[J].土木建筑与环境工程学报,2013,35(2):09-14.
    [117]Bhaskar, J., Behavior of calculated nail head strength in soil nailed structures[J]. Journal of Geotechnical and Geotechnical Engineering.2003,129(9):819-828.
    [118]Juran I. Baudrand G. Elias V. Kinematical limit analysis for design of soil nailed structures[J]. Journal of Geotechnical Engineering,1990,116(1):54-72.
    [119]Stocker M F, Riedinger G. The bearing behavior of nailed retaining structures[A]. Lambe P C, Hansen L A. Design and Performance of Earth Retaining Structures[C]. New York:Geotechnical Special Publication No.25,1990:612-628.
    [120]Cartier G, Gigan J P. Experiments and observations on soil nailing structures[A]. Rathmayer H G, Saari Kho. Proceedings of the 8th ECSMFE[C]. Helsinki, Finland:Balkema,1983:473-476.
    [121]Plumelle C, Schlosser F, Delage P. French national project on soil nailing:CLOUTERRE[A]. Lamber P C, Hansen L A. Design and Performance of Earth Retaining Structures[C]. New York: Geotechnical Special Publication No.25,1990:660-675.
    [122]中国建筑科学研究院.建筑基坑支护技术规程(JGJ 120-2-12)[S].北京:中国建筑工业出版社,2012.
    [123]重庆市建设委员会.重庆市地质灾害防治工程设计规范(DB50/5029-2004)[S].重庆:重庆市建设委员会,2004.
    [124]清华大学土木工程系.基坑土钉支护技术规程(CECS 96:97) [S].北京:中国工程建设标准化协会,1997.
    [125]成峰,张远芳,刘威等.土钉支护面层受力探讨[J].岩土工程学报,2012,34(8):1527-1533.
    [126]王立峰.土钉墙面层土压力的计算分析[J].岩土力学,2010,31(5):1615-1621.
    [127]王立峰,朱向荣.土钉墙面层位移和内力的计算分析[J].岩土力学,2008,29(2):437-442.
    [128]杨育文.土钉墙中土压力探讨[J].地下空间与工程学报,2010,6(2):300-305.
    [129]刘晓红,饶秋华.土钉支护侧土压力合理分布模式探讨[J].中南公路工程,2006,31(2):29-32.
    [130]刘晓红,饶秋华,谢海峰.复合土钉支护测土压力合理分布模式及其工程应用[J].铁道科学与工程学报,2006,3(2):53-57.
    [131]汤连生,宋明健,廖化荣等.预应力锚索复合土钉支护内力及变形分析[J].岩石力学与工程学报,2008,27(2):410-417.
    [132]Coulomb CA. Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l'architecture[M]. Mem. Acad. Roy. Pres. Divers Savants 7, Paris.1776.
    [133]Rankine WJM. On the stability of loose earth[J]. Philosophical Transactions of the Royal Society of London.1857,147:9-27
    [134]Das B.M. Fundamentals of geotechnical engineering[M]. Stamford, Cengage Learning.2008.
    [135]Chen, W.F., Liu, X.L., Limit analysis in soil mechanics[M]. Elsevier, New York.1990.
    [136]Chen, W.F., Limit Analysis and Soil Plasticity[M]. Elsevier, Amsterdam,1975.
    [137]Chen, W.F., Chang, M.F., Limit Analysis in Soil Mechanics and Its Applications to lateral Earth Pressure problems[J]. Solid Mechanics Archives,1981,6(3):331-399.
    [138]Chen, W.F., Rosenfarb, J.L., Limit analysis solution of earth pressure problems[J]. Soils Found, 13(4):45-60.
    [139]Tsaagareli, Z.V., Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface[J]. Journal of Soil Mechanics and found Engineering.1965,91(4):197-200.
    [140]Tsaagareli, Z.V., Basic results of an experimental and theoretical investigation of earth pressure on retaining walls[J]. Geotechnique,1965,19 (9):25-30.
    [141]Wang, Y.Z., Distribution of earth pressure on a retaining wall[J]. Geotechnique.2000,50(1): 83-88.
    [142]Yang, X.L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion[J]. Theoretical and Applied Fracture Mechanics,2007,47(1):46-56.
    [143]Mylonakis, G. Kloukinas, P. Papantonopoulos, C., An alternative to the Mononobe-Okabe equations for seismic earth pressures[J]. Soil Dynamics and Earthquake Engineering,2007,27(10): 957-969.
    [144]Sokolovskii, VV. Statics of granular media[M]. Pergamom Press, New York:1965.
    [145]Heyman J. Coulomb's memoir on statics:an essay in the history of civil engineering[M]. Cambridge University Press. Cambrridge:1972.
    [146]Lambe, T.W., Whitman RV. Soil mechanics[M]. Wiley, New York:1969.
    [147]Okabe S. Genaeral theory on earth pressure and seismic stability of retaining walls and dams[J]. Journal of Japanese Society Civil Engineering,1924,10(6):1277-1323.
    [148]Mononobe N. Matsuo O. On the determination of earth pressure during earthquakes[J]. Proceeding of the word engineering congress,1929,9(9):179-187.
    [149]Matsuo M. Ohara S. Lateral earth pressure and stability of quay walls during earthquakes[C]. Second word conference on earthquake engineering, Tokyo:1960.
    [150]Seed HB. Whitman RV. Design of earth retaining structures for dynamic loads[J]. Proceedings of specialty conference on lateral stresses in the ground and design of earth retaining structures. Ithaca. New York,1970:103-147.
    [151]Ebeling RM. Morrison EE. Whitman RV, et al. A manual for seismic design of waterfront retaining structures[J]. US Army Corps of Engineers,1992, Technical Report:92-111.
    [152]Krarner SL. Geotechnical earthquake engineering[M]. Englewood Cliffs, Prentice-Hall,1996.
    [153]Azad A. Shahab Y. Pak A. Seismic active pressure distribution history behind rigid retaining walls[J].Soil Dynamics and Earthquake Engineering,2008,28(5):365-375.
    [154]Psarropoulos PN. Klonaris G. Gazetas G. Seismic earth pressure on rigid and flexible retaining walls[J]. Soil Dynamics and Earthquake Engineering,2005,25(7):795-809.
    [155]Kolathayar S. Ghosh P. Seismic active earth pressure on walls with bilinear backfill using pseudo-dynamic approach[J]. Computers and Geotechnics,2009,36(7):1229-1236.
    [156]Shekarian S. Ghanbari A. Farhadi A. New seismic parameters in the analysis of retaining walls with reinforced backfill[J]. Geotextiles and Geomembranes,2008,26(4):350-356.
    [157]周应英,任美龙.刚性挡土墙主动土压力的试验研究[J].岩土工程学报,1990,12(2):19-26.
    [158]王元战,李新国,陈楠楠.挡土墙主动土压力分布于侧压力系数[J].岩土力学,2005,26(7):1019-1024.
    [159]张永兴,陈林.挡土墙非极限状态主动土压力分布[J].土木工程学报,2011,44(4):112-119.
    [160]Cheng, YM. Seismic lateral earth pressure coefficients for c-φ soils by slip line method[J]. Computers and Geotechnics,2003,30(2):661-670.
    [161]Shukla, SK. Gupta, SK. Sivakugan N., Active earth pressure on retaining wall for c-φ soil backfill under seismic loading condition[J].Journal of Geotechnical and Geoenvironmental engineering,2009,135(5):690-695.
    [162]Shukla, SK. Dynamic active thrust from c-φ soil backfills[J]. Soil Dynamics and Earthquake Engineering,2011,31(3):526-529.
    [163]Richards RJ. Shi X. Seismic lateral pressures in soils with cohesion[J]. Journal of Geotechnical Engineering,1994,120(7):1230-1251.
    [164]Ahmadabadi M. Ghanbari A. New procedure for active earth pressure calculation in retaining walls with reinforced cohesive-frictional backfill[J]. Geotextiles and Geomembranes,2009,27(4): 456-463.
    [165]赵恒惠.挡土墙后粘性填土的土压力计算[J].岩土工程学报,1983,5(1):134-146.
    [166]李巨文,王翀,梁永朵等.挡土墙后粘性填土的主动土压力计算[J].岩土工程学报,1006,28(5):650-652.
    [167]胡晓军.粘性填土主动土压力库仑精确解的改进[J].岩土工程学报,2006,28(8):1049-1052.
    [168]顾慰慈.粘性土主动土压力计算[J].水利学报,1991,(1):55-64.
    [169]王奎华,马少俊,吴文兵等.挡土墙后双层黏性土的主动土压力计算[J].浙江大学学报,2011,45(7):1288-1294.
    [170]王奎华,马少俊,吴文兵.挡土墙后曲线滑裂面下黏性土的主动土压力计算[J].西南交通大学学报,2011,46(5):732-738.
    [171]年廷凯,栾茂田.均布荷载作用下挡土墙后粘性填土的土压力计算[J].岩土力学,2002,23(1):17-22.
    [172]罗强,蔡英,邵启豪.成都粘土重力式挡土墙的工程试验[J].西南交通大学学报,1995,30(3):270-274.
    [173]岳祖润,彭胤宗,张师德.压实粘性填土挡土墙土压力离心模型试验[J].岩土工程学报,1992,14(6):90-96.
    [174]Terzaghi. K. Theoretical soil mechanics[J]. New York, Wiley.1943.
    [175]Handy, R.L. The arch in soil arching[J]. Journal of Geotechnical Engineering.1985,111(3): 302-318.
    [176]Harrop-Williams K. Arch in soil arching[J]. Journal of Geotechnical Engineering.1989,115(3): 415-419.
    [177]Paik. K. H., and R. Salgado. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Geotechnique.2003,53(7):643-653.
    [178]Shubhra Goel., and Patra. N. R. Effect of arching on active earth pressures for rigid retaining walls considering translation mode[J]. International Journal of Geomechanics.2008,8(2):123-133.
    [179]Ying H. W., Jiang B., and Xie, K. H. Analysis of the minor principal stress arch behind retaining wall[J]. Advances in Earth Structure,2006,8(2):340-347.
    [180]应宏伟,蒋波,谢康和.考虑土拱效应的挡土墙主动土压力分布[J].岩土工程学报,2007,29(5):717-724.
    [181]彭述权,周健,樊玲等.考虑土拱效应刚性挡土墙土压力研究[J].岩土力学,2008,29(10):2701-2707.
    [182]章瑞文,徐日庆.土拱效应原理求解挡土墙土压力方法的改进[J].岩土力学,2008,29(4):1057-1062.
    [183]吴明,彭建兵,徐平等.考虑土拱效应的挡墙后土压力研究[J].工程力学,2011,28(11):89-95.
    [184]郑卫锋.深基坑预应力锚杆柔性支护力学性能的研究[D].大连理工大学,2007.
    [185]徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
    [186]重庆市设计院.建筑边坡工程技术规范(GB 50330-2002)[S].北京:中国建筑工业出版社,2002.
    [187]夏元友,陈泽松,顾金才等.压力分散型锚索受力特点的室内足尺模型试验[J].武汉理工大学学报,2010,32(3):33-38.
    [188]Hewlett W.J. Randolph M.F. Analysis of piled embankments[J]. Ground Engineering,1988,21(3): 12-18.
    [189]Low B.K. Tang S.K. Choa V. Arching in piled embankments[J]. Journal of Geotechnical Engineering.1993,120(11):917-938.
    [190]Han J. Gabr M.A. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering.2002, 128(1):44-53.
    [191]陈福全,李阿池.桩承式加筋路堤的改进设计方法研究[J].岩土工程学报,2007,29(12):1804-1808.
    [192]陈福全,李阿池,吕艳平.桩承式路堤中土拱效应的改进Hewlett算法[J].岩石力学与工程学报,2007,26(6):1278-283.
    [193]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450.
    [194]赵明华,廖彬彬,刘思思.基于拱效应的边坡抗滑桩桩间距计算[J].岩土力学,2010,31(4):1211-1216.
    [195]唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践,1999,21(2):21-24.
    [196]刘庭金,唐春安,朱合华.低弹模包体强度对试验破裂模式影响的数值试验[J].同济大学学报,2002,30(3):263-268.
    [197]徐涛,唐春安,王述红等.岩石破裂过程围压效应的数值试验[J].中南大学学报,2004,35(5):840-844.
    [198]康健,赵明鹏,赵阳升.随机非均匀热弹性力学模型与岩石热破裂门槛值的数值试验研究[J].岩石力学与工程学报,2004,23(14):2331-2335.
    [199]苏霞,李仲奎.锚杆拉拔力影响因素的数值试验研究[J].工程力学,2006,23(2):97-103.
    [200]中华人民共和国住房和城乡建设部.混凝土结构设计规范(GB 50010-2010)[S].北京:建筑工业出版社,2011.
    [201]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [202]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700