用户名: 密码: 验证码:
大沽河地下水库水资源可持续利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在青岛市科技攻关项目《大沽河流域水资源优化利用与污染控制研究》的基础上完成的。近年来大沽河干流及支流已增加多处拦河坝工程致使地下水采补条件发生了较大变化,本文利用Visual Modflow软件分析了各种影响因素对地下水动态的影响,研究了橡胶坝对地下水库的补给能力并重新核算了人工影响条件下大沽河地下水库的允许开采量。
     首先概括大沽河地下水库的水文地质条件与特征,概化出该区水文地质概念模型,然后通过全面收集和系统分析研究区的降雨、蒸发、地表径流、灌溉和地下水水位常观资料,确定该区的各项水文地质参数,进而建立了该区地下水的数值模型。
     在校正水文地质数学模型的基础上,模拟和分析了各种因素对地下水运动的影响。模拟结果表明,地下水位的变化与当地降雨量的大小及时程分配,地下水开采量的大小及时程分配和河流来水情况密切相关,其中,降雨入渗、河流渗漏对地下水补给起到决定性作用,同时,随着橡胶坝的修建,也使其成为地下水库的一个重要补给来源。
     并针对橡胶坝的补给能力,通过数值模拟探讨了坝内蓄水因工业开采而激发的补给量。结果显示,保证现有的工业开采布局不变,通过调整橡胶坝周围工业开采井的开采量,当工业开采增加493×10~4m~3时,橡胶坝渗漏补给量为901×10~4m~3,激发量达231×10~4m~3,这说明傍橡胶坝取水可使更多的地表水入渗补充地下水,从而提高水资源的开发率,也为地下水库在丰水季节得到足够补给提供了可靠的保证。
     最后,通过数值法反复调算计算出本区地下水的允许开采量,计算结果表明,在现状开采的条件下,大沽河地下水库丰水年(P=20%)时地下水允许开采量为13670×10~4m~3,平水年(P=50%)时地下水允许开采量为12054×10~4m~3,枯水年
    
    (P=加%)时地下水允许开采量为10951 xl了砰。模型模拟的不同特征年时地下
    水库的允许开采量,对指导合理用水,实现地下水资源的可持续开发利用具有现
    实意义。
This paper is accomplished on the basis of Key Scientific and Technological Project of Qingdao City, the study of pollution control and optimized utilization of water resources in Dagu River Valley. In recent years, many barrages have been founded in Dagu River, which greatly change the conditions of the exploitation and supply of groundwater.
    On the basis of calibration of mathematical model of hydrogeology, the effect of
    diversified factors on the variation of groundwater is analyzed using Visual Modflow
    software, the recharge capacity of Rubber Dam to the groundwater storage is studied
    and the allowable withdrawl of groundwater with the influence of manpower is
    calculated again.
    First, the hydrogeological conditions and characteristics are gathered up and the
    hydrogeological concept model is generalized. Next, through collecting completely and
    analyzing systematically the rainfall, evaporation, surface runoff and observation datum
    of the groundwater water level, all hydrogeological parameters of this area is defined,
    then mathematical model of groundwater of Dagu River is built.
    Using the calibrated model, the effect of diversified factors in the variation of
    groundwater is analyzed. The result shows that, the change of groundwater level has
    close relation with the rainfall. In the meanwhile, with the built of Rubber Dam, it is
    also been one of an important supply source of the groundwater storage.
    Aiming at the recharge capacity of Rubber Dam to the groundwater storage, the excited
    water supply of the dam caused by the exploitation of industry is discussed by
    mathematical simulation.
    The results are as follows: (1)If we increase the pumping water by 493 X 104m3, the
    
    
    amount of leakage recharge of Rubber Dam will rise by 231X 104m3; which indicates pumping by Rubber Dam can excite much more surface water infiltrate so as to supply groundwater. Thus the utilization ratio of water source is increased, and it provides the reliable guaranty for enough supply of the groundwater storage in wet year. (2) Under the condition of present status, the groundwater exploitable resource in wet year is 3670 × 104m3. The groundwater exploitable resource in medium precipitation year is 2054 × 104m3. The groundwater exploitable resource in draught year is 10951×104m3. The results can be used to instruct the actual exploitation and make the sustainable utilization of the groundwater source true.
引文
1.徐军祥,康风新.山东省地下水资源可持续开发利用研究.海洋出版社,2001.
    2.尚守忠,田世义编著.水资源及其开发利用.科学普遍出版社,1991.
    3.陈雨孙.地下水运动与资源评价.建筑工业出版社,1986.
    4.张蔚榛.地下水非稳定流计算和地下水资源评价.科学出版社,1983.
    5.林学钰等编著.地下水水量水质模拟及管理程序集.吉林科学技术出版社,1988.
    6.孙纳正等著.地下水流的数值模型和数值方法.地质出版社,1981.
    7.薛禹群主编.地下水动力学[M].北京:地质出版社,1997.
    8.薛禹群,谢春红.水文地质学的数值法[M].北京:煤炭工业出版社,1980.
    9.山东省地矿局八○一水文地质工程地质大队,山东省环境水文地质总站,市水源规划办公室.《青岛市大沽河水源地供水水文地质堪察总体报告》,1987.
    10.山东省青岛环境水文地质总站,青岛市水源规划办公室.《青岛市大沽河水源地地下水开采试验动态监测报告(1981-1985年)》,1986.
    11.青岛市水利局水资源办公室.《青岛市地下水资源开发利用规划研究》,1997.
    12.吴剑峰,朱学愚,由Modflow浅谈地下水流数值模拟软件的发展趋势.工程勘察,2002,(2):12-15.
    13.武强,董东林等.水资源评价的可视化专业软件(Visual Modflow)与应用潜力.水文地质工程地质,1999,(5):21-23.
    14.魏林宏,束龙仓等,地下水数值模拟的研究现状和发展趋势.重庆大学学报(自然科学版),2000,23(10):50-53.
    15.何杉,Processing Modflow软件在地下水污染防治中的应用.水资源保护,1999,57(3):16-18.
    16.潘国营.地下水数值模拟模型拟合效果的评价.焦作矿业学院学报,1994,13(2).
    17.卢京,张钦.数值模拟在银川市地下水资源开采评价中的应用.河北师范大学学报(自然科学版),2000,24(4).
    18.许光泉,潘晓如.长垣西部地区不同开采方案地下水数值模拟.淮南工业学院学报,2001,21(3).
    
    
    19.吴吉春,薛禹群.山西柳林泉域地下水流数值模拟.水文地质工程地质,2002(2).
    20.贾金生,刘昌明.华北平原地下水动态及其对不同开采量响应的计算-以河北省栾城县为例.地理学报,2002,57(2):201-209.
    21.杜汉学,常国纯,张乔生.利用地下水库蓄水的初步认识.水科学进展,2002,13(5)
    22.魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势.重庆大学学报(自然科学版),2000,1(23).
    23.刘建立,朱学愚,陈余道.山东淄博市地下水资源评价及其合理开发利用研究.高校地质学报,1999,5(2).
    24.阎学义,朱国荣,王浩然.淄博市腈纶工程水源地地下水资源开采预测的数值模拟.高校地质学报,1998,4(2).
    25.潘世兵,王忠静,邢卫国.河流—含水层系统数值模拟方法探讨.水文,2002,22(4).
    26.洪景涛,刘翔,毛晓敏.淄博市大武水源地地下水水位总体预测.水文地质工程地质,2002(6).
    27.束龙仓,朱元生.地下水资源评价中的不确定因素分析[J].水文地质工程地质,2000,27(6):6-8.
    28.刘少玉.冲洪积扇含水层地下水可开采量数值模拟——以文峪河冲洪积扇为例.水文地质与工程地质,1998,1,38-41.
    29.李竞生.地下水流模拟中的强隐式.地下水资源评价理论与方法的研究(中国地质学会首届地下水资源评价学术会议论文选编),1982,北京:地质出版社.
    30.张宏仁,李俊亭.解地下水流的不规则网格有限差方法.地下水资源评价理论与方法的研究(中国地质学会首届地下水资源评价学术会议论文选编,1982,北京:地质出版社.
    31.张宏仁,李俊亭,有限差分与有限单元法在渗流问题中的对比,1979,2,水文地质工程地质.
    32. Fetter C W. Contaminant Hydrogeoiogy. New York: Macmillan Publishing Company, 1993,1-111.
    33. Waterloo Hydrogeologic Inc. User's Manual for Visual Modflow, 1999.
    34. Waterloo Hydrogeologic Inc. Visual Modflow Tutorial, 2000.
    35. McDonald M C, Harbaugh A W. A Modular Three-dimensional Finite-difference Ground-water
    
    Flow Modei: U.S.Geological Survey Techniques of Water-Resources Investigations, book6, chapA1, 1998,586.
    36. Bennett, G.D., A. L. Kontis, and S. P. Larson, 1982, Representation of multiaquifer well effects in three-demensional groundwater flow simulation, Ground Water, 20 (3) , pp: 334-344.
    37. Hill, M. C., Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure, Water Resources Research, 1990b, 26 (9) , pp. 1961-1969.
    38. Hunt, R. J., Simulation of the recharge area for Frederick Springs, Dane County, Wisconsin, United States Geological Survey, Water-Resources Investigations Paper 00-4172,33p.
    39. Halford,K.J., Effects of steady-state assumption on hydraulic conductivity and recharge estimates in a surficial aquifer system, Ground Water, 1999, v37, no.1, pp.70-79.
    40. Adams, J.J., D.N. Graham, P. J. Martin and N. Guiger, Evaluating the WHS Solver-new Bi-CGSTAB solver for MODFLOW, MODFLOW 1998 Conference, Denver, Colorado, 1998.
    41. Ahmad, Rafi, N. Lal, and P.K. Sharma, A fission-track age for the Above RocksGranodiorite, Jamaica: Caribbean Journal of Science, 1987, v. 23, p. 450-453.
    42. Anderson, Mary P. and William Woessner, Applied Ground-water Modeling: Simulation of flow and advective transport, New York, 1992, 480 p.
    43. Ahmad, Rafi, N. Lal, and P.K. Sharma, A fission-track age of ignimbrite from Summerfied Formation, Jamaica: Caribbean Journal of Science, 1987, v. 23, p. 444-449.
    44. Atkinson, T.C., Diffuse flow and conduit flow in limestone terrain in MendipsHills, Sommerset, Great Britain: Journal ofHydrology, 1977, v. 35, p. 39-110.
    45. Bear, Jacob, Chin-Fu Tsang, and Ghislain de Marsely (eds.), Flow and contaminant transport in fractured rock: 560 p. 1993, Cardy, W. F. G., 1971.
    46. Brown, M.C. and D.C. Ford, Caves and ground-water patterns in a tropical karst environment, Jamaica, West Indies:. American Journal of Science, 1973, v. 273, p. 622-633.
    47. Brahana, J.V., J.Thrailkill, T. Freeman, W.C. Ward, Carbonate rocks, in The Geology of North America, eds., B. William, J.S. Rosenshein, and P.R. Seaber, Geological Society of America, Boulder, Colorado, 1988, vol. O-2, p. 333-352.
    48. Bowin, C., Caribbean gravity field and plate tectonics: Geological Society of America Special
    
    Paper 169, 1976, 79 p.
    49. Botbol, M., Lower Rio Cobre Limestone Aquifer Hydrogeology: UnpublishedReport: Water Resources Division.no. 1/2, 1982, p. 51-56.
    50. Bonacci, D., Karst springs hydrographs as indicators of karst aquifers. Journal of Hydrological Sciences, 1993, v. 38, n
    51. Basayanake, S.B., Hydrogeological studies of the Lower Rio Cobre Basin Alluvial Aquifer, Unpublished Report: UndergroundWater Authority, Government of Jamaica, 1988.
    52. Cant, R.V., Jamaica's Pleistocene reefs. Geologie en Minjbouw,, 1973, v. 52, p. 159-160.
    53. Cartwright, K. and M. R. McComas. Geophysical surveys in the vicinity of sanitary landfills in Northern Illinois. Ground Water, 1968, v. 16, no.5, p.23-30.
    54. Chubb, L.J. and K.C. Burke, Age of the Jamaican granodiorite: Geological Magazine, 1963, v. 100, p. 524-532.
    55. Chin, H., Surface water resources of Jamaica: Journal of the Geological Society of Jamaica, 1979, v. 28, p. 20-32.
    56. Coates, Anthony G., Jamaican coral-rudist frameworks and their geologic setting: in Frost, S. H., Weiss, M.P. and Sanders, J.B. (eds.), Reefs and related carbonates-Ecology and sedimentology: American Association of Petroleum Geologists, Studies in Geology, 1977a, v. 4, p. 83-91.
    57. Cooper, H. H. Jr., A hypothesis concerning the dynamic balance of freshwater and saltwater in a coastal aquifer: Journal of Geophysics Research, 1959, v. 64, no. 4, p. 461-467.
    58. Cvijic, Hydrographic souterraine et evolution morphologique du karst. Rec. Trav .Inst Geog. Alpine, 1918, v. 6, no. 4, 375-426.
    59. Dasgupta, S. N. and S.A. Vincenz, Paleomagnetism of a Paleocene pluton on Jamaica: Earth and Planetary Science Letters, 1975, v. 25, p. 49-56.
    60. Delleur, J. W., The handbook of groundwater engineering. J. Delleur, ed, CRC Press, 1999.
    61. Dickenson, W. R., Relations of andesites, granites, and derivative sandstones to arc-trench territories: Reviews of Geophysics and Space Physics, 1970, v. 8, p. 813-860.
    62. Domenico, Patrick A., Concepts and models in ground-water hydrology: McGraw-Hill, New
    
    York, 1972,405 p.
    63. Donovan, S.K., Geological excursion guide: Jamaica. Geology Today, 1993, v. 9, no. 1, p30-34.
    64. Herzberg, A., Die Wasserversorgrung einger Nordseebader, Journal Gasbeleutchung and Wasserversong, (Munich). 1901, V.44, p. 819, 824-844.
    65. Hill, V.G. and A.C. Ellington, The chemical characteristics of the ground-water resources of jamaica, WI: A contribution to the interpretation of hydrochemical data,Economic Geology, 1961,v.36,p. 533-541.
    66. Hydrogeological problems of the Kingston area, Jamaica. Transactions of the Caribbean Geological Conference, v. 5, p.235.
    67. Karlinger, M.R. and J.A. Skrivan, Kriging analysis of mean annual precipitation,Powder River, Basin, montana and Wyoming. U.S. Geological Survey Water Resources Investigations 80-50, 1980, p.25.
    68. Kilpatrick, F.A. Source of baseflow to streams: International Association of Scientific Hydrology 63, 1964, p. 329-339.
    69. Land, L.S. and T.F. Goreau, Submarine lithification of Jamaican reefs: Journal of Sedimentology, 1970, v.40, p.257-462.
    70. MacFarlane, N.A.(compiler), Geological map of Jamaica, 1:250, 000. Ministry of Mining and Natural Resources, Kingston, Jamaica, 1977.
    71. Maclntyre, I. And A.C. Neumann, Reef response to sea level rise; keep-up, catch-up or give-up. Proceedings of the Fifth international coral congress, Rosenstiel Schoolof Marine and Atmospheric Science, University of Miami, Miami, FL, United Statesl985, v. 3, p. 105.
    72. Nkemdirim, Lawrence C., 1979. Spatial and seasonal distribution of rainfall and runoff in Jamaica: Geographical Review, v. 69, no. 3, p. 288-301.
    73. Oreskes, N, K.Shrader-Frechette, and K. Belitz, 1994. Verification, validation, and confirmation of numerical models in earth sciences, Science v.263, p 641-646.
    74. Underground Water Authority Final Report, 1990. Water Resources Development Master Plan, Main Volume, Government of Jamaica.
    75. Vogel, K.L. and A.G. Reif, Geohydrology and simulation of ground-water flow In the Red Clay
    
    Creek Basin, Chester County Pennsylvania, and Newcastle County Delaware: US Geological Survey Water Respource Investigations Report, 1993, 93-4055,111p.
    76. White, Michael N., Saline intrusion of the karstie limestone aquifer in the Lower Rio Cobre Basin, Jamaica: Journal of the Geological Society of Jamaica, 1980, v. 19, p. 25-34.
    77. Poeter, E.P., and M.C. Hill, Inverse models: a necessary next step in groundwater modeling: Ground Water, 1997,v.35, no.2. pp.250-260.
    78. Srivastava, K., S.N. Rai, and R.N. Singh, Water-table variation in a sloping aquifer due to random recharge, Water Resources Management, 1996, v. 10, no.3, pp.241-250.
    79. Pinder, G. R, and Bredehoeft, J. D., Application of the digital computer for aquifer evalution, Water Resour. Res., 1968, vol. 4, No. 5, 1069-1093.
    80. Javandel, I., and Withespoon. P. Application of the finite element method to transient folw in porous media, soc. Petrol. Eng. J., 1968, vol. 8, No. 3, 241-252.
    81. Neuman, S. P., and Narasimhan, T. N., Mixed explicit-implicit iterative finite element scheme for diffusion-type problems, 1977, Int. J. for numerical methoding Eng., vol. 11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700