用户名: 密码: 验证码:
济宁市地下水过量开采修复措施及风险评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因缺少充分的数据资料,用传统的方法很难进行地下水管理方面的研究。因此,本文在前人研究的基础上,用两种方案相组合的方法,运用Visual MODFLOW、GIS、Surfer软件,从水质和水量的两个方面,来评价地下水系统对减少地下水开采量和开展人工回灌措施的响应,以及由此所降低的风险,并首次提出一种同时考虑降低地下水水质、水量风险的评价方法,该评价方法简便,对开展不同地下水超采情况下的风险管理和决策分析具有一定的指导作用,并为进一步开展地下水库风险分析奠定了基础。
     本文在建立准确刻画地下水系统物理、化学和水文地质特征的水文地质概念模型的基础上,借助Visual MODFLOW软件,用试错法对模拟期(1999~2001)内的模型参数进行率定,并用验正证的模型对研究区的地下水流场、污染物浓度及水均衡要素进行分析,从而更深刻地认识济宁市地下水系统复杂的水文地质特性。此外,灵敏度分析结果表明,与渗透系数、储水系数相比,模型对给水和度、降水入渗补给系数较敏感。采用GIS中的指标迭置方法,选取含水层的净补给、含水层初始厚度、地下水位降深、开采强度4个因子,评价了对地下水超采程度进行了评价。结果表明:占研究区面积5.53%的中部地区,超采程度最严重;西部和南部超采程度最轻。其分析其原因得如下:西部和南部的地下水补给主要为大气降水入渗、灌溉水回渗和地表水体(京杭运河和南四湖)的入渗补给,且地下水开采强度只有0.1954×10~4m~3/d;而市中区的开采强度高达21.096×10~4m~3/d。
     在进行人工回灌分析过程中,当将河床沉积物渗透系数增加到20 m/d,降水入渗补给量与回灌井的注水量分别为150 m~3/d和2000 m~3/d,而开采量为3417.69×10~4 m3/a时,地下水位平均每年上升6.497m。而水位恢复后的含水层水质很大程度上取决于回灌水的水质,一般情况下,世界卫生组织(WHO)的标准中规定的Cl~-浓度为200mg/l(GB/T 14848-93中规定的Ⅱ二类水的标准是<150 mg╱l),总硬度最大限度为500 mg╱l,但在一些地区也有超过该值的特例。,本文对此进行了分析与研究。
     通过减少开采量方案的实施,不但没有增加含水层的储量不但没有增加反而减少了地下水供应量。对仅采取减少开采量的方案(削减幅度分别为5%、10%、15%、25%和50%),地下水位的上升速率均小于2.36 m/a。当采取减少开采量与实施人工回灌相结合的方案时,水位上升速率大于2.36 m/a。但当开采量减少15%时,在增大含水层储存量上两种方案在增大含水层储存量上并没有显著明显差别。在所采取的方案中,减少开采量引起的风险大大高于减少开采量与回灌相结合的风险,而减少开采量与人工回灌相结合的风险又大大高于回灌优质水的风险。此外,当减少开采量22%与采用人工回灌相结合,同时考虑市中区降落漏斗区的水量和水质时,此方案成为降低风险的最佳方案,该方案可增加水量0.46×10~8m~3/a。
     在回灌水的Cl~-浓度和总硬度分别取界限值200 mg╱l和最大允许值500 mg╱l的基础上进行风险评价,评价结果表明:减少开采量并实施人工回灌可导致空间的风险在地面沉降区增大,西南地区则是因高硬度引起的。另一方面,用统计概率风险评价方法分析总硬度时,两种方案的评价结果差别不明显,且超过总硬度500 mg/l的风险均为0.67,然而当两种方案中均值分别为546.96 mg╱l和545.16 mg╱l,并考虑概率估计中因不确定性而产生的风险基础上,得出的风险均为50%。在减小开采量方案中,17%和5.6%的观测井(共18眼井)表明超过总硬度500mg╱Ll的概率分别为0.2(即20%?)和0.3;而在第二个方案中11%和5.6%的观测井得到的概率分别为0.2和0.5。
     根据风险评价结果绘制风险分区图,实施人工回灌时,风险较小(0~4分)的地区占研究区的25%,风险中等(4~7分)的地区占18.75%,风险较大(大于7分)的地区占56.25%。采取回灌与减采相结合的措施时,相应的百分比分别为30%(0~4分)、23.08%(4~7分)、46.15%(大于7分)。通过与超过临界值的概率方法相比,当以主要界限值为评价标准时,采用人工回灌措施为最优方案,而以超过均值和二分位法概率为评价标准时,采用减少开采量与人工回灌相结合的措施为最优方案。但当考虑水处理造价昂贵,保持回灌水质不低于GB/T14848-93所规定的Ⅱ类水标准时,是最经济且可行的方案。采取人工回灌与减采相结合的措施可减小22%的风险,且京杭运河沿线的南水北调工程可以作为回灌水源。
     本文在考虑含水层水文地质和水文地球化学特征等影响因素的基础上,用降低风险的评价方法成功地对地下水水量和水质的修复方案进行了评价,并绘制了风险分区图,方法简便,评价结果可有效地为各级风险管理和环境决策提供科学依据。
In this study, an attempt is made to formulate a new methodology for the first time for qualitative and quantitative groundwater risk reduced assessment (RRA), for risk management and environmental decision making at different levels of groundwater overdraft remediation. In the absence of relevant and adequate data, rather than use one traditional method for groundwater management studies, this new approach envisaged that a combination of two or more methods can relatively give a better understanding of the possible effects of remedial actions in overdrafted aquifer, and significantly limits risk in terms of the results so obtained. Based on elimination procedure similar to optimization techniques, this scenarios-based risk analysis new method couples the scenarios, analytical and probabilistic approaches to assess the potential groundwater risk due to overdraft remedial actions, and it is achieved by coupling Visual MODFLOW with GIS and SUFFER software to evaluate the impact of reduced pumping and artificial recharge on groundwater system qualitatively and quantitatively. It is an extension of the previous efforts.
     Based on the simplifications of the conceptual model, to represent the physical, chemical and hydrogeological properties of the groundwater system, a computer code Visual MODFLW model was calibrated by trial and error method until a "goodness-of-fit" was achieved between the observed field data and simulated ones i.e. heads and contaminant concentrations for the 1999-2001. Upon verification, it was then used to simulate hydraulic head distribution, contaminant concentrations and water budget in the model domain in order to understand the complex chemical and hydrogeological groundwater system in Jining city. The model is more sensitive to specific yield and recharge than hydraulic conductivity and storage coefficient. An assessment of groundwater overdraft severity by index and overlay techniques using GIS and based on net recharge rate, the initial aquifer saturation thickness, the drawdown, and the pumping rate density shows that the central part which represents about 5.53% of the total area is the most overdrafted area, whereas sections of the western and southern part of the study area are the least overdrafted. The western and southern sections are characterized with high rate of recharge from both precipitation, irrigation fields, and surface water bodies (the Great Canal and Nansi Lake), but low abstraction rate of 0.1954×10~4 m~3/d, while the city centre has the highest abstraction rate of 21.096×10~4 m~3/d .This finding enabled the location and quantification of the most risky area needing urgent remedial action.
     Artificial recharge by modification of the hydraulic conductivity (K) value of the bed material to 20 m/d, through infiltration and injection wells with a recharge rate of 150 m~3/d and 2000 m~3/d respectively, averagely increases the water level by 6.497 m/a from a decline rate of 2.36 m/a, with an average annual groundwater increased of 3417.69×10~4 m~3/a On the other hand, the quality of water used for recharge purpose greatly determines the recovered groundwater quality which varies spatially in the study area, but generally, the Cl~- concentrations is within the world heath organization standard (WHO) of 200 mg/l (Grade 2 groundwater quality standards, GB/T14848-93 of < 150 mg/l) and the total hardness TH maximum allowable limit of 500 mg/l is surpassed in some cases. An explanation is given herein.
     Reduction in pumping increases the amount of water in the aquifer storage and water level. In all cases of reduced pumping without artificial recharge (5%, 10%, 15% and 25%), the water level increase rate is less than 2.36 m/a, however in combination with artificial recharge, more than 2.36 m/a groundwater level increase rate is observed, hence addressing the environmental restoration issue with significant water volume stored within the given time limit; in both cases there is no significant difference in increased volume stored for reduced pumping above 15%. The risk due to reduced pumping is more than risk due to reduced pumping with recharge, which is also more than risks due to recharge only with a better water quality. The 22% reduced pumping with artificial recharge seems to be the best risk reduced option as it offers an optimum (trade off) option in terms of both quantity and quality combined for the study area. At this point the annual volume increased stabilized at about 4600 x 104 m~3/a.
     Further risk assessment based on the ratios of concentrations of Cl~- and TH in recovered water to that of desired limit (200 mg/l) and maximum permissible limit (500 mg/l) for Cl~- and TH respectively shows that, reduced pumping with artificial recharge leads to a spatial higher risk than recharge only especially within the cone of depression, and south-western parts and this can be attributed to the high TH concentrations. On the other hand, in analysing TH using the statistical probabilistic risk assessment approach, there is no significant difference between the risks under the artificial recharge and artificial recharge with reduced pumping, as the probability of exceeding the critical TH concentration of 500 mg/l in both cases is about 0.67; however based on their average values of 546.96 mg/l and 545.16 mg/l respectively, and given the uncertainties and risks associated with probability estimation, one can accept the almost 50% risk for the two scenarios. About 17% and 5.6% of the concentrations observation wells (OB) indicate a probability of more than 0.2 and 0.5 of exceeding the WHO critical TH concentration of 500 mg/l for recharge only scenario respectively. However, for both recharge and reduced pumping, only about 11% and 5.6 % of the OB wells indicate a probability of more than 0.2 and 0.5 respectively of exceeding the WHO critical TH concentration of 500 mg/l.
     Using the GIS based Natural Break Jenks classification, recharge only has 25% of the study area having low reduced risk (score 0-4), 18.75% having medium risk reduced (score 4-7), and 56.25% having a high risk reduced (score more than 7). For the recharge with reduced pumping, 30 % of the study area having low reduced risk (score 0-4), 23.08 % having medium risk reduced (score 4-7), and 46.15 % having a high risk reduced (score more than 7). Compared with the probability of exceeding allowable limit approach, while the artificial recharge only remedial action stands the best option based on critical limit criteria, the artificial recharge with reduced pumping seems best option based on mean and second quartile probability of exceeding limit criteria. But given the high cost of recharge water treatment, it is only economical and feasible to maintain the recharging water quality within Grade 2 of the groundwater quality standards of GB/T14848-93, and combine recharge with reduced pumping at or about 22%. The proposed South-North water transfer project along the Great Canal can be effectively used for the recharge purpose.
     The RRA approach takes into consideration both the hydrogeological and hydogeochemical aquifer controlling factors. Generally this research successfully formulated a simple new methodology of quantitative and qualitative risk reduced assessment (RRA) of groundwater remedial options, which can be effectively used for risk management and environmental decision making.
引文
[1] Bear J., 1979. Hydraulics of Groundwater. McGraw-Hill Inc, London
    [2] Freeze, R. A., & J. A. Cherry, 1979. Groundwater, Prentice-Hall, Englewood Cliffs, NJ
    [3] Todd, D. K., & L. W. Mays, 2005. Groundwater Hydrology, 3rd Edition. John Wiley & Sons Inc., NJ.
    [4] Postel, S. L., G. C. Daily, & P. R. Ehrlich, 1996. Human Appropriation of Renewable Fresh Water, Science, 271(5250): 785-788
    [5] Wolfgang, K., B. Peter, S. Tobias, & B. Philip, 2003. Sustainable groundwater management problems and scientific tools, Episode. 26(4): 279-284
    [6] Philip, B. B., S. R. Hanadi, & J. N. Charles, 2000. Groundwater contamination: Transport and Remediation, 2nd Edition. Prentice-Hall, Englewood Cliffs, NJ
    [7] United Nations Environmental Program, 2003. Groundwater and its Susceptibility to degradation: A global assessments of the problems and options for management. Document UNEP/DEWA/RS.03-3(Nairobi: UNEP)
    [8] Callow, R. C., N. S. Robins, A. M. Macdonald, D. M. J. Macdonald, B. R. Gibbs, W. R. G. Orpen, P. Mtembezeka, A. J. Andrews, & S. O. Appiah, 1997. Groundwatermanagement in drought-prone areas of Africa, Water Resources Development 13(2): 241-261.
    [9] Carter, R. C., & P. Howsam, 1994. Sustainable use of groundwater for small scale irrigation with special reference to sub-Saharan Africa, Land Use Policy 11(4): 275-285.
    [10] Ray, K. L.(Jr.), M. A., Kohler, & J. L. H. Paulhus, 1982. Hydrology for Engineers. McGrawHill, NY
    [11] Yeou-Koung, T., 1987. Multi-objective stochastic groundwater management of nonuniform, homogeneous aquifers, Water Resources Management 1(4) 241-254
    [12] Sawyer, C. S, D. P. Ahlfed, & A. J. King, 1995. Groundwater remediation designs using a three-dimensional simulation model and mixed integer programming. Water Resources Resource 31(5): 1373-1385
    [13] Gorelick, S. M., C. I. Voss, & P. E Gill, 1984. Aquifer reclamation design: The use of contaminant transport simulation combined with a nonlinear programming. Water Resources Resource 20(4): 415-427
    [14] Jens, C. R., & H. J. Henriksen, 2004. Modeling guidelines terminology and guiding principles, Advances in Water Resources 27(2004) 71-82
    [15] Malone, C. R., 1989. Interface modeling and public policy at Yucca Mountain, Environmental Science technology 23. 1452
    [16] Winograd, I. J., 1990. Interface modeling and public policy at Yucca Mountain, Environmental Science technology 24. 1291
    [17] Anderson, M. P, & W. W. Woessner, 1992. Applied Groundwater Modeling Simulation of flow and advective transport. Academic Press Inc, San Diego
    [18] Charles, R. F., 2002. Groundwater Science. Elsevier Science Ltd., London
    [19] Gogu, R. C., & A. Dassargues, 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods, Environmental Geology 39(6): 549-558.
    [20] Jafer, G., B. Ghermezcheshme, S. Feiznia, & A. A. Noroozi 2005. Integrating GIS and DSS for identification of suitable area for artificial recharge, case study Meimeh Basin, Isfahan, Iran, Environmental Geology 47: 493-500
    [21] Nancy, T. B., 1993. Utilization of Geographic Information system to identify the primary a aquifer providing groundwater to individual wells in eastern Arkansas. Water Resources Bulletin 29(.3): 445-448
    [22] Christopher, J. R., R. Honesto, & R. M. Roaza, 1993. Integrating Geographic Information system and MODFLOW for groundwater Resources assessments, Water Resources. Bulletin 29(5): 847-853
    [23] Kurt, C. H., 1993. Use of Geographic Information system to assemble input data sets for finite difference model of groundwater flow. Water Resources Bulletin 29(3): 401-405
    [24] Pinder, G. F., 2002. Groundwater modeling using geographic information system. John Wiley and Sons
    [25] Christopher, J. R., H. Roaza, & R. M. Roaza, 1993. Integrating geographic information system and MODFLOW for groundwater resources assessments, Water Resources Bulletin 29(5): 847-853
    [26] Allard M. J., A. M. Hans, M. Chris, & R. Carlos, 1994. Introduction of the use of GIS for practical hydrology: UNESCO International Hydrological Programe, International Institute for Aerospace Survey and Earth Sciences(ITC), p21
    [27] Tim, U. S., 1996. Coupling Vadose zone models with GIS: Emerging trends and potential bottlenecks, Journal of Environmental quality 25: 535-544
    [28] Corwin, D. L., 1996. GIS application of deterministic solute transport models for regional scale assessments on none-point sources pollutants in the Vadose Zone; in D L. Crown, and K. Loague(eds.). Applications of GIS to the modeling of non-point source of pollutants in the Vadose zone. Soil Sci Soc Am. 48: 69-100
    [29] Singh, V. P, M. Fiorentino(eds.), 1996. Geographic Information system in Hydrology. Water Science and Technology Library, Vol.36. Kluwer Academics, Boston, MA
    [30] Fedra, K., 1994. GIS and environmental modeling; in M. F. Goodchild, B. O. Parks, & L. T Steyaert(eds.), Environmental Modeling with GIS. Oxford University press, NY, pp35-50
    [31] Kurt, C. H., 1993. Use of Geographic information system to assemble input-data sets for a finite-difference model of groundwater flow. Water Resources Bulletin 29(3): 401-405
    [32] Marryot, R. A., 1996. Optimal Groundwater design using multiple control technologies, Ground water 34(3): 425-433
    [33] Wang, M., & C. Zheng, 1997. Optimal remediation policy selection under general conditions, Ground Water 35(5): 757-764
    [34] Mylopoulos, Y. A. A., & N. Theodosius, 1999. Joint risk-based decision analysis and stochastic optimization methodology in the remediation design of a contaminated groundwater resource in Greece, Canadian Water Resources Journal 24(3): 187-201
    [35] McDonald, M. G., & A. W. Harbaugh, 1996. User's documentation for MODFLOW-96, an update to the U. S. Geological Survey modular finite-difference ground water flow model: U. S Geological Survey Open-File Report 96-485
    [36] McDonald, M. G & A. W Harbaugh, 1988. A modular Three-Dimensional Finite Difference Ground Water flow model. U. S Geological Survey Techniques of Water Resources Investment. Book6, Chapter A1. Technical Report, US Geological Survey, Reston Verginia
    [37] Min, S., & C. Zheng, 1999. Long-term groundwater management by a MODFLOW based dynamic optimization too, Journal of the American Water Resources Association 35(5): 99-111
    [38] Fetter, C. W., 1994. Applied Hydrology, 3rd Edition. Prentice Hall Englewood Cliffs, NJ
    [39] Karanth, K. R., 1997. Groundwater assessment, development and Management, 5th Edition. Tata McGraw-Hill, New Delhi
    [40] Chow, V. T., D. R. Maidment, & L. W. Mays, 1989. Applied Hydrology. McGraw Hill. NY
    [41] Vassolo, S., W. Kinzelbach, & W. Schafer, 1998. Determination of a well head protection zone by stochastic inverse modeling, Journal of Hydrology 206: 268-280
    [42] Herbert, A. W., C. P. Jackson, & D. A. Lever, 1988. Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration, Water Resources Research 24(10): 1781-1795
    [43] Zhongbo, Y., & F. W. Schwartz, 1998. Application of Integrated basin-Scale hydrologic model to simulate Surface Water and Gronndwater interactions, Journal of American Water Resources Association 34(2): 409-425
    [44] Himmelsbach, T., & R. Butter, 2001. Conceptual hydrogeological model to assess groundwater resources of the heterogeneous fractured aquifers at Tsumeb (Northern Namibia); in New Approaches Characterizing Groundwater flow, Seiler & Wohnlich(eds.), Balkema Pub., 1(2001): 245-249.
    [45] Alley, W. M., T. E. Reilly, & O. L. Franke, 1999. Sustainability of Groundwater Resources, U. S, Geological Survey Circular 1186
    [46] Darcy, H., 1856. Les fontaines publiques de le ville de Dijon. Victor Dalmont, Paris
    [47] Lin, C. L., 1972. Digital simulation of the Boussinesq equation for water table aquifer, Water Resources Research 8(3): 691-696
    [48] Groundwater modeling system (GMS vol.3.1), 2000. Environmental Modeling Research Laboratory. Brigham Young University.
    [49] Jansen, 1987. The value of Groundwater models for planners and decisions makers, Technical document in hydrology. UNESCO: 3-7
    [50] Southwell, R. V., 1940. Relaxation Methods in Engineering Science. Oxford University Press, London
    [51] Neuman, S. P., 1972. Finite Element Computer Programs for Flow in SaturatedUnsaturated Porous Media, Hydraulics Lab., Techno-Israel Inst. of Technology, Report on Project, A10-SWC-77.87pp
    [52] Pinder, G. F., & E. O. Frind, 1972. Application of Galerkin's procedure to aquifer analysis, Water Resources Research. 8(1): 108-120
    [53] Pinder, G. F., & J. D. Bredehoeft, 1968. Application of the digital computer for aquifer evaluation, Water Resources Research 4(5): 1069-1093
    [54] Forsythe, G. E., & W. R. Wasow, 1960. Finite difference methods for partial differential equations. John Wiley publication, USA
    [55] Konikow, L. F., W. E. Sandford, & P. J. Cambell. 1997. Constant-concentration boundary conditions: Lessons from the HYDROCOIN variable density, groundwater benchmark problem, Advances in Water Resources, 33(10): 2253-2261
    [56] Leijnse, A., 1992. Three -Dimensional modeling of coupled flow and transport in porous media, PhD thesis. Indiana: University of Norte Dame.
    [57] Bear, J., & A. Verruijt, 1987. Modeling Groundwater flow and pollution. D. Reidel publishing Co., pp153-154
    [58] Weaver, W. J., 1967. Computer programs for structural analysis. D. Van Nostrand, Princeton, NJ
    [59] Remson, I., G. M. Hornberger, & F. J. Molz, 1996. Numerical methods in Subsurface Hydrology-with-an Introduction to the finite elements methods. Wiley Interscience, NY
    [60] Konikow, L. F., D. J. Goode, & G. Z., Hornberger, 1996b. Three-dimensional methods of characteristics solute-transport model(MOC3D). US Geological Survey Water-Resources Investigations. Report 96-4267
    [61] Hill, M. C., 1990. Preconditioned conjugate-gradient2(PCG2), a computer program for solving groundwater flow equations. U. S Geological survey Water Resources Investigation Report 90-4048(43pp)
    [62] Harbaugh, A. W., 1995. Direct Solution Packages Based on Alternating Diagonal Ordering for the U. S Geological Survey Open File report 95-288, 46 pp
    [63] Trescott, P. C., G. F. Pinder, & S. P. Larson, 1976. Finite-difference model for aquifer simulation in two-dimension with results of numerical experiments. USGS Techniques of Water-Resources Investigations, Book 7 Chap. Cl. 116p.
    [64] Istok J., 1989. Groundwater modeling by Finite Element method, AGU Water Resources Monograph No. 13. America Geophysical Union, Washington DC.
    [65] Bedient, P. B., H. S. Rifai, & C. J. Newell, 1994. Groundwater Contamination Transport and Remediation. PTR Prentice Hall, NJ
    [66] Walton, W. C., 1989. Numerical Ground Water Modeling: Flow and Contaminant Migration. Lewis Publishers, Chelsea, Michigan.
    [67] Harbaugh, A. W., E. R. Banta, M. C. Hill, & M. G. McDonald, 2002. MODFLOW-2000. The U. S Geological Survey Modular Ground-Water Model, User guide to modularization concepts and groundwater flow process. US Geological Survey Open File report 00-92.
    [68] Sanford, W. E., & L. F. Konikow, 1985. A two-constituent solute transport model for groundwater having variable density. U. S Geological survey Water Resources Investigation Report 85: 4279-4288
    [69] Pollock, D. W. 1989. Documentation of computer program to compute and display path lines using results from the U. S Geological survey open file Report 89: 381-462
    [70] McDonald M. G., A. W. Harbaugh, B. R. Orr & D. J. Ackerman, 1991. A method for converting no-flow cells to variable head cells for the U. S Geological Survey modular finite difference groundwater flow model. U. S Geological survey open file report 91-536. Denver CO.
    [71] Hseih, P. A. J., & J. Freckleton, 1993. Documentation of computer program to simulate 8horizontal-flow barriers using the U. S. Geological Survey's modular threedimensional finite difference groundwater flow model. U. S. Geological Survey Open -File Report 92: 477-509
    [72] Hill M, C, 1992. A computer program (MODFLOWP) for estimating parameter of a transient Three-Dimensional groundwater flow model using nonlinear regression. U. S Geological survey water Resources Investigation Report 91-484p
    [73] Mercer, J. W., & C. R. Faust, 1981. Groundwater modeling: National Water Well Association, Geo. Trans, Inc. 60p.
    [74] Knochenmus, L. A. & J. L Robinson, 1996. Decription of anisotropy and heterogeneity and their effects on ground-water flow and areas of contribution to public supply wells in karts carbonate aquifer systems. U. S. Geological Survey Water-Supply Paper 2475, 47p.
    [75] Naveh, N., & U. Shamir, 2004. Managing groundwater levels in an Agricultural area with peat soil. Journal of Water resources Planning and Management ASCE 130(3): 243-254
    [76] Eusuff, M. M., & K. E. Lansely, 2004. optimal operations of artificial groundwater recharge systems considering water quality transformation. Water Resources Management 18(4): 379-405
    [77] Kishen, P. H, 2002. Potential impacts of global warming on groundwater in eastern Massachusetts. Journal of Water Resources, planning management ASCE 128: 216-226
    [78] Hill, M. C., 1998. Methods and Guidance for Effective Model Calibrations. U. S. Geological Survey Water-Resources Investigations Report 98-4005, 90pp.
    [79] Neuman, S. P., 1984. Adaptive Eulerian-Lagrangian finite element method for advectiondispersion. Journal of Numerical Methods Eng., 20: 321-337.
    [80] Shaul, S., 1988. Eulerian-Lagrangian method for solving transport in aquifers; in E. Custodio, A. Gurdui, & J.P.L. Ferreira (eds.), Groundwater flow and quality modeling. D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, pp201-204
    [81] Ogata, A., 1970. Theory of dispersion in a Granular Medium. U.S. Geological Survey Professional paper 411-A. U.S Government Printing office, Washington, DC
    [82] Bear, J., 1972. Dynamics of Fluid in Porous Media. American Elsevier, New York
    [83] Daus, A.D., E.O. Frind, & E.A. Sudicky, 1985. Comparative error analysis in Finite Elements formulation of the advection-dispersion equation. Advance Water Resources 8(2):86-95.
    [84] Kuznetsov, D.S., & A.A. Roshal, 2003. Analysis of numerical procedures for solving mass transport problems at a regional scale, Water Resources 30(3):283-289
    [85] Dagan, G., 1989. Flow and Transport in porous formation. Springer, NY
    [86] Neuman, S.P., C.L. Winter, & C.M Newman, 1987. Stochastic theory of field scale Fickian dispersion in anisotropic porous media, Water Resources Research 23(3): 453-466.
    [87] Gelher, L.W & C.L Axness, 1983. Three dimensional stochastic analysis of macrodispersion in aquifer, Water Resources Research 19(1) 161-180
    [88] Oreskes, N., K. Shrader-Frechette, & K. Belitz, 1994. Verification, Validation, and Confirmation of Numerical Models in the earth sciences, Science 263:641-646
    [89] Zester, S., H.A. Loaiciga, & J.T. Wolf, 2005. Environmental Impacts of groundwater overdraft: selected studies in the southwestern United States, Environmental Geology.47:396-404
    [90] European Environmental Agency, 1999. Environmental indicators: typology and overview. Technical report No 25
    [91] Walid, A, A., 2005. Groundwater Management for sustainable development of urban and rural areas in Extreme Arid regions: a case study, Water Resources Development 21 (3): 403-412
    [92] Zhu, X., & Q. Xiaoxing, 1987. Ground Water Resource Assessment. Nanjing University Press, pp 1-10
    [93] Hunt, J.R., N.S. Sitar, & K.S. Udell, 1988. None aqueous phase liquid transport and Cleanup, 1, Analysis of mechanisms, Water Resources Research 24(8):1247-1258
    [94] Hunt, J.R., N.S Sitar & K.S. Udell, 1988. None aqueous phase liquid transport and Cleanup, 2, Experimental studies, Water Resources Research 24(8): 1259-1270
    [95] Udell, K. S., 2000. Thermal remediation of soil and groundwater contamination; in P. L Bjerg, P. Engesgaard, & Th. H Krom (eds.), Groundwater 2000. A. A. Balkema/Rotterdam/ Brookfield, pp367-368
    [96] Bahr, J. M., 1989. Analysis of non equilibrium desorption of volatile organics during field test of aquifer decontamination, Journal of contaminant hydrology 4: 201-222
    [97] Atwood, D.F., & S.M. Gorelick, 1989. Hydraulic gradient control for groundwater contaminants removal, Journal of Hydrology 76: 85-106
    [98] Travis, C. C, & C. B. Doty, 1990. Can contaminated aquifers at superfund sites be remediated? Environmental Science and Technology 24(10): 1464-1466
    [99] Stroo, H. F, M. Unger, C. H. Ward, M. C. Kavanaugh, C. Vogel, A. Leeson, J. Marqusee, & B. P. Smith, 2003. Remediating chlorinated solvent source zone, Water Resources Research 37(2): 393-404
    [100] Eberhardt, C., & P. Grathwohl, 2002. Time scales of pollutants dissolution from complex organic mixtures: blobs and pools, Journal of Contaminant Hydrology 59(1-2): 45-66
    [101] MacDornald, J. A., & M. C. Kavanaugh, 1995. Superfund: the clean up standard debate, Water Environment Technology 7(2): 55-61
    [102] Matott, L. S., J. A. Rabideau, & R. J. Craig, 2006. Pump-and-treat optimization using analytical element method flows, Advances in Water Resources 29: 760-775
    [103] Sudicky, E. A., R. W. Gillham, & E. O Frind, 1985. Experimental investigation of solute transport in stratified porous media: 1. The none reactive case, Water Resources Research 21(7): 1035-1041
    [104] Fountain, J. C., A. Klimek, M. G. Beikirch, & T. M Middleton, 1991. The use of surfactants for insitu extraction of organic pollutants from a contaminated aquifer. Journal of Hazard Mater 28(3)295-311
    [105] Gusmao, A. D., T. M. P. Campos, M. M. M. Nobre, & E. A Vargas Jr., 2004. Laboratory test for reactive barrier designs, Journal of Hazard mater 110(1-3): 105-112
    [106] Schaerlaekens, J., & J. Feyen, 2004. Effects of scale and dimensionality on the surfactantenhanced solubilisation of a residual DNAPL contamination, Journal of contaminant Hydrology 71(1-4): 283-306
    [107] McKinney, D. D., & M. D. Lin, 1996. Pump-and treat groundwater remediation system optimization, Journal of Water Resources Planning and Management 122(2): 128-136
    [108] Murray, E. C., & G. Tredoux, 1998. Artificial recharge: A technology for sustainable water resource development. Water Resources Commission Report No. 842/1/98, Pretoria ISBN 1868454509
    [109] Murray, E. C, & G. Tredoux, 2002. Pilot artificial recharge schemes: Testing sustainable water resources development in fractured aquifers. Report to the Water Research Commission, WRC Report No. 967/1/02. Pretoria. ISBN 1868458830
    [110] Pyne, R. D. G., 1995, Groundwater Recharge and Wells. A Guide to Aquifer Storage Recovery. Lewis Publishers, London
    [111] Takashi, A., 1985. Artificial recharge of Groundwater. Butterworth Publishers, London
    [112] www.awwa.org: The Groundwater Committee's report "Survey and Analysis of Aquifer Storage and Recovery (ASR) Systems and Associated Programs in the United States. 2002
    [113] www.water.usgs.gov/ogw/pubs/ofr0289/index.htm:USGS Artificial Recharge Workshop Proceedings, 2002
    [114] www.cee.vt.edu/program(?)areas/environmental/teach/gwprimer/recharge/recharge.html "Artificial Recharge of Ground
    [115] Larry, W. C., C. K. Robert, & M. F Deborah, 1985. Groundwater quality protection. Lewis Publisher Inc., Michigan
    [116] U. S. Environmental Protection Agency, December 1987. Non point source guidance: Office of Water, Office of Water Regulations and Standards, Washington, D. C.
    [117] Fetter, C. W., 2001. Contaminant Hydrogeology, 4~(th) Edition. Prentice Hall, Upper Saddle River, NJ
    [118] Barlow, P. M., 1994. Two-and three-dimensional path line analysis of contributing areas to public-supply wells of Cape Cod, Massachusetts, Ground Water, 32(3): 399-410
    [119] Reilly, T. E., & D. W. Pollock, 1995. Effect of seasonal and long-term changes in stress on sources of water to wells. U. S. Geological Survey Water-Supply Paper 2445, 25p
    [120] Theis, C. V., 1940. The source of water derived from wells-essential factors controlling the response of an aquifer to development, Civil Engineering Magazine, pp 277-280
    [121] Bredehoeft, J. D., 2002. The water budget myth revisited: Why hydrogeologist model. Ground Water 40(4): 340-345
    [122] Franke, O. L., T. E. Reilly, D. W. Pollock, & J. W. LaBaugh, 1998. Estimating areas contributing recharge to wells - Lessons from previous studies. U. S. Geological Survey Circular 1174, 14p
    [123] Freeze, R.A., 1975. A stochastic conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media, Water Resources Research 3(3): 725-741
    [124] Shiklomanov, I.A., 1993. World fresh water resources; in Water in crisis: A guide to the world's fresh water resources, ed. Peter H. Gleick, 13-24.Oxford University Press, NY.
    [125] Lunzhang, S., 1994. Management of groundwater resources in China. Rome: FAO.
    [126] Meigh, J.R., A.A. McKenzie, B.N. Austin, R.B. Bradford, & N.S. Reynard, 1998. Assessment of global water resources-phase Ⅱ, Estimates of present and future water availability in Eastern and Southern Africa (Center for Ecology and Hydrology, Walling ford)
    [127] Ralf, T., P.E. Barkmann, D.A. Bird, & M.A. Sares, 2004. Artificial Recharge of Ground water in Colorado, Colorado Geological Survey, Division of Minerals and Geology, Department Of Natural Resources, Denver, Colorado
    [128] Shu, L., Z. Yuansheng, S. Qingyi, & P. Xuming, 2000. Risk analysis of groundwater allowable withdrawal evaluation, Journal of Hydraulic Engineering.3:77-81
    [129] Janet, D.G., & J.C. Ward, 1994. Environmental Decision Making and Lake Management, Journal of Env'l Management 48
    [130] Fischhoff, B., 1990. Understanding long-term environmental risks, Journal of Risk and Uncertainty, 3:315-330
    [131] US Environmental Protection Agency, 1993. A Guidebook to Comparing Risks and Setting Environmental Priorities, Office of Policy Planning and Evaluation. EPA. 230-B-93-003. Washington, DC
    [132] Zhukinskii, V.N., 2003. Environmental risk and environmental damage to surface water quality: Topicality, Terminology, Quantitative estimates. Water Resources 30(2):213-221
    [133] Sen, Z., 1978. Risk and reliability in hydrological design; in International symposium on Risk and Reliability in Water Resources 2:364-375. University of Waterloo
    [134] Xiang, Y., & S. Mishra, 1997. Probabilistic multiphase flow modeling using the limit-state method, Ground Water 35(5).820-824
    [135] Skaggs, T., & D. Barry, 1997. The first-order reliability method of predicting cumulative mass flux in heterogeneous porous formations. Water Resources Research 33(6):1485-1494
    [136] Baoteng, S., 2001. Evaluation of probabilistic flow in two unsaturated soils, Hydrogeological Journal. 9:543-554
    [137] Sitar, N., J. Cralfiled, & A. D. Kiureghain, 1987. First -order reliability approach to stochastic analysis of subsurface flow and contaminant transport, Water Resources Research 23(5): 794-804
    [138] Jang, Y. S., N. Sitar, & A. D. Kiureghaian, 1994. Reliability analysis of contaminant transport in saturated porous media, Water Resources Research 30(8): 2435-2448
    [139] Passarella, G., M. Vurro, V. D. Agostino, G. D'Giuliano, & M. J. Barcelona, 2002. A probabilistic methodology to assess the risk of groundwater quality degradation, Environmental Monitoring and Assessment, 79(1): 57-74
    [140] Rosen, L., D. Wladis, & R. Dominique, 1998. Risk and decision analysis of groundwater protection alternatives on the European scale with emphasis on nitrate and nitrate and aluminum contamination from diffuse, Journal of Hazardous Materials 61(1-3,): 329-336
    [141] Tai-Sheng, L., & Y. Hund-Der, 1997. Conditional expectation for evaluation of risk groundwater flow and solute transport: One-dimensional analysis. Journal of Hydrology 199(3-4): 378-402
    [142] Al-Sheriadeh, M. S., S. A. Barakat, & S. Mo'ayyad, 1999. Application of a decision making analysis to evaluate direct recharging of an unconfined aquifer in Jordan, Water Resources Management 13(4): 233-252
    [143] Elhadi S., P. Kumaraswamy, & W. Tassew, 2002. Risk analysis in Environmental Systems, Canadian Journal of Civil Engineering 29: 1-7
    [144] Woodbury, A., F. Render, & T. Ulrych, 1995. Practical probabilistic Ground-Water modeling, Ground Water 33(4): 532-538
    [145] Douglass, C. B., 1999. Risk based Environmental Decision methods and Culture. Kluwer Academic, London, pp4-13
    [146] Bedford, T., & R. Cooke, 2001. Probabilistic risk analysis, Foundations and methods. Cambridge University Press, NY
    [147] Unlu, K., 1994. Assessing risk of ground-water pollution from land-disposed waste, Journal of Environmental Engineering 120(6): 1578-159
    [148] Bouwer, H., 2002. Artificial recharge of groundwater: hydrogeology and engineering, Hydrogeology Journal 10(1): 121-142
    [149] Foster, S.S.D., 2002. Groundwater recharge and pollution vulnerability of British aquifers: a critical overview. In: Robinson, N.S., (eds.), Groundwater pollution, Aquifer recharge and vulnerability Geological Society, London, Special Publications 130:7-22
    [150] Wu, X., & L. Shu., 2006. The solute transport law of groundwater under exploitation condition: a case study on the cone of depression in Jining city, Shandong province, Journal of Geotechnical Investigation and Surveying 2:27-30
    [151] Liu, B., 2005. Groundwater Artificial recharge potential analysis based on Numerical Simulation and GIS. Nanjing: College of Water Resources and Environment, Hohai University, Dissertation pp.48-76
    [152] Asano, T., & J.A. Cotruvo, 2004. Groundwater recharge with reclaimed municipal wastewater: health and regulatory considerations, Water Research 28:1941-1951
    [153] Fox, P., K. Narayanaswamy, A. Genz, & J.E. Drewes (2001). Water quality transformations during soil aquifer treatment at the Mesa Northwest Water Reclamation Plant, USA, Water Science Technology.42(10):345-350
    [154] WHO, 1971. International standards for drinking water. World Health Organization, Geneva
    [155] WHO, 1983. Guidelines to drinking water quality. World Health Organization, Geneva.
    [156] Jennifer, B., 1990. Public Perception and Response to Risk Assessment in New Zealand, Proceedings IPENZ Annual Conference
    [157] Anderson, E.L., P.C. Chrostowski, & J. Vreeland, 1990. Risk assessment for use in groundwater management; in Risk Assessment for Groundwater Pollution Control, ed. W.F. McTeman, & E. Kaplan. American Society of Civil Engineers, New York, NY, pp. 111-125
    [158] Andersson, I., & S. Ulla, 1995. Risk management and risk assessment research Enviro 18: 6-9
    [159] Harry, J. Otway, & M. Peltu (1985). Regulating Industrial Risks: Science Hazards and Public Protect Protection, A Guidebook to Comparing Risks and Setting environmental priorities, by United States. Environmental Protection Agency. Office of Policy, Planning, and Evaluation 118(1985), Washington DC
    [160] Andricevic, R & V. Cvetkovic, 1996. Evaluation of risk from contaminants migration by groundwater, Water Resource Resources 32:611-622
    [161] Schuller, T. A., S. P Sayko, & N. DeSalvo, 1992. Groundwater modeling for NPL risk assessment, Environmental Texico Chem 11: 1355-1364
    [162] Schwarz, R., T. Ptak, T. Holder, & G. Teutsch, 1998. Risk assessment and monitoringgroundwater risk assessment at contaminated sites: a new investigation approach, IAHS Publication 250: 68-71
    [163] Chen, M, & C. Soulsby, 1997. Risk assessment for a proposed groundwater abstraction scheme in Strathmore, North-East Scotland: A modeling approach, Water Environ Management 11: 47-55
    [164] Morris, B. L., 2001. Practical implications of the uses of groundwater protection tools in water supply risk assessment, Water Environment Management 15: 265-270
    [165] Swartjes, F. A., 1999. Risk-based assessment of soil and groundwater quality in Netherlands: standard and remediation urgency, Risk Analysis 19: 1235-1249
    [166] Hamed, M. M., & B. P. Bedient, 1997. On the performance of computational methods for the assessment of risk from groundwater contamination, Groundwater 35: 638-646
    [167] Maxwell, R. M, W. E. Kastenberg, & Y. Rubin, 1999. A methodology to integrate site characterization information into groundwater-driven health risk assessment, Water Resource Resources 35: 2841-2856
    [168] Tonner-Navarro, L., J. Phelps, S. Roberts, & C. Teaf, 1998. Methods for developing riskbased clean-up goals for complex mixtures, Human Ecology Risk Assessments 4: 721-736
    [169] Lytton, L., S. Howe, R. Sage, & P. Greenaway, 2003. Groundwater abstraction pollution risk assessment, Water Science Technology 47: 1-7
    [170] Delshad, M., G. A. Pope, & K. Sepehmoori, 1996. A compositional simulator for modeling surfactant enhanced aquifer remediation, 1. Formulation, Journal of Contaminant Hydrology 23: 303-327
    [171] U. S. Environmental Protection Agency, 1989. Risk Assessment Guidance: for Superfund: Volume 1-Human Health Evaluation manual Part A, EPA/540/1-89/002, Office of Emergency and remedial responses, Washington, DC
    [172] U. S. Environmental Protection Agency, 1992. Guidelines for Exposure assessments, USEPA 600Z-92/001, Risk assessment Forum, Washington, D. C. 170 pp
    [173] Anderson, C., & G. Destouni, 2001. Risk-cost analysis in ground water contaminant transport: The role of random spatial variability and sorption kinetics, Ground Water, 39(1): 35-48
    [174] Davis, G., 1982. Prospects risk analysis applied to groundwater reservoir evaluation, Ground Water 20(2): 657-662
    [175] Sen, Z., 1999. Simple Probabilistic and statistical risk calculation in an aquifer, Ground Water37(5): 748-754
    [176] Daniels, J. I., K. T. Bogen, & L. C. Hall, 2000. Analysis of uncertainty and variability in exposure to characterize risk: case study involving trichloroethylene groundwater contamination at Beale Air Force Base in California, Water, Air and Soil Pollution 123(1): 273-298
    [177] Liu L., R. X. Hao, & S. Y. Cheng, 2003. A possibility analysis approach for assessing environmental risk from drinking groundwater at petroleum-contaminated sites, Journal of Environmental Informatics 2: 21-37
    [178] Vohra, K. G., 1984. Statistical methods of risk assessments for energy technology; in R. A., Waller, & V. T. Covello (eds.), Low-Probability, High -consequence risk analysis: Issues, methods and case studies. Plenum press, NY & London
    [179] Finizio, A., & S. Villa, 2002. Environment risk assessment for pesticides. A tool for decision-makers, Environmental Impact Assessment Review22: 235-248
    [180] Huang, C., 2005. Concept and Methods of Fuzzy Risk analysis. Collection of research Papers on disaster system and integrated disaster risk management from Beijing Normal University. Beijing, China
    [181] http://www.coe.neu.edu/environment/UrbanWatershed/Chapter4. pdf
    [182] Frederick, S., 1987. Probability and Stochastic Processes. Prentice-Hall Inc., NJ
    [183] Todd, D. K., 1959. Ground Water Hydrology. John Wiley and Sons, NJ

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700