用户名: 密码: 验证码:
浅层地下水系统石油类污染物的生物降解机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是水资源的重要组成部分,是社会经济发展的储备资源和战略资源。然而,在我国近几十年来经济快速增长的过程中,地下水污染问题愈演愈烈,不仅显著加剧了水资源短缺的矛盾,也对生态环境和人类健康产生了极大的威胁。在各种污染物中,石油类组分因其高毒害性而备受关注,尤其是浅层地下水土环境系统中的石油类污染在全世界范围内具有普遍性与严重性,其修复治理迫在眉睫。相比污染物的其他修复净化作用而言,生物降解是能够自然发生、且唯一能降低环境中污染物总量的有效机制,并几乎伴生于所有其他原位修复技术的应用过程中并产生重要的协同修复效应。因此研究地下水中石油污染物的生物降解机制对修复具有重要的科学意义。
     本文依托我国东北某油田区野外实际污染场地,针对浅层地下水系统石油类污染物的生物降解作用开展研究,通过野外调研和室内分析研究相结合,在传统的污染水文地质学理论方法基础上,引入新兴的分子生物学技术手段,从污染过程中组分传质-化学演化-微生物响应的协同关系出发,揭示地下水中石油污染组分的迁移转化、污染过程中的地球化学变化和污染胁迫下的微生物群落特征响应(结构、类型、分布等),进而通过数据综合分析,揭示石油污染地下水系统中的物化、生物交互作用对生物降解的控制机制,并在此基础上探讨该石油污染场地原位空气扰动修复对地下水中污染物生物降解的影响。
     主要研究成果如下:
     (1)对场地污染特征进行10个月(2009年9月~2010年7月)的连续动态监测显示,场地地下水中总石油烃(TPH)平均含量高达5.21mg/L,显著超过国家相关标准,主要的石油类污染物种类主要有烷烃类、芳烃类以及非烃类,其中芳烃类含量较高,在0.53~2.13mg/L之间,其中苯含量在0.01~0.31mg/L之间,二甲苯含量在0.08~0.98mg/L之间,均超过了GB/T5750.8-2006中规定的饮用水标准,亟待采取修复措施;
     (2)场地地下水中石油类污染物在时间和空间上均呈现动态变化,在监测时段内TPH浓度整体呈现下降的变化趋势,大幅下降主要出现在2009年末至2010年初,2010年3月后污染物的自然衰减程度明显减弱,另外石油组分变化特征分析结果显示,烷烃与芳烃之比和烃类与非烃类之比均呈下降趋势,这表明随着时间的发展,地下水中石油污染物发生着较为缓慢的生物降解作用;沿地下水径流路径,组分浓度、类异戊二烯类化合物等生物标志物数据同样显示发生了生物降解作用,但上述烷烃、芳烃与非烃类比值却沿径流路径有所升高,表明生物降解作用虽存在但并不突出;
     (3)地下水中总石油烃含量在空间上的分布显示该场地存在两个污染较严重区域,为进一步探明场地地下水的污染模式,对不同位置垂向土壤中TPH含量进行了分析,发现TPH在不同地点垂向上呈现两种不同的变化规律,一种是随深度逐渐减小,另一种则在地下水位附近有明显的升高,由此将该地区地下水石油污染来源归结为两种模式:其一是垂向入渗式,主要发生在场地上游污油坑附近;其二是水平扩散迁移式,是场地中下游石油污染来源的主要途径;
     (4)对污染场地地下水水化学特征进行了研究,结果发现:虽然场地地下水遭受不同程度的石油污染,但其中主要离子组成相对稳定,水化学类型以HCO3-Na和HCO3-Ca型水为主,通过对水化学离子的平衡计算推测场地地下水中高浓度的HCO3-在一定程度上可能与该地区发生石油污染物的生物降解有关;
     (5)为了解场地内石油污染物降解的生物地球化学过程,对地下水氧化还原特征和生物降解过程中的电子受体含量进行了分析,结果表明:场地地下水处于还原环境,石油污染物以厌氧降解为主导,氧化还原电位Eh进一步指示该地区生物降解应处于铁还原和硫酸盐还原阶段,同时,电子受体的动态变化也显示,溶解相铁锰在2010年1月后有不同程度的升高,硫酸盐含量在监测期内一直呈下降态势,至2010年后其下降解程度有所减缓,结合反应产物S2-等的动态变化和Eh-pH分布关系,综合反映出该场地发生了铁锰和硫酸盐还原过程;
     (6)利用PCR-DGGE技术对场地内2010年3月后细菌、古细菌群落结构和多样性进行研究,分析发现:细菌群落组成在位于污油坑Z1处变化最为显著,2010年3月与7月结构相似性系数仅为0.261,而在相同时间内,同一流线上的点群落结构相似性较高,最高相似系数为0.714,进一步采用细菌多样性指数来综合反映地下水中群落组成和丰度的变化,将计算结果以时间和空间为因变量进行ANOVA分析,表明细菌多样性指数在时空上的变化不显著,可能受到其他因素的控制,而古细菌指数变化与时间呈显著相关;
     (7)对细菌DGGE图谱中的主要条带进行切胶回收、测序以了解该地区地下水微生物物种组成,测序比对结果显示:场地地下水微生物细菌类群主要有三大类,分别为Betaproteobacteria,Gamaproteobactera和Flavobacteria,其中以Betaproteobacteria纲细菌占优势,且以厌氧环境下生存的菌种居多,检测到与场地污染物降解和生物地球化学环境相关的菌种有Dechloromonas sp.,Gallionella sp.,Thiothrix sp.;
     (8)采用主成分分析方法(PCA)分别对场地石油污染组分、地下水水化学与微生物群落数据进行降维分析,提取出9个污染主因子、4个化学主因子和8个微生物菌群因子,各因子分别反映了污染物类型、来源、地下水化学环境、生物地球化学过程以及不同特征菌群的分类,随后利用典范对应分析方法(CCA)建立各类环境因子之间的相互关系,通过归纳分析将污染场地按CCA排序图分为苯系物降解区、烷烃降解区和污染背景区,另外,按降解过程分为好氧或微还原区、铁锰还原区、硫酸盐还原区、产甲烷区和弱降解区,进而根据此分区对2010年3月后场地内地下水中生物降解控制因子进行识别,场地上游因受长期污染,降解能力减弱,以产甲烷作用为主,烷烃降解占优势,下游则以芳香烃降解为主,发生铁锰还原和硫酸盐还原过程;
     (9)在以上天然条件下场地生物降解机制研究的基础上,结合后期开展的场地原位空气扰动修复工程,对注气扰动下污染物生物降解机制的变化进行了研究,首先通过为期13d的原位单井AS修复试验,修复目标区域地下水中TPH降低达80%,其中各种石油类污染组分浓度均有不同程度的降低,主要以芳烃类组分最为显著,化学方面由于注气使地下水环境由厌氧向好氧转变,氧化还原参数Eh有显著升高,这种转变尤其体现在离注气井最近的N1井,进一步对AS期间微生物特征分析发现,微生物群落的响应主要体现在影响带内物种的丰度上,不会显著改变物种的组成,此外由地下水中芳香烃的氧化基因(TOD)的变化指出,AS可在一定程度上促进注气井周围4m范围内的好氧生物降解,但此范围远小于AS所引起的物理响应指示的影响范围。
As an important part of water resources, groundwater is the reserves and strategic resourcesfor social development. However, with Chinese rapid economic growth in recent decades,groundwater pollution is getting worse, which not only significantly aggravated the contradictionof water shortage, but also greatly threaten ecology and human health. Among numerouspollutants, there is growing concern about petroleum due to its high toxicity. Especially,pollution caused by petroleum became more and more universal and serious in shallowgroundwater and soil environment system, calling for an imminent remediation. Biodegradationis the only process that can reduce pollutants content in the environment, and the mechanism ofpetroleum pollutants biodegradation in groundwater therefore has important scientificsignificance for contaminated water remendiation and water sustainable management.
     A site in NE China was selected as a particular case characterised by a long history of oilcontamination. Forensic identification of biodegradation on this contaminated groundwater sitewas studied by multidisciplinary knowledge from traditional contamination hydrogeology andemerging molecular biology. Integrated groundwater modelling, hydrochemical and PCR-DGGEmethods were applied for investigation of the hydrogeologic, hydrogeochemical and microbialcharacteristics of groundwater system. Controlling factors were then recognized by the means ofmulti-factors statistics. Based on these, influences of in situ air sparging on biodegradation werealso discussed.
     Main results of this paper are described in detail as follows:
     (1)10-month monitoring was carried out for variations of pollutants throughout theinterested site. The average TPH concentration of5.21mg/L largely exceeded the value inrelevant national standards. Pollutants contained alkanes, aromatic hydrocarbons andnon-hydrocarbons. The aromatic hydrocarbon concentration is much higher, at between0.53~2.13mg/L with benzene concentration of between0.010.31mg/L, xylene of between0.08~0.98mg/L, more than their limitations in of drinking water standard (GB/T5750.8-2006).
     (2) Dynamic changes of contaminants in time and space showed TPH concentrationdecreased during the whole monitoring period. Rapid drop occurred in late2009till early2010 while natural attenuation of pollutants got weak after March2010. Variations of petroleumcomponents showed the ratio of alkanes and aromatic hydrocarbons, and that of hydrocarbon andnon-hydrocarbon declined with time, indicating the occurrence of biodegradation but in relativeweak degree. biodegradation was also confirmed by biomarker data along the groundwater flowpaths but didn’t dominate as the above two ratios increased along flow lines.
     (3) According to the distribution of TPH in this site, two cores of high contaminants can bedistinguished. To find out the contamination patterns of this field site, TPH concentrations of soilin vertical profiles at typical points were analysis. Results showed two sorts of treads existed.One is continuous declination with depth, and the other is obvious peak near groundwater level.So there should be two patterns: first, vertical infiltration, mainly happens near oil-water pond inthe SW of this site; Second, horizontal spread, is the main path in the middle and downstream.
     (4) Characteristics of groundwater chemistry at the pollution site were also studied. Wefound that although groundwater there suffered different degrees of oil pollution, the major ionscomposition was relatively stable and defined the water types as HCO3-Na and HCO3-Ca.Moreover, high concentration of HCO3in groundwater may be resulted from biodegradation ofpollutants there according to chemical balance calculation.
     (5) To further understand the biogeochemical process at this site, redox conditions andelectron acceptors in groundwater were investigated. Eh indicated a reducing environment ofiron-manganese and/or sulfate reduction stage. Breakthrough of potential REDOX indicatorrevealed dissolved iron and manganese increased after January2010, while sulfate in themonitoring period dropped but slowly in2010. These reflect the site was experiencingiron-manganese and/or sulfate reduction process;
     (6) PCR-DGGE method was used to study structure and diversity of bacteria and archaeacommunity in this site after March2010till July2010. Analysis indicated that bacterialcommunity composition at Z1near the oil-water pond varied most with the lowest similaritycoefficient of only0.261between March2010and July, while higher coefficients could be foundamong points along the same flow lines and the highest similarity coefficient was0.714.Furthermore, diversity indices reflecting changes of species composition and abundance werecalculated. Using the calculated results, ANOVA analysis was performed in various time andspaces respectively. Results showed that bacteria diversity index had no significant changes withtime and space, while the archaea presented significant relevance with time.;
     (7) Main bands in the DGGE profiles were excised, re-amplified and sequenced for insight into microbial species composition in groundwater. Results of sequence alignment showed thereare three main classes in groundwater: Betaproteobacteria, Gamaproteobactera and Flavobacteria.Betaproteobacteria was dominated and most species were anaerobic. Detected species relevant tobiodegradation and biogeochemical environment are Dechloromonas sp., Gallionella sp.,Thiothrix sp, etc.
     (8) Principal Component Analysis (PCA) was performed to reduce the dimensionality ofcomplex pollutants, hydrochemical and microbial data sets.9pollution factors,4chemicalfactors and8bacterial factors were extracted, reflecting the pollutant source types, groundwaterchemical/biogeochemical environment, and flora of different characteristics respectively.Canonical Correspondence Analysis (CCA) was then carried out using the above extractedfactors to investigate relationships among them. Thereby, CCA ordination diagram could bedivided into three partitions of benzene series degradation, alkanes degradation and backgroundlevel according to the pollutants, and five partitions of aerobic or weak reduction,iron-manganese reduction, sulfate reduction, methanogenesis and weak degradation according tothe degradation processes. Controlling factors of biodegradation were judged by the location ofpoints representing groundwater samples in the CCA partitions diagram. Analysis implieddegradation ability in upstream turned quite limited but mainly with several alkanes undermethane-producing process probably due to long-term pollution, while downstream was mainlyexperiencing aromatic hydrocarbons degradation under iron-manganese and sulfate reductionprocesses;
     (9) Based on the above natural biological degradation mechanism research, influences ofin-situ biodegradation on pollutants biodegradation were further studied. First, after13-d singlewell AS pilot test, TPH in groundwater of interested zone reduced by80%while differentdecrease degrees varied with different petroleum components, significantly in aromatichydrocarbons. Second, due to air injection, groundwater REDOX condition transformed fromanaerobic to aerobiotic. Oxygen oxidation reduction parameter Eh increased significantly andsuch change was most obvious in N1nearest to air injecting well. Third, changes of microbialcharacteristics during the AS presented species abundance rather than species composition wasaffected by AS. Finally, aromatic oxygenase gene was quantificationally tested by Realtime-PCR,and the results revealed13-d single well AS pilot test could only promote aerobic biodegradation within4mradius around AS injecting well to the largest extent, which is far less than physicalinfluence area by AS.
引文
[1]冯永锋.地下水之痛:超采和污染[N].光明日报,2011-9-8(10).
    [2] Qiu J. China faces up to groundwater crisis[J]. Natural.2010,466(7304):308.
    [3]薛强.石油污染物在地下环境系统中运移的多相流模型研究[D].辽宁工程技术大学,2003.
    [4]张凤娟,邢立亭.淄博市张店化工园区地下水污染预测[J].济南大学学报(自然科学版).2013(2):177-182.
    [5]尹勇,戴中华,蒋鹏,等.苏南某焦化厂场地土壤和地下水特征污染物分布规律研究[J].农业环境科学学报.2012(8):1525-1531.
    [6]吕晓立,邵景力,刘景涛,等.某石油化工污染场地地下水中挥发性有机物污染特征及成因分析[J].水文地质工程地质.2012(6):97-102.
    [7] Hester R E, Harrison R M. Environmental Forensics: Issues in Environmental Science andTechnology[M]. Cambridge: The Royal Society of Chemistry,2008.
    [8]曹云者,施烈焰,李丽和,等.石油烃污染场地环境风险评价与风险管理[J].生态毒理学报.2007(3):265-272.
    [9]张学佳,纪巍,康志军,等.石油类污染物对土壤生态环境的危害[J].化工科技.2008(6):60-65.
    [10]刘新华,傅家谟,沈照理,等.油类污染过程中地下水地球化学环境的变化——以山东省淄博市某地下水水源地为例[J].地球化学.1996(4):331-338.
    [11] Kovar K, Sovei J. Groundwater Quality Management[C]. Tallinn: InternationalAssociation of Hydrological Sciences,1993.
    [12] Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs): Case Studies in EnvironmentalMedicine[R]. Atlanta: Agency for Toxic Substances and Disease Registry,2011.
    [13]赵勇胜.地下水污染场地污染的控制与修复[J].吉林大学学报(地球科学版).2007(2):303-310.
    [14] Alternatives for Ground Water Cleanup[R]. Columbia: National Academy Press,1994.
    [15] Contaminants in the subsurface-source zone assessment and remediation[R]. Columbia:National Academy Press,2004.
    [16]赵玉霞,杨珂.石油污染土壤修复技术研究综述[J].环境科技.2009:60-63.
    [17] Bayer P, Finkel M. Life cycle assessment of active and passive groundwater remediationtechnologies[J]. Journal of Contaminant Hydrology.2006,83(3-4):171-199.
    [18]王业耀,孟凡生.石油烃污染地下水原位修复技术研究进展[J].化工环保.2005(2):117-120.
    [19] Suthersan S S. Pump and treat systems[R]. Boca Raton: CRC Press LLC,1999.
    [20] Rugner H, Finkel M, Kaschl A, et al. Application of monitored natural attenuation incontaminated land management-A review and recommended approach for Europe[J].Environmental Science&Policy.2006,9(6):568-576.
    [21] Schirmer M, Butler B J. Transport behaviour and natural attenuation of organiccontaminants at spill sites[J]. Toxicology.2004,205(3):173-179.
    [22] Sihota N I, Singurindy O, Mayer K U. CO2-Efflux Measurements for Evaluating SourceZone Natural Attenuation Rates in a Petroleum Hydrocarbon Contaminated Aquifer[J].Environmental Science&Technology.2011,45(2):482-488.
    [23] Kim H, Choi K M, Moon J W, et al. Changes in air saturation and air-water interfacial areaduring surfactant-enhanced air sparging in saturated sand[J]. Journal of ContaminantHydrology.2006,88(1-2):23-35.
    [24]郑苇,赵勇胜,秦传玉,等.表面活性剂强化空气扰动修复污染地下水影响区域研究[J].环境科学学报.2011(1):102-106.
    [25] Mohamed A, El-Menshawy N, Saif A M. Remediation of saturated soil contaminated withpetroleum products using air sparging with thermal enhancement[J]. Journal ofEnvironmental Management.2007,83(3):339-350.
    [26]范伟,杨悦锁,陈力,等.地下水污染曝气修复技术进展[J].水资源保护.2010(6):84-88.
    [27] Fields K. Air Sparging Guidance Document[R]. Washington: Naval Facilities EngineeringCommand,2001.
    [28] A L, C J P. Air Sparging Design Paradigm[R]. Washington: Naval Facilities EngineeringCommand,2002.
    [29] Thiruverikatachari R, Vigneswaran S, Naidu R. Permeable reactive barrier forgroundwater remediation[J]. Journal of Industrial and Engineering Chemistry.2008,14(2):145-156.
    [30] Phillips D H. Permeable reactive barriers: A sustainable technology for cleaningcontaminated groundwater in developing countries[J]. Desalination.2009,248(1-3):352-359.
    [31]Lovley D R. Cleaning up with genomics: Applying molecular biology to bioremediation[J].Nature Reviews Microbiology.2003,1(1):35-44.
    [32]周启星,宋玉芳,孙铁珩.生物修复研究与应用进展[J].自然科学进展.2004(7):2-4.
    [33] Tiehm A, Schulze S. Intrinsic aromatic hydrocarbon biodegradation for groundwaterremediation[J]. Oil&Gas Science and Technology.2003,58(4):449-462.
    [34]陈燕,李寅,堵国成,等.石油污染水体的生物修复[J].水处理技术.2003(5):249-252.
    [35] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: the unseen majority.[J].Proceedings of the National Academy of Sciences of the United States of America.1998,95(12).
    [36] Fredrickson J K, Balkwill D L. Geomicrobial processes and biodiversity in the deepterrestrial subsurface[J]. Geomicrobiology Journal.2006,23(6):345-356.
    [37] Dojka M A, Hugenholtz P, Haack S K, et al. Microbial diversity in a hydrocarbon-andchlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation.[J]. Appliedand Environmental Microbiology.1998,64(10).
    [38] Kao C M, Chen C S, Tsa F Y, et al. Application of real-time PCR, DGGE fingerprinting,and culture-based method to evaluate the effectiveness of intrinsic bioremediation on thecontrol of petroleum-hydrocarbon plume[J]. Journal of Hazardous Materials.2010,178(1-3):409-416.
    [39] Atlas R M. Microbial degradation of petroleum hydrocarbons: an environmentalperspective[J]. Microbiological reviews.1981,45(1).
    [40] Balba M T, Al-Daher R, Al-Awadhi N, et al. Bioremediation of oil-contaminated desertsoil: The Kuwaiti experience[J]. Environment International.1998,24(1–2):163-173.
    [41]顾传辉,陈桂珠.石油污染土壤生物降解生态条件研究[J].生态科学.2000(4):67-72.
    [42] Rooney-Varga J N, Anderson R T, Fraga J L, et al. Microbial communities associated withanaerobic benzene degradation in a petroleum-contaminated aquifer[J]. Applied andEnvironmental Microbiology.1999,65(7):3056-3063.
    [43]李晔,陈新才,王焰新.石油污染土壤生物修复的最佳生态条件研究[J].环境科学与技术.2004(4):17-19.
    [44] Foght J M, Gutnick D L, Westlake D W. Effect of emulsan on biodegradation of crude oilby pure and mixed bacterial cultures[J]. Applied and Environmental Microbiology.1989,55(1):36-42.
    [45]李习武,刘志培,刘双江.新型复合生物乳化剂的性质及其在多环芳烃降解中的作用[J].微生物学报.2004(3):373-377.
    [46] Pritchard P H. EPA's Alaska oil spill bioremediation project[J]. Environmental Science&Technology.1991,25(3):372.
    [47]郭婷.复合菌剂强化修复石油污染土壤的应用研究[D].南开大学,2010.
    [48]李政红,张翠云,张胜,等.地下水微生物学研究进展综述[J].南水北调与水利科技.2007(5):60-63.
    [49]张瑞玲.甲基叔丁基醚的生物降解机理与微生物在地下水中的迁移[D].天津大学,2007.
    [50] Gandolfi I, Sicolo M, Franzetti A, et al. Influence of compost amendment on microbialcommunity and ecotoxicity of hydrocarbon-contaminated soils[J]. BioresourceTechnology.2010,101(2):568-575.
    [51] Lu J, Jin Q, He Y, et al. Enhanced anaerobic biodegradation of nonylphenol ethoxylates byintroducing additional sulfate or nitrate as terminal electron acceptors[J]. InternationalBiodeterioration and Biodegradation.2008,62(2):214-218.
    [52] Lovley D R. Bioremediation-Anaerobes to the rescue[J]. Science.2001,293(5534):1444-1446.
    [53] Christensen T H, Bjerg P L, Banwart S A, et al. Characterization of redox conditions ingroundwater contaminant plumes[J]. Journal of Contaminant Hydrology.2000,45(3–4):165-241.
    [54]董军.垃圾渗滤液在地下环境中的氧化还原分带及污染物的降解机理研究[D].吉林大学,2006.
    [55] Schreiber M E, Carey G R, Feinstein D T, et al. Mechanisms of electron acceptorutilization: Implications for simulating anaerobic biodegradation[J]. Journal ofContaminant Hydrology.2004,73(1-4):99-127.
    [56] Postma D, Jakobsen R. Redox zonation: Equilibrium constraints on theFe(III)/SO4-reduction interface[J]. Geochimica et Cosmochimica Acta.1996,60(17):3169-3175.
    [57] Thayalakumaran T, Bristow K L, Charlesworth P B, et al. Geochemical conditions ingroundwater systems: Implications for the attenuation of agricultural nitrate[J].Agricultural Water Management.2008,95(2):103-115.
    [58] Kennedy L G, Everett J W. Microbial degradation of simulated landfill leachate: solidiron/sulfur interactions[J]. Advances in Environmental Research.2001,5(2):103-116.
    [59] van Breukelen B M, Griffioen J. Biogeochemical processes at the fringe of a landfillleachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, andCH4oxidation[J]. Journal of Contaminant Hydrology.2004,73(1-4):181-205.
    [60] Chapelle F H, Bradley P M, Lovley D R, et al. Rapid evolution of redox processes in apetroleum hydrocarbon-contaminated aquifer[J]. Ground Water.2002,40(4):353-360.
    [61] Lee J, Lee K. Viability of natural attenuation in a petroleum-contaminated shallow sandyaquifer[J]. Environmental Pollution.2003,126(2):201-212.
    [62] Spence M J, Bottrell S H, Thornton S F, et al. Hydrochemical and isotopic effectsassociated with petroleum fuel biodegradation pathways in a chalk aquifer[J]. Journal ofContaminant Hydrology.2005,79(1-2):67-88.
    [63] Madsen L. Determining in situ biodegradation[J]. Environmental Science&Technology.1991,25(10):1662-1673.
    [64]赵勇胜,王冰,屈智慧,等.柴油污染包气带砂层中的自然衰减作用[J].吉林大学学报(地球科学版).2010(2):389-393.
    [65] Maqsood I, Luo B. Integrated3D physical-numerical modelling for simulatingbioremediation of petroleum contamination in heterogeneous subsurface environment[J].International Journal of Environment and Pollution.2010,42(1-3):199-219.
    [66] Knoller K, Vogt C, Feisthauer S, et al. Sulfur cycling and biodegradation in contaminatedaquifers: Insights from stable isotope investigations[J]. Environmental Science&Technology.2008,42(21):7807-7812.
    [67] Topinkova B, Nesetril K, Datel J, et al. Geochemical heterogeneity and isotopegeochemistry of natural attenuation processes in a gasoline-contaminated aquifer at theHnevice site, Czech Republic[J]. Hydrogeology Journal.2007,15(5):961-976.
    [68] Schuth C, Taubald H, Bolano N, et al. Carbon and hydrogen isotope effects duringsorption of organic contaminants on carbonaceous materials[J]. Journal of ContaminantHydrology.2003,64(3-4):269-281.
    [69] Poulson S R, Drever J I. Stable isotope (C, Cl, and H) fractionation during vaporization oftrichloroethylene[J]. Environmental Science&Technology.1999,33(20):3689-3694.
    [70] Ward J A M, Ahad J M E, Lacrampe-Couloume G, et al. Hydrogen isotope fractionationduring methanogenic degradation of toluene: Potential for direct verification ofbioremediation[J]. Environmental Science&Technology.2000,34(21):4577-4581.
    [71] Fan W, Yang Y S, Du X Q, et al. Finger-printing biodegradation of petroleumcontamination in shallow groundwater and soil system using hydro-bio-geochemicalmarkers and modelling support[J]. Water, Air, and Soil Pollution.2011,220(1-4):253-263.
    [72] Lee J Y, Cheon J Y, Lee K K, et al. Statistical evaluation of geochemical parameterdistribution in a ground water system contaminated with petroleum hydrocarbons[J].Journal of Environmental Quality.2001,30(5):1548-1563.
    [73] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation[J]. Microbiological reviews.1995,59(1):143-169.
    [74] Cho W, Lee E H, Shim E H, et al. Bacterial communities of biofilms sampled fromseepage groundwater contaminated with petroleum oil[J]. Journal of Microbiology andBiotechnology.2005,15(5):952-964.
    [75] Baldwin B R, Nakatsu C H, Nebe J, et al. Enumeration of aromatic oxygenase genes toevaluate biodegradation during multi-phase extraction at a gasoline-contaminated site[J].Journal of Hazardous Materials.2009,163(2-3):524-530.
    [76] Guo C, Sun W, Harsh J B, et al. Hybridization Analysis of Microbial DNA from FuelOil-Contaminated and Noncontaminated Soil[J]. Microbial Ecology.1997,34(3):178-187.
    [77] Kleikemper J, Schroth M H, Sigler W V, et al. Activity and diversity of sulfate-reducingbacteria in a petroleum hydrocarbon-contaminated aquifer[J]. Applied and EnvironmentalMicrobiology.2002,68(4):1516-1523.
    [78] Orphan V J, Taylor L T, Hafenbradl D, et al. Culture-dependent and culture-independentcharacterization of microbial assemblages associated with high-temperature petroleumreservoirs[J]. Applied and Environmental Microbiology.2000,66(2):700-711.
    [79] Takai K, Horikoshi K. Rapid detection and quantification of members of the archaealcommunity by quantitative PCR using fluorogenic probes[J]. Applied and EnvironmentalMicrobiology.2000,66(11):5066-5072.
    [80] Eichner C A, Erb R W, Timmis K N, et al. Thermal gradient gel electrophoresis analysisof bioprotection from pollutant shocks in the activated sludge microbial community[J].Appl Environ Microbiol.1999,65(1):102-109.
    [81] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16S rRNA.[J]. Applied and environmental microbiology.1993,59(3):695-700.
    [82]韩慧龙,刘铮.分子生物学技术在土壤生物修复中的应用及展望[J].化工进展.2007(6):782-787.
    [83]王晓丹,李艳红.分子生物学方法在水体微生物生态研究中的应用[J].微生物学通报.2007(4):777-781.
    [84]钟鸣,周启星.微生物分子生态学技术及其在环境污染研究中的应用[J].应用生态学报.2002,13(2):247-251.
    [85] Roling W, Milner M G, Jones D M, et al. Robust hydrocarbon degradation and dynamicsof bacterial communities during nutrient-enhanced oil spill bioremediation[J]. Applied andEnvironmental Microbiology.2002,68(11):5537-5548.
    [86] Hendrickx B, Dejonghe W, Faber F, et al. PCR-DGGE method to assess the diversity ofBTEX mono-oxygenase genes at contaminated sites[J]. FEMS Microbiology Ecology.2006,55(2):262-273.
    [87]苏锐,王驹,郭永海,等.斯拉格试验技术与理论研究综述[J].岩石力学与工程学报.2007:3882-3890.
    [88] Hyder Z, Butler J J. Slug Tests in Unconfined Formations: An Assessment of the Bouwerand Rice Technique[J]. Ground Water.1995,33(1):16-22.
    [89]李慧,张颖,苏振成,等.沈抚石油污水灌区稻田土壤细菌遗传多样性——16SrDNA-PCR-DGGE分析[J].土壤学报.2006,43(6):972-980.
    [90] Ovreas L, Forney L, Daae F L, et al. Distribution of bacterioplankton in meromictic LakeSaelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplifiedgene fragments coding for16S rRNA[J]. Applied and Environmental Microbiology.1997,63(9):3367-3373.
    [91] Wang J, Ma T, Zhao L, et al. PCR–DGGE method for analyzing the bacterial communityin a high temperature petroleum reservoir[J]. World Journal of Microbiology andBiotechnology.2008,24(9):1981.
    [92] Yu Z, Garcia Gonzalez R, Schanbacher F L, et al. Evaluations of different hypervariableregions of archaeal16S rRNA genes in profiling of methanogens by Archaea-specific PCRand denaturing gradient gel electrophoresis[J]. Applied and Environmental Microbiology.2008,74(3):889-893.
    [93] Mishra S, Jyot J, Kuhad R C, et al. Evaluation of inoculum addition to stimulate in situbioremediation of oily-sludge-contaminated soil[J]. Applied and EnvironmentalMicrobiology.2001,67(4):1675-1681.
    [94] Tahhan R A, Abu-Ateih R Y. Biodegradation of petroleum industry oily-sludge usingJordanian oil refinery contaminated soil[J]. International Biodeterioration andBiodegradation.2009,63(8):1054-1060.
    [95] Nubel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding16SrRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis[J].Journal of Bacteriology.1996,178(19):5636-5643.
    [96] Vallaeys T, Topp E, Muyzer G, et al. Evaluation of denaturing gradient gel electrophoresisin the detection of16S rDNA sequence variation in rhizobia and methanotrophs[J]. FEMSMicrobiology Ecology.1997,24(3):279-285.
    [97] Yeung C W, Van Stempvoort D R, Spoelstra J, et al. Bacterial community evidence foranaerobic degradation of petroleum hydrocarbons in cold climate groundwater[J]. ColdRegions Science and Technology.2013,86:55-68.
    [98] Park S, Kang S J, Oh T K, et al. Lutibacter maritimus sp nov., isolated from a tidal flatsediment[J]. International Joural of Systematic and Evolutionary Microbiology.2010,60(Part3):610-614.
    [99] Roling W F M, Van B B M, Braster M, et al. Relationships between Microbial CommunityStructure and Hydrochemistry in a Landfill Leachate-Polluted Aquifer[J]. Applied andEnvironmental Microbiology.2001,67(10):4619-4629.
    [100]梁静儿,李宇,叶倩,等.原油降解微生物的16S rDNA序列研究[J].海洋环境科学.2010(4):513-515.
    [101] Kampfer P, Rossello-Mora R, Hermansson M, et al. Undibacterium pigrum gen. nov., spnov., isolated from drinking water[J]. International Joural of Systematic and EvolutionaryMicrobiology.2007,57(Part7):1510-1515.
    [102] Eder W, Wanner G, Ludwig W, et al. Description of Undibacterium oligocarboniphilumsp. nov., isolated from purified water, and Undibacterium pigrum strain CCUG49012asthe type strain of Undibacterium parvum sp. nov., and emended descriptions of the genusUndibacterium and the species Undibacterium pigrum[J]. International Joural ofSystematic and Evolutionary Microbiology.2011,61(Part2):384-391.
    [103] Ofek M, Hadar Y, Minz D. Ecology of root colonizing Massilia (Oxalobacteraceae).[J].PloS one.2012,7(7).
    [104] Zhang W H, Huang Z, He L Y, et al. Assessment of bacterial communities andcharacterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerantChenopodium ambrosioides grown on lead-zinc mine tailings[J]. Chemosphere.2012,87(10):1171-1178.
    [105] Kuffner M, De Maria S, Puschenreiter M, et al. Culturable bacteria from Zn-andCd-accumulating Salix caprea with differential effects on plant growth and heavy metalavailability[J]. Journal of Applied Microbiology.2010,108(4):1471-1484.
    [106] Fleming E J, Langdon A E, Martinez-Garcia M, et al. What's new is old: resolving theidentity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH.[J].PloS one.2011,6(3).
    [107] Salinero K K, Keller K, Feil W S, et al. Metabolic analysis of the soil microbeDechloromonas aromatica str. RCB: indications of a surprisingly complex life-style andcryptic anaerobic pathways for aromatic degradation[J]. BMC Genomics.2009,10(351).
    [108] Bakermans C, Madsen E L. Diversity of16S rDNA and naphthalene dioxygenase genesfrom coal-tar-waste-contaminated aquifer waters[J]. Microbial Ecology.2002,44(2):95-106.
    [109] Chong G, Kimyon O, Rice S A, et al. The presence and role of bacterial quorum sensing inactivated sludge[J]. Microbial Biotechnology.2012,5(5SI):621-633.
    [110] Spring S, Wagner M, Schumann P, et al. Malikia granosa gen. nov., sp nov., a novelpolyhydroxyalkanoate-and polyphosphate-accumulating bacterium isolated from activatedsludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov.[J].International Joural of Systematic and Evolutionary Microbiology.2005,55(Part2):621-629.
    [111]郝春博,王广才,董健楠,等.石油污染地下水中细菌多样性研究[J].环境科学.2009,30(8):2464-2472.
    [112] Howarth R, Unz R F, Seviour E M, et al. Phylogenetic relationships of filamentous sulfurbacteria (Thiothrix spp. and Eikelboom type021N bacteria) isolated fromwastewater-treatment plants and description of Thiothrix eikelboomii sp nov., Thiothrixunzii sp nov., Thiothrix fructosivorans sp nov and Thiothrix defluvii sp nov.[J].International Joural of Systematic Bacteriology.1999,49(Part4):1817-1827.
    [113]范伟,杨悦锁,路莹,等.层间地下水污染曝气修复的影响带[J].化工学报.2011(9):2600-2607.
    [114]范伟.石油类污染场地地下水原位空气扰动修复研究[D].吉林大学,2011.
    [115] Fan W, Yang Y S, Lu Y, et al. Hydrogeo-chemical impacts of air sparging remediation ona semi-confined aquifer: Evidences from field monitoring and modeling[J]. Chemosphere.2013,90(4):1419-1426.
    [116]钱会,刘国东.不同Pco2条件下水溶液的pH值及溶液中化学组分平衡分布的计算[J].中国岩溶.1994(2):133-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700