用户名: 密码: 验证码:
华北平原地下水系统变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北平原地下水长期大规模开发引发了一系列环境地质问题,地下水均衡状态和地下水流动模式明显发生了改变。研究地下水系统天然状态下的流动模式,人类活动对地下水均衡要素的改变规律,以及地下水系统对地下水开采的响应等科学问题,是华北平原地下水资源可持续开发的重要基础,也是水文地质学的前沿问题之一。
     论文首先利用地下水流数值模拟,从地下水年龄结构入手,对天然状态下华北平原的地下水流场,以及末次冰期以来海平面上升对地下水年龄结构和地下水流动模式的影响进行了研究。基于模型弥散参数和孔隙度灵敏度分析,利用碳-14年龄对模型进行了校正和参数率定。模拟深层地下水年龄在冀中拗陷两侧的分布特征反映出不同的地下水流动模式,山前平原和中部平原之间较大的地形势差和水力梯度造成其间发育一地下水系统,而滨海平原的地下水年龄明显受到海平面上升的影响,反映其地下水流动模式的演变更大程度上受海平面变化的控制。
     地下水储存量作为陆地水循环要素的关键项,越来越受到水文地质研究者的重视。在天然状态水流模式的基础上,论文利用地下水流数值模型对华北平原大规模开采前后的地下水流场特征演变进行了模拟,重点研究了地下水储存量的变化过程和影响因素。华北平原自70年代大规模开采至今,地下水储存量年均减少量约为40亿m3,但受到气候变化影响,较少速率在各历史时期不尽相同,最近10年(1997–2008)受到降水明显减少影响而使得地下水存储量为减少速率最快的时期。现状地下水补给量与天然状态下地下水补给相比,增加了近30mm/yr,这部分增加的入渗量部分是由于潜水面下降造成的地下水蒸发减少,另一部分是来自地下水灌溉的补给。然而,华北平原绝大部分农田灌溉来自地下水,地下水灌溉对地下水储存量的影响最终仍是负效应。做为华北平原关键水循环要素之一,地表蒸散发在上述水流模型中不能很好模拟和反映。本文利用华北平原常规地面气象观测数据,选用基于互补关系的蒸散发模型,对华北平原过去近50年(1960–2008)的蒸散发变化情况进行了计算。蒸散发在季节和年际尺度上与降水量高度正相关,地下水灌溉明显增加了夏季蒸散发,而在多年尺度上呈现下降趋势,并且主要受风速减小的影响。说明华北平原的蒸散发仍受限于能量和水量条件,且受人类活动(灌溉)影响。假定华北平原的净地表径流可忽略不计,用蒸散发与降水之差可代表华北平原年际尺度上的地下水储存量变化,过去50年,华北平原累积地下水储存量减少约2200亿m3。
     作为地下水可持续利用评价的另一个重要因素,地下水补给量往往难以准确估计,而华北平原由于地下水开采引起的包气带厚度变化,使得地下水的补给过程也更加复杂。前人对华北平原地下水补给过程的研究主要集中在小尺度(典型区或点)范围的地下水补给(采用环境同位素,地下水年龄梯度等),而大尺度(区域)的地下水补给仍多采用渗透系数估算,未考虑非饱和带增厚对地下水补给的影响。论文采用土壤水均衡模型、非饱和带水流模型和地下水三维水流模型,三层模型相耦合的方式,对华北平原区域地下水补给量、非饱和带储存量变化和非饱和带中地下水滞留时间进行了估算。研究表明,土壤质地类型对地下水补给存在较大影响,但并不是地下水补给的控制因素,地下水补给量仍受控于降水量的时空变化。模拟条件下,由于非饱和带对地下水补给的缓冲和滞后作用,非饱和带增厚对地下水入渗补给系数影响不大,但随之带来的非饱和带储存量增大则明显造成补给量减少,而对地下水补给明显的滞后作用与土壤质地有关。
     针对人类活动对华北平原地下水系统的影响,从区域地下水年龄结构、地下水均衡和流场分析入手,利用数值模拟方法对地下水开采对地下水年龄结构的影响进行了模拟。深层地下水均衡显示开采条件下深层地下水主要补给来源是浅层含水层的越流补充与伴随地面沉降的含水层系统压缩释水。水均衡及流场分析均表明深层地下水侧向流入补给量非常有限。深层地下水的开采,虽一定程度上加大了侧向流入量,最主要是增大了垂向水力梯度,地下水径流方式由天然状态下的水平向流动为主转变为垂向分量占主导地位。
Intensive groundwater development in the North China Plain (NCP) is evidencedby large scale groundwater depletion. Spatiotemporal variability in groundwaterdepletion is evaluated using groundwater modeling. The groundwater model wascalibrated for both predevelopment (1960s) and post-development (1960s–2008)conditions. Initial recharge estimates and hydraulic parameters were derived from theliterature and recharge was modified through calibration. The steady-state flow modelrepresenting the natural conditions was calibrated using water level contours in1959.The transient flow model for the post-development period was calibrated using waterlevel contours in1975,1984,2001, as well as105and72annual water level timeseries from1993through2008in the shallow and deep aquifers, respectively. Modelresults indicate that mean groundwater depletion was~4km3/yr from1970through2008;however, depletion varied with time:~2.5km3/yr in the1970s,~4.0in the1980s,~2.0in1990–1996;and~5.0in1997–2008. Annual groundwater depletionrates are constrained by precipitation: they were lowest during high precipitationyears and highest during low precipitation years. Groundwater hydrograph data from117time series were used to detect seasonal variations in depletion, indicatinggreatest depletion during the spring and depletion is principally by groundwaterpumpage in seasonal scale. Mean annual calculated recharge is~120mm/yr and isfocused in the piedmont district (200–350mm/yr) and much lower in the central andcoastal plains (50–100mm/yr). The calibrated model provides the best available toolto assess potential sustainability strategies that can be applied to NCP.
     As a critical water discharge term in regional scale water balance, accurateestimation of evapotranspiration is therefore important for estimation of water storagechange and sustainable water resources management. Using meteorological data from23stations, three models based on the complementary relationship are evaluatedagainst of estimates of evapotranspiration derived from regional water balance over1993to2008in the NCP. The CRAE model is then used to evaluate the actualevapotranspiration variation for the period from1960to2008. The estimated evapotranspiration is highly correlated with precipitation in seasonal scale, and isgenerally higher than precipitation when annual precipitation is less than500mm.The long term decreasing trend in the actual evapotranspiration can be explained bydeclining in sunshine duration and wind speed. Calculated average annual waterstorage change, represented by the difference between evapotranspiration andprecipitation, was approximately36mm, or4.8km3in the NCP. Over past50years,the cumulative groundwater storage depletion was~1,700mm, or220km3in theNCP. The difference between precipitation and actual evapotranspiration indicates anannual precipitation threshold of approximately500–600mm and about8%ofprecipitation above this threshold will potentially become recharge.
     Accurate estimation of groundwater recharge is important for sustainablegroundwater utilization, and proper management of groundwater resources.Groundwater recharge remains one of the principal uncertainties in the water balanceof the North China Plain (NCP). Understanding impacts of climate, surface conditionssuch as soil properties and land use, and groundwater withdrawal on groundwaterrecharge is essential for accurate estimation of recharge, and characterization of thewater balance. In this study, spatial and temporal variability of recharge wereevaluated by integrating soil water balance and one-dimensional unsaturated flowmodels. Estimated recharge was further validated/assessed using a saturated zoneflow model. Soil hydraulic parameters were estimated using pedotransfer functions.Monthly simulation of recharge over16years (1993–2008) was performed across theentire NCP. Simulated mean annual recharge is~150mm across the plain,representing18%of mean annual precipitation+irrigation, and ranging from0to360mm in the piedmont area to0to260mm in the central and coastal plain. Theseamounts broadly agree with previous recharge estimates derived using differentmethods (e.g, environmental tracers). Variability in soil texture from clay to loamysand resulted in a large range of recharge rates, but this was not the primary factorcontrolling the amount of recharge;variation within soil classes was greater thanbetween soil classes. The modeling approach allowed assessment of the effect of unsaturated zone thickness (reaching10s of meters in many parts of the NCP) onrecharge. Increasing thickness of the unsaturated zone has little effect on the longterm mean annual recharge, however it has an important control on the lag-timebetween infiltration and reaching the water table (e.g, reaching up to8years for athickness of30m in loam soils);and the delay varies with soil type. A sensitivityanalysis allowed assessment of model outputs dependence on particular parameters;initial water content was the most sensitive parameter, indicating that antecedent soilmoisture is a key control on recharge. This work provides information towards acomprehensive assessment of groundwater recharge in the NCP;insight into theimportant parameters controlling recharge and a further set of recharge estimates forcomparison with those derived by different methodologies.
     Groundwater in the deep aquifer beneath an intermediate, brackish flow zoneacross the central and coastal parts of the North China Plain (NCP) is the region’sprimary water resource for irrigation and domestic use. Accurate information aboutthe groundwater age, recharge and flow regime, and its alteration by extensivegroundwater abstraction is necessary for water resource sustainability andvulnerability assessment. This paper presents the application of direct simulation ofgroundwater mean ages to the NCP aquifer through the use of a solute transportmodel, calibrated with the aid of previously reported carbon-14data, and water levelobservations from the pre-and post-development period. This provides an effectivemeans to constrain the regional flow model and improve the estimation of flowparameters, including recharge rates. The mean recharge estimated for thepredevelopment period is85mm/yr, which compares reasonably well with previousestimates. The simulated age distribution and the calibrated flow model are then usedto characterize the flow regime under natural conditions and an altered state bygroundwater pumping. The model results indicate that simulated groundwater ages inthe NCP are affected by both paleo-hydrologic conditions and extensive groundwaterpumping. Flow path analysis, water budget calculations and simulated groundwaterage distributions show that lateral flow to the deep aquifer in the NCP is limited and that the primary inflow is downward leakage from the shallow aquifer, which isenhanced by the extensive development of the deep aquifer. Transient flow modelingreflecting the post-development conditions confirms the hypothesis that widelydistributed vertical recharge and resulting flow have become the dominant processesshaping the flow patterns both in the shallow and deep aquifers in the NCP.
引文
[1] Alley W M, Healy R W, LaBaugh J Wet al. Flow and Storage in Groundwater Systems [J]. Science,2002,296(5575):1985-1990.
    [2] Alley W M, Reilly T E, Franke O L. Sustainability of ground-water resources: US GeologicalSurvey Circular, U.S. Geological Survey Circular1186[R]. Denver, CO: U.S. Geological Survey,1999.
    [3] Alley W M, Leake S A. The journey from safe yield to sustainability[J]. Ground Water,2004,42(1):12-16.
    [4] Banta E R. Modflow-2000, the US Geological survey modular ground-water model-documentationof packages for simulating evapotranspiration with a segmented function (ETS1) and drains withreturn flow (DRT1): US Geological Survey Open-file Report00-66[R].2000.
    [5] Bethke C M, Johnson T M. Ground water age[J]. Ground Water,2002a,40(4):337-339.
    [6] Bethke C M, Johnson T M. Groundwater age and groundwater age dating[J]. Annual Review ofEarth and Planetary Sciences,2008,36:121-152.
    [7] Bethke C M, Johnson T M. Paradox of groundwater age[J]. Geological Society of America,2002b,30(2):107-110.
    [8] Bouchet R J. Evapotranspiration réelle et potentielle, signification climatique[J]. Iahs Publ,1963,62:134-142.
    [9] Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regionalevapotranspiration[J]. Water Resources Research,1979,15(2):443-450.
    [10] Cai X, Rosegrant M W. Optional water development strategies for the Yellow River Basin:Balancing agricultural and ecological water demands[J]. Water Resources Research,2004,40(8):W4S-W8S.
    [11] Chen J Y, Tang C Y, Shen Y Jet al. Use of water balance calculation and tritium to examine thedropdown of groundwater table in the piedmont of the North China Plain (NCP)[J].Environmental Geology,2003,44(5):564-571.
    [12] Chen Z, Nie Z, Zhang Zet al. Isotopes and sustainability of ground water resources, North ChinaPlain[J]. Ground Water,2005,43(4):485-493.
    [13] Chiew F H S, McMahon T A. The applicability of morton's and penman's evapotranspirationestimates in rainfall runoff modeling[J]. Journal of the American Water Resources Association,1991,27(4):611-620.
    [14] Crago R D, Qualls R J, Feller M. A calibrated advection-aridity evaporation model requiring nohumidity data[J]. Water Resources Research,2010,46(9):W9519.
    [15] Delin G N, Healy R W, Lorenz D Let al. Comparison of local-to regional-scale estimates ofground-water recharge in Minnesota, USA[J]. Journal of Hydrology,2007,334(1-2):231-249.
    [16] Doble R C, Simmons C T, Walker G R. Using MODFLOW2000to Model ET and Recharge forShallow Ground Water Problems[J]. Ground Water,2009,47(1):129-135.
    [17] Doherty J. PEST: Model Independent Parameter Estimation. fifth edition of user manual.:Watermark Numerical Computing, Brisbane Australia. Downloadable from: http://www. sspa.com/pest[R]. Brisbane, Australia: Watermark Numerical Computing,2005.
    [18] Doyle P. Modelling catchment evaporation: An objective comparison of the Penman and Mortonapproaches[J]. Journal of Hydrology,1990,121(1-4):257-276.
    [19] Engesgaard P, Molson J. Direct simulation of ground water age in the Rabis Creek Aquifer,Denmark[J]. Ground Water,1998,36(4):577-582.
    [20] Falkenmark M. Water Usability Degradation[J]. Water International,2005,30(2):136-146.
    [21] Flint A L, Flint L E, Hevesi J Aet al. Fundamental concepts of recharge in the Desert Southwest:A regional modeling perspective[J]. Groundwater Recharge in a Desert Environment: TheSouthwestern United States. Water Science and Applications Ser,2004,9:159-184.
    [22] Fogg G E, LaBolle E M. Motivation of synthesis, with an example on groundwater qualitysustainability[J]. Water Resources Research,2006,42(3):W3S-W5S.
    [23] Foster S. Sustainable Groundwater Exploitation for Agriculture. Current Issues and RecentInitiatives in the Developing World: Uso Intensivo de Las Aguas Subterraneas, Aspectos閠icos,technologicos y economicos, Madrid, Fundacion Marcelino Botin[R].Papeles del proyecto aguassubterráneas,2000.
    [24] Foster S, Garduno H, Evans Ret al. Quaternary aquifer of the North China Plain—assessing andachieving groundwater resource sustainability[J]. Hydrogeology Journal,2004,12(1):81-93.
    [25] Gee G W, Hillel D. Groundwater recharge in arid regions: Review and critique of estimationmethods[J]. Hydrological Processes,1988,2(3):255-266.
    [26] Goode D J. Direct simulation of groundwater age[J]. Water Resources Research,1996,32(2):289-296.
    [27] Granger R J, Gray D M. Evaporation from natural nonsaturated surfaces[J]. Journal of Hydrology,1989,111(1-4):21-29.
    [28] Grismer M E. Estimating agricultural deep drainage lag times to groundwater: application toAntelope Valley, California, USA[J]. Hydrological Processes,2013,27(3):378-393.
    [29] Han S M, Yang Y H, Lei Y Pet al. Seasonal groundwater storage anomaly and vadose zone soilmoisture as indicators of precipitation recharge in the piedmont region of Taihang Mountain,North China Plain[J]. Hydrology Research,2008,39(5-6):479-495.
    [30] Harbaugh A W, Banta E R, Hill M Cet al. MODFLOW-2000, The U. S. Geological SurveyModular Ground-Water Model-User Guide to Modularization Concepts and the Ground-WaterFlow Process, USGS Open-File Report00-92[R]. Reston, Virginia: USGS,2000.
    [31] Harbaugh A W. A computer program for calculating subregional water budgets using results fromthe US Geological Survey modular three-dimensional finite-difference ground-water flow model:US Geological Survey Open-File Report, Open File Report90-392[R]. Reston, Virginia: U.S.Geological Survey,1990.
    [32] Healy R W, Cook P G. Using groundwater levels to estimate recharge[J]. Hydrogeology Journal,2002,10(1):91-109.
    [33] Hobbins M T, Ramírez J A, Brown T Cet al. The complementary relationship in estimation ofregional evapotranspiration: The complementary relationship areal evapotranspiration andadvection-aridity models[J]. Water Resources Research,2001,37(5):1367-1387.
    [34] Hu Y K, Moiwo J P, Yang Y Het al. Agricultural water-saving and sustainable groundwatermanagement in Shijiazhuang Irrigation District, North China Plain[J]. Journal of Hydrology,2010,393(3-4):219-232.
    [35] Huntington J L, Szilagyi J, Tyler S Wet al. Evaluating the complementary relationship forestimating evapotranspiration from arid shrublands[J]. Water Resources Research,2011,47(5):W5533.
    [36] Hurd B, Leary N, Jones Ret al. Relative regional vulnerability of water resources to climatechange[J]. Journal of the American Water Resources Association,1999,35(6):1399-1409.
    [37] Johnston R H. Sources of water supplying pumpage from regional aquifer systems of the UnitedStates[J]. Hydrogeology Journal,1997,5(2):54-63.
    [38] Kagabu M, Shimada J, Delinom Ret al. Groundwater age rejuvenation caused by excessive urbanpumping in Jakarta area, Indonesia[J]. Hydrological Processes,2012:n/a-n/a.
    [39] Kazemi G A, Lehr J H, Perrochet P. Groundwater age[M]. Wiley-Interscience,2006.
    [40] Keese K E, Scanlon B R, Reedy R C. Assessing controls on diffuse groundwater recharge usingunsaturated flow modeling[J]. Water Resources Research,2005,41(6):W6010.
    [41] Kendy E, Molden D J, Steenhuis T Set al. Policies drain the North China Plain: Agriculturalpolicy and groundwater depletion in Luancheng County,1949-2000[R]. Colombo, Sri Lanka:International Water Management Institute,2003.
    [42] Kendy E, Zhang Y, Liu Cet al. Groundwater recharge from irrigated cropland in the North ChinaPlain: case study of Luancheng County, Hebei Province,1949-2000[J]. Hydrological Processes,2004,18(12):2289-2302.
    [43] Kinzelbach W, Bauer P, Siegfried Tet al. Sustainable groundwater management--Problems andscientific tool[J]. Episodes,2003,26(4):279-284.
    [44] Konikow L F, Kendy E. Groundwater depletion: A global problem[J]. Hydrogeology Journal,2005,13(1):317-320.
    [45] Konikow L F. Contribution of global groundwater depletion since1900to sea-level rise[J].Geophys. Res. Lett.,2011,38(17):L17401.
    [46] Kreuzer A M, von Rohden C, Friedrich Ret al. A record of temperature and monsoon intensityover the past40kyr from groundwater in the North China Plain[J]. Chemical Geology,2009,259(3-4):168-180.
    [47] Lemeur R, Zhang L. Evaluation of three evapotranspiration models in terms of their applicabilityfor an arid region[J]. Journal of Hydrology,1990,114(3-4):395-411.
    [48] Lemieux J M, Sudicky E A, Peltier W Ret al. Dynamics of groundwater recharge and seepageover the Canadian landscape during the Wisconsinian glaciation[J]. Journal of GeophysicalResearch-Earth Surface,2008a,113(F01011F1).
    [49] Lemieux J M, Sudicky E A, Peltier W Ret al. Simulating the impact of glaciations on continentalgroundwater flow systems:2. Model application to the Wisconsinian glaciation over theCanadian landscape[J]. Journal of Geophysical Research: Earth Surface,2008b,113(F3):F3018.
    [50] Li F D, Song X F, Tang C Yet al. Tracing infiltration and recharge using stable isotope in taihangMt., north China[J]. Environmental Geology,2007,53(3):687-696.
    [51] Li H M, Inanaga S, Li Z Het al. Optimizing irrigation scheduling for winter wheat in the NorthChina Plain[J]. Agricultural Water Management,2005,76(1):8-23.
    [52] Liu C, Xia J. Water problems and hydrological research in the Yellow River and the Huai and HaiRiver basins of China[J]. Hydrological Processes,2004a,18(12):2197-2210.
    [53] Liu C, Xia J. Water problems and hydrological research in the Yellow River and the Huai and HaiRiver basins of China[J]. Hydrological Processes,2004b,18(12):2197-2210.
    [54] Liu J, Zheng C M, Zheng Let al. Ground Water Sustainability: Methodology and Application tothe North China Plain[J]. Ground Water,2008,46(6):897-909.
    [55] Liu M, Tian H, Lu Cet al. Effects of multiple environment stresses on evapotranspiration andrunoff over eastern China[J]. Journal of Hydrology,2012,426–427(0):39-54.
    [56] Liu X, Luo Y, Zhang Det al. Recent changes in pan-evaporation dynamics in China[J].Geophysical Research Letters,2011,38(13):L13404.
    [57] Lu X, Jin M, van Genuchten M Tet al. Groundwater Recharge at Five Representative Sites in theHebei Plain, China[J]. Ground Water,2011,49(2):286-294.
    [58] Luckey R L, Becker M F. Hydrogeology, water use, and simulation of flow in the High Plainsaquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeasternNew Mexico, and northwestern Texas[J]. Water-Resources Inv. Rept,1999:99-4104.
    [59] Massoudieh A, Ginn T R. The theoretical relation between unstable solutes and groundwaterage[J]. Water Resources Research,2011,47(W10523).
    [60] McGuire V L. Water-level changes in the High Plains aquifer, predevelopment to2007,2005-06,and2006-07[J]. Publications of the Us Geological Survey,2009:17.
    [61] Mo X, Liu S, Lin Zet al. Prediction of crop yield, water consumption and water use efficiencywith a SVAT-crop growth model using remotely sensed data on the North China Plain[J].Ecological Modelling,2005,183(2-3):301-322.
    [62] Moiwo J P, Yang Y, Han Set al. A method for estimating soil moisture storage in regions underwater stress and storage depletion: a case study of Hai River Basin, North China[J]. HydrologicalProcesses,2011,25(14):2275-2287.
    [63] Moiwo J P, Yang Y, Yan Net al. Comparison of evapotranspiration estimated by ETWatch withthat derived from combined GRACE and measured precipitation data in Hai River Basin, NorthChina[J]. Hydrological Sciences Journal,2011,56(2):249-267.
    [64] Moiwo J P, Yang Y, Li Het al. Comparison of GRACE with in situ hydrological measurementdata shows storage depletion in Hai River basin, Northern China[J]. Water Sa,2009,35(5):663-670.
    [65] Morrissey S K, Clark J F, Bennett Met al. Groundwater reorganization in the Floridan aquiferfollowing Holocene sea-level rise[J]. Nature Geoscience,2010,3(10):683-687.
    [66] Morton F I. Operational estimates of areal evapotranspiration and their significance to the scienceand practice of hydrology[J]. Journal of Hydrology,1983,66(1-4):1-76.
    [67] Nichols W E, Freshley M D. Uncertainty Analyses of Unsaturated Zone Travel Time at YuccaMountain[J]. Ground Water,1993,31(2):293-301.
    [68] Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science,2006,313(5790):1068-1072.
    [69] Ozdogan M, Salvucci G D. Irrigation-induced changes in potential evapotranspiration insoutheastern Turkey: Test and application of Bouchet's complementary hypothesis[J]. WaterResources Research,2004,40(4):W4301.
    [70] Pearson F J, Hanshaw B B. Sources of dissolved carbonate species in ground-water and their effects on carbon-14dating. In: IAEA (Editor), Isotope Hydrology1970. IAEA, Vienna, pp.271–285.[J].1970.
    [71] Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of theRoyal Society of London. Series a. Mathematical and Physical Sciences,1948,193(1032):120-135.
    [72] Piao S, Ciais P, Huang Yet al. The impacts of climate change on water resources and agriculture inChina[J]. Nature,2010,467(7311):43-51.
    [73] Pollock D W. User's Guide for MODPATH/MODPATH-PLOT, Version3: A particle trackingpost-processing package for MODFLOW, the US Geological Survey finite-differenceground-water flow model: US Geological Survey Open-File Report[R].1994.
    [74] Rabus B, Eineder M, Roth Aet al. The shuttle radar topography mission--a new class of digitalelevation models acquired by spaceborne radar[J]. Isprs Journal of Photogrammetry and RemoteSensing,2003,57(4):241-262.
    [75] Sanford W. Calibration of models using groundwater age[J]. Hydrogeology Journal,2011,19(1):13-16.
    [76] Sanford W E, Plummer L N, McAda D Pet al. Hydrochemical tracers in the middle Rio GrandeBasin, USA:2. Calibration of a groundwater-flow model[J]. Hydrogeology Journal,2004,12(4):389-407.
    [77] Sanford W E, Buapeng S. Assessment of a groundwater flow model of the Bangkok basin,Thailand, using carbon-14-based ages and paleohydrology[J]. Hydrogeology Journal,1996,4(4):26-40.
    [78] Scanlon B R, Healy R W, Cook P G. Choosing appropriate techniques for quantifyinggroundwater recharge[J]. Hydrogeology Journal,2002,10(1):18-39.
    [79] Scanlon B R, Keese K E, Flint A Let al. Global synthesis of groundwater recharge in semiarid andarid regions[J]. Hydrological Processes,2006,20(15):3335-3370.
    [80] Schaap M G, Leij F J, van Genuchten M T. ROSETTA: a computer program for estimating soilhydraulic parameters with hierarchical pedotransfer functions[J]. Journal of Hydrology,2001,251(3-4):163-176.
    [81] Shah T, Molden D, Sakthivadivel Ret al. The global groundwater situation: overview ofopportunities and challenges[J]. International Water Management Institute. Sri Lanka,2000.
    [82] Shah T, Roy A D, Qureshi A Set al. Sustaining Asia's groundwater boom: An overview of issuesand evidence[J]. Natural Resources Forum,2003,27:130-141.
    [83] Siebert S, Burke J, Faures J Met al. Groundwater use for irrigation–a global inventory[J].Hydrol. Earth Syst. Sci.,2010,14(10):1863-1880.
    [84] Simmers I. Estimation of natural groundwater recharge[M]. Springer,1987.
    [85] Song Z W, Zhang H L, Snyder R Let al. Distribution and Trends in Reference Evapotranspirationin the North China Plain[J]. Journal of Irrigation and Drainage Engineering,2010,136(4):240-247.
    [86] Sophocleous M. Interactions between groundwater and surface water: the state of the science[J].Hydrogeology Journal,2002,10(1):52-67.
    [87] Taylor R. Rethinking water scarcity: the role of storage[J]. Eos, Transactions of the AmericanGeophysical Union,2009,90(28):237-238.
    [88] Theis C V. The source of water derived from wells[J]. Civil Engineering,1940,10(5):277-280.
    [89] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity ofunsaturated soils[J]. Soil Sci. Soc. Am. J,1980,44(5):892-898.
    [90] von Rohden C, Kreuzer A, Chen Zet al. Characterizing the recharge regime of the stronglyexploited aquifers of the North China Plain by environmental tracers[J]. Water ResourcesResearch,2010,46(5):W5511.
    [91] Wada Y, van Beek L P H, van Kempen C Met al. Global depletion of groundwater resources[J].Geophysical Research Letters,2010,37(L20402).
    [92] Wang B G, Jin M G, Nimmo J Ret al. Estimating groundwater recharge in Hebei Plain, Chinaunder varying land use practices using tritium and bromide tracers[J]. Journal of Hydrology,2008,356(1-2):209-222.
    [93] Wang E, Yu Q, Wu Det al. Climate, agricultural production and hydrological balance in the NorthChina Plain[J]. International Journal of Climatology,2008,28(14):1959-1970.
    [94] Wang S Q, Shao J L, Song X Fet al. Application of MODFLOW and geographic informationsystem to groundwater flow simulation in North China Plain, China[J]. Environmental Geology,2008,55(7):1449-1462.
    [95] Wang T, Zlotnik V A, Imunek Jet al. Using pedotransfer functions in vadose zone models forestimating groundwater recharge in semiarid regions[J]. Water Resources Research,2009,45(4):W4412.
    [96] Welsh W D. Great Artesian Basin transient groundwater model[J]. Bureau of Rural Sciences,Department of Agriculture, Fisheries and Forestry, Australia,2006.
    [97] Woolfenden L R, Ginn T R. Modeled Ground Water Age Distributions[J]. Ground Water,2009,47(4):547-557.
    [98] Wu C, Xu Q H, Ma Y Het al. Palaeochannels on the North China Plain: Palaeorivergeomorphology[J]. Geomorphology,1996a,18(1):37-45.
    [99] Wu C, Xu Q H, Zhang X Qet al. Palaeochannels on the North China Plain: Types anddistributions[J]. Geomorphology,1996b,18(1):5-14.
    [100] Wu G, Chen S, Su Ret al. Temporal trend in surface water resources in Tianjin in the HaiheRiver Basin, China[J]. Hydrological Processes,2011,25(13):2141-2151.
    [101] Wu J, Zhang R, Yang J. Analysis of rainfall-recharge relationships[J]. Journal of Hydrology,1996,177(1):143-160.
    [102] Xia J. Water Security and Ground Water Problem to Changing Environment in North China:International Symposium on Groundwater Sustainability, Alicante, Spain,2006[C].
    [103] Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration modelsby water balance approach to estimate actual regional evapotranspiration in different climaticregions[J]. Journal of Hydrology,2005,308(1-4):105-121.
    [104] Xu Q H, Wu C, Zhu X Qet al. Palaeochannels on the North China Plain: Stage division andpalaeoenvironments[J]. Geomorphology,1996,18(1):15-25.
    [105] Xu Y, Mo X, Cai Yet al. Analysis on groundwater table drawdown by land use and the quest forsustainable water use in the Hebei Plain in China[J]. Agricultural Water Management,2005,75(1):38-53.
    [106] Xu Y, Beekman H E. Groundwater recharge estimation in Southern Africa, UNESCO IHP SeriesNo.64[R].2003.
    [107] Yang D, Sun F, Liu Zet al. Interpreting the complementary relationship in non-humidenvironments based on the Budyko and Penman hypotheses[J]. Geophysical Research Letters,2006,33(18):L18402.
    [108] Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetationchanges at catchment scale[J]. Water Resources Research,2001,37(3):701-708.
    [109] Zhang X Y, Pei D, Hu C S. Conserving groundwater for irrigation in the North China Plain[J].Irrigation Science,2003,21(4):159-166.
    [110] Zheng C, Liu J, Cao Get al. Can China cope with its water crisis?-Perspectives from the NorthChina Plain[J]. Ground Water,2010,48(3):350-354.
    [111] Zhou Y. A critical review of groundwater budget myth, safe yield and sustainability[J]. Journalof Hydrology,2009,370(1-4):207-213.
    [112] Zinn B A, Konikow L F. Potential effects of regional pumpage on groundwater agedistribution[J]. Water Resources Research,2007,43(6):W6418.
    [113]陈宁生,赵秀兰,臧逸中等.黑龙港地区深层地下水的开发利用[J].水利水电技术,1992.5:35-40.
    [114]陈望和.河北地下水[M].北京:地震出版社,1999:
    [115]陈望和.河北平原浅层地下水资源评价和参数研究[J].水文地质工程地质,1990(6):19-22.
    [116]陈宗宇,齐继祥,张兆吉等.北方典型盆地同位素水文地质学方法应用[M].北京:科学出版社,2010:461.
    [117]崔亚莉,王亚斌,邵景力等.南水北调实施后华北平原地下水调控研究[J].资源科学,2009.31(3):382-387.
    [118]董悦安,何明,蒋崧生等.河北平原第四系深层地下水~(36)Cl同位素年龄的研究[J].地球科学,2002.27(1):105-109.
    [119]费宇红,苗晋祥,张兆吉等.华北平原地下水降落漏斗演变及主导因素分析[J].资源科学,2009.31(3):394-399.
    [120]郭永海,沈照理,钟佐等.从地面沉降论河北平原深层地下水资源属性及合理评价[J].地球科学,1995.20(4):415-420.
    [121]何庆成,刘文波,李志明.华北平原地面沉降调查与监测[J].高校地质学报,2006.12(2):195-209.
    [122]贺国平,邵景力,崔亚莉等.FEFLOW在地下水流模拟方面的应用[J].成都理工大学学报(自然科学版),2003(4):356-361.
    [123]籍传茂,王兆馨.区域地下水资源研究的进展和前沿问题[J].地学前缘,1996(2):147-155.
    [124]贾金生,刘昌明.华北平原地下水动态及其对不同开采量响应的计算──以河北省栾城县为例[J].地理学报,2002.57(2):201-209.
    [125]蒋晓茹,李红军,蔡淑红等.华北平原井灌区农户灌溉行为调查分析[J].安徽农学通报(上半月刊),2009.15(11):152-154.
    [126]焦红军,段永侯.河南豫北平原地下水资源与可持续利用[J].水文地质工程地质,2005(1):61-66.
    [127]李金柱.潜水蒸发系数综合分析[J].地下水,2008(06):27-30.
    [128]蔺文静,董华,王贵玲等.河北平原区域蒸发蒸腾量遥感估算[J].国土资源遥感,2008(1):86-90.
    [129]刘昌明,魏忠义.华北平原农业水文及水资源[M].北京:科学出版社,1989:
    [130]刘存富,王佩仪,周炼等.河北平原第四系地下水~(36)Cl年龄研究[J].水文地质工程地质,1993.6:35-38.
    [131]刘存富,王佩仪,周炼.河北平原地下水氢、氧、碳、氯同位素组成的环境意义[J].地学前缘,1997.4(1-2):271-278.
    [132]刘绍民,孙睿,孙中平等.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报,2004.59(3):331-340.
    [133]柳长顺,陈献,乔建华.华北地区井灌区农户灌溉用水状况调查研究[J].水利发展研究,2004(10):38-41.
    [134]马震,段永侯.山东鲁北平原地下水资源与可持续利用[J].水文地质工程地质,2005(2):1-10.
    [135]任宪韶.海河流域水资源评价[M].北京:中国水利水电出版社,2007:
    [136]邵爱军,左丽琼,王丽君.气候变化对河北省海河流域径流量的影响[J].地理研究,2010.29(8):1502-1509.
    [137]邵景力,赵宗壮,崔亚莉等.华北平原地下水流模拟及地下水资源评价[J].资源科学,2009.31(3):361-367.
    [138]邵景力,崔亚莉,赵云章等.黄河下游影响带(河南段)三维地下水流数值模拟模型及其应用[J].吉林大学学报(地球科学版),2003.33(1):51-55.
    [139]石建省,郭娇,孙彦敏等.京津冀德平原区深层水开采与地面沉降关系空间分析[J].地质论评,2006.52(6):804-809.
    [140]宋献方,李发东,刘昌明等.太行山区水循环及其对华北平原地下水的补给[J].自然资源学报,2007.22(3):398-408.
    [141]孙晓明.环渤海地区地下水资源可持续利用研究[D].,2007.
    [142]田静,苏红波,孙晓敏等.遥感反演土壤蒸发/植被蒸腾二层模型在华北地区的应用[J].地理研究,2009.28(5):1297-1306.
    [143]王家兵,李平.天津平原地面沉降条件下的深层地下水资源组成[J].水文地质工程地质,2004(5):35-37.
    [144]吴炳方,熊隽,闫娜娜等.基于遥感的区域蒸散量监测方法——ETWatch[J].水科学进展,2008.19(5):671-678.
    [145]谢新民,郭洪宇,唐克旺等.华北平原区地表水与地下水统一评价的二元耦合模型研究[J].水利学报,2002(12):95-100.
    [146]薛丽娟,李巍,杨威等.开采条件下海河流域平原区浅层地下水数值模拟研究[J].工程勘察,2010(3):50-55.
    [147]杨汉波,杨大文,雷志栋等.蒸发互补关系的区域变异性[J].清华大学学报(自然科学版),2008.48(9):1413-1416.
    [148]杨汉波,杨大文,雷志栋等.蒸发互补关系在不同时间尺度上的变化规律及其机理[J].中国科学(E辑:技术科学),2009.39(2):333-340.
    [149]张光辉,费宇红,刘克岩.海河平原地下水演化与对策[M].北京:科学出版社,2004:
    [150]张光辉.大厚度包气带地下水人渗补给量实测方法研究[J].地下水,1992(2):81-84.
    [151]张光辉,费宇红,申建梅等.降水补给地下水过程中包气带变化对入渗的影响[J].水利学报,2007.38(5):611-617.
    [152]张皓,冯利平.近50年华北地区降水量时空变化特征研究[J].自然资源学报,2010.25(2):270-279.
    [153]张可慧,刘剑锋,刘芳圆等.河北省潜在蒸发量计算与变化趋势分析[J].地理与地理信息科学,2010.26(6):75-78.
    [154]张晓明,薛丽娟,张奇等.海河流域地下水开采初期数值模拟及水量平衡分析[J].干旱区资源与环境,2008.9(9):102-107.
    [155]张晓明.海河流域华北平原浅层地下水模型研究[J].海河水利,2007(03):52-54.
    [156]张兆吉,费宇红,陈宗宇.华北平原地下水可持续利用调查评价[M].北京:地质出版社,2009a:
    [157]张兆吉,雒国中,王昭等.华北平原地下水资源可持续利用研究[J].资源科学,2009b.31(3):355-360.
    [158]张之淦,张洪平,孙继朝等.河北平原第四系地下水年龄、水流系统及咸水成因初探——石家庄至渤海湾同位素水文地质剖面研究[J].水文地质工程地质,1987.4:1-6.
    [159]张宗祜,施德鸿,任福弘等.论华北平原第四系地下水系统之演化[J].中国科学(D辑:地球科学),1997.27(2):168-173.
    [160]张宗祜,李烈荣.中国地下水资源[M].北京:中国地图出版社,2005:
    [161]赵静,邵景力,崔亚莉等.利用遥感方法估算华北平原陆面蒸散量[J].城市地质,2009.4(1):43-48.
    [162]赵云章,邵景力,闫震鹏等.黄河水对两侧地下水补给范围的初步研究[J].人民黄河,2003.25(1):3-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700