用户名: 密码: 验证码:
低透煤层水力致裂增透与驱赶瓦斯效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层水力致裂增透是低透气性煤层瓦斯抽采、突出煤层消突的有效技术途径,特别是对于单一低透煤层。本文以含瓦斯煤层水力致裂驱赶为研究对象,基于大量的实验和现场试验,并结合理论分析等研究方法对低透煤层水力致裂增透与驱赶瓦斯效应进行了较为系统的研究,具有重要理论意义和广泛工程应用前景。
     通过扫描电镜、压汞实验和亲水性实验等研究了煤层孔隙裂隙结构特征。煤层的内部结构由节理-割理与层理-微裂隙-孔隙四级空间结构体系组成。煤层质软、瓦斯的吸附解吸效应、天然裂缝发育等因素导致煤体水力致裂变得复杂。薛湖煤矿二2煤层裂隙比较发育,绝大多数裂隙宽度在1~10μm之间,孔隙率平均为4.73%,接触角平均51.15°,润湿性好;孔隙体积主要由微孔构成,小孔次之;表面积构成主要由微孔贡献构成。孔隙率大,骨架分维数会降低,逾渗分维数增加。煤的润湿性影响毛细管压力大小,进而影响含瓦斯煤层水力致裂增透抽采过程中水和瓦斯两相不混溶流体在孔隙裂隙系统中流动的界面压力差。
     采用真三轴水力致裂实验系统研究了煤体水力致裂的裂缝扩展规律。水压裂缝的形态整体呈椭圆形态扩展,水压裂缝的扩展方向平行于最大主应力方向。最大主应力与最小主应力的差值越小,对应的破裂压力越大;围压主应力差越小,水压裂缝越容易发生空间转向。钻孔径向水压裂缝的产生首先必须满足最小主应力方向为钻孔轴向方向,同时沿钻孔致裂段轴向存在局部应力集中或缺陷。增大水力致裂排量,裂缝扩展的动力效应变明显,水压裂缝越易出现分叉与转向,裂缝表面的粗糙度也增大。煤层水力致裂会形成以三维应力控制的水压主裂缝为基础,两侧是交叉贯通扩展的成组张开节理的空间裂缝网络系统。含瓦斯煤层水力致裂应采用大排量快速致裂工艺,达到产生较多且范围大的水压裂缝,利于后续排水采气等目的。
     在MTS试验机上采用瞬态压力脉冲法实验研究了煤体固液耦合的结构及渗透性演变规律,包括煤体全应力应变、卸围压和变渗透水压差过程的渗透性变化测试。煤体的渗透性与其内部的结构密切相关。在固液耦合不产生损伤的条件下,瞬态渗透系数整体与水力梯度成正比关系。在固液耦合作用下,渗透水压力可引起结构面的错动闭合或导致破裂碎屑集聚堵塞渗流通道。在假三轴和恒定轴压条件下,煤样卸围压过程中的变形主要为径向膨胀变形。卸围压过程中,体积应变综合反映了煤样内裂隙增生、张开等损伤。当轴压大于单轴抗压强度且小于三轴抗压强度时,煤样卸围压过程中典型的卸围压-体积应变曲线分为三个阶段,分别为弹性变形恢复、塑性变形和破坏阶段。煤体卸围压过程渗透系数的变化规律与其体积应变变化规律一致,煤样的损伤和渗透系数的变化存在卸围压阀值和卸围压拐点。高于此阀值,渗透系数快速增加;煤样的力学性质和初始应力状态决定了卸围压阀值大小。卸围压超过拐点值,煤样宏观破裂,渗透系数急剧增大。
     发现并研究了含瓦斯煤层水力致裂的瓦斯驱赶现象。含瓦斯煤层水力致裂在产生水压裂缝的同时,压力水向裂缝两侧渗透,孔隙水压力与孔隙裂隙内的游离瓦斯接触,引起裂缝围岩内孔隙水和瓦斯压力的变化,孔隙压力分布的不均匀会产生孔隙压力梯度。游离态瓦斯由孔隙(瓦斯)压力高的位置向孔隙(瓦斯)压力低的位置运移。瓦斯压力梯度是煤层水力致裂驱赶瓦斯的根本动力。煤矿井下高瓦斯煤层注水常会引起回风流瓦斯浓度有一定的升高,这是煤层注水驱赶瓦斯导致的结果。突出煤层掘进工作面深孔水力致裂后,后续掘进过程中煤体瓦斯含量呈现“低-高-低”的现象,验证了含瓦斯煤层水力致裂瓦斯驱赶现象的存在。水压裂缝扩展的不均匀性和瓦斯驱赶的时间效应会引起瓦斯驱赶的不均匀。在实践中针对瓦斯驱赶现象应该扬长避短。
     提出并实施了突出煤层深孔水力致裂驱赶与浅孔抽采消突技术。通过优化水力致裂钻孔布置、互为卸压孔和观测孔、深封孔短封孔长度等保障了突出煤层掘进头超前深孔水力致裂驱赶的安全性。实践证明,通过超前深孔水力致裂和浅孔瓦斯抽采相结合的方式,实现了突出煤层掘进头增透、弱化、瓦斯驱赶、抽采与注水湿润的有机结合,有效地提高了瓦斯抽采率和消除了突出危险性。薛湖矿突出煤层掘进节省了10个区域孔的工程量和施工时间,减少了瓦斯抽采时间,具有显著的技术经济效益。
Hydraulic fracturing for increasing permeability in coal seam is an effectivetechnological approach to gas extraction in low-permeability coal seam and outburst removalin outburst coal seam, especially in single low-permeability coal seam. Based on a lot ofexperiments and filed tests, this paper takes hydraulic fracturing driving for gassy coal seamas research object and carries out a systematic study on permeability improvement andmethane driven effect of hydraulic fracturing for low permeability coal seam with the methodof theoretical analysis, laboratory and site experiments, which is provided with importanttheoretical significance and widely engineering application prospects.
     Study on pore and fracture structure characteristics of coal seam are conducted byscanning electron microscope, mercury penetration test and hydrophilic experiment, etc. Theinternal structure of coal seam is constituted by jiont fissure, cleat and bedding, microfractureand pore levels. Those factors including soft coal seam, gas adsorption and deabsorptioneffect and developed natural fissures make hydraulic fracturing for coal-rock mass complex.In22coal seam of Xuehu colliery, fissures are very developed and most of them are1~10μmwidth. Average porosity is4.73%, average contact angle51.15°, wettability good. Porevolume mainly consists of micro pore and then small pore, superficial area is mainlycomposed of micro pore. If the porosity rises, fractal dimensions of skeleton reduce. Fractaldimensions of percolation are close related to porosity, namely that when the porosityincreases, fractal dimensions of percolation augment. Coal wettability affects capillarypressure, and then pressure difference of two phase interface when two kinds of immisciblefluid, water and gas, flow in pore and fracture system of coal mass during increasingpermeability and extracting gas by hydraulic fracturing for gassy coal seam.
     Research on crack propagation law of hydraulic fracturing for coal mass is performedwith the help of true triaxial hydraulic fracturing experiment system. Hydraulic crackpropagates like elliptic form on the whole and the propagation direction parallels to themaximum principal stress direction. The less the difference value of maximum and minimumprincipal stress is, the higher the rupture pressure of corresponding sample is. The less theprincipal stress difference of confining pressure is, the easier spatial turn of hydraulic crackoccurs. Hydraulic crack generates along drilling hole radial direction must satisfy that theminimum principal stress direction is parallel axial direction of drilling hole at first and localstress concentration exists along the axial direction of drilling hole fracturing segment. When the output volume of hydraulic fracturing rises, dynamic effect of crack propagation becomesobvious, hydraulic crack is easier to bifurcate and turn, crack surface roughness also increases.Hydraulic fracturing for gassy coal seam should adopt fast fracturing technology with bigoutput volume in order to create more hydraulic cracks with big range and then be beneficialto water drainage and gas extraction, etc.
     Fluid-solid coupling structure and permeability evolution law of coal mass is researchedon MTS test machine with transient pressure pulse method, including overall stress and strainof coal mass, test on permeability variation during confining pressure relief and seepagewater pressure difference change. The permeability of coal mass is close related to its internalstructure. Under the condition of fluid-solid coupling without damage, transient permeabilitycoefficient is proportional to hydraulic gradient as a whole. Depend on fluid-solid coupling,seepage water pressure can cause dislocation and closure of structural plane or make rupturedebris gather and block seepage channel. Under the condition of false triaxial and constantaxial compression, the deformation of coal sample is mainly radial expansion deformation inthe process of confining pressure relief. During confining pressure relief, volume straincomprehensively reflects coal sample damage of crack growth and expansion. When axialpressure is above uniaxial compressive strength and below triaxial compressive strength, coalsample typical curve of confining pressure relief and volume strain in the process ofconfining pressure relief contains three stages: elastic deformation recovery stage, plasticdeformation stage and failure stage. The variation rule of permeability coefficient accordswith coal sample volume strain. Coal sample damage and permeability coefficient variationhas confining pressure relief threshold and inflection point in exist. Above this threshold,permeability coefficient rises rapidly. Mechanical properties and initial stress state of coalsample determine the value of confining pressure relief threshold. When confining pressurerelief exceeds the inflection point, coal sample gets macro rupture and permeabilitycoefficient increases sharply.
     Gas driving phenomenon of hydraulic fracturing for gassy coal seam is found. Whenhydraulic fracturing for gassy coal seam creates hydraulic crack, pressure water permeatesboth sides of crack at the same time. Pore water pressure contacts free gas inside pore andfissure, leading to the variation of gas pressure and pore water in crack surrounding rock.Uneven distribution of pore water can generate pore pressure gradient. Free gas migrates fromthe location of high pore (gas) pressure to that of low pore (gas) pressure. Gas pressuregradient is the fundamental power for gas driving of hydraulic fracturing for gassy coal seam.Water injection into gassy coal seam underground mining often makes gas density in returncurrent increase to a certain extent, which is induced by gas driving under coal seam injection. After deep hole hydraulic fracturing in driving face of outburst coal seam is carried out, gascontent in coal mass presents the phenomenon of “low-high-low”, verifying the presence ofgas driving phenomenon of hydraulic fracturing for gassy coal seam. The inhomogeneity ofhydraulic crack propagation and time effect of gas driving can lead to the inhomogeneity ofgas driving. In practice, fostering strengths and circumventing weaknesses of gas drivingphenomenon is in demand.
     The technology of increasing permeability and removing outburst by hydraulicfracturing driving in deep hole and gas extraction in shallow hole of outburst coal seam isproposed and put into effect. By means of optimizing drilling hole arrangement of hydraulicfracturing, alternating pressure relief hole and observation hole, reasonably determining thedeep hole sealing position and short hole sealing length, the safety of hydraulic fracturingdriving in leading deep hole of tunneling place of outburst coal seam is guaranteed. Asexperience proves, in combination with hydraulic fracturing in deep hole and gas extractionin shallow hole, the technology of removing outburst by hydraulic fracturing driving inleading deep hole of tunneling place of outburst coal seam and gas extraction in shallow holerealizes the dynamic integration of permeability increasing, weakening, gas driving,extraction and water injection humidification, effectively improves gas extraction efficiencyand eliminates outburst danger. Tunneling driving in outburst coal seam for Xuehu collierysaves work amount and time of10regional holes, and reduces time of gas extraction, andobtains prominent technical and economic benefits.
引文
[1]张子敏.瓦斯地质学[M].北京:煤炭工业出版社,2011.
    [2]国家统计局能源统计司.中国能源统计年鉴2010[M].北京:中国统计出版社,2011.
    [3]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.
    [4]王海锋,程远平,吴冬梅,等.近距离上保护层开采工作面瓦斯涌出及瓦斯抽采参数优化[J].煤炭学报,2010,35(4):590-594.
    [5]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390.
    [6]赵阳升,杨栋,胡耀青,等.低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学报,2001,26(5):455-458.
    [7]林柏泉,吕有厂,李宝玉,等.高压磨料射流割缝技术及其在防突工程中的应用[J].煤炭学报,2007,32(9)959-963.
    [8]李晓红,卢义玉,赵瑜,等.高压脉冲水射流提高松软煤层透气性的研究[J].煤炭学报,2008,33(12):1386-1390.
    [9]刘明举,孔留安,郝富昌,等.水力冲孔技术在严重突出煤层中的应用[J].煤炭学报,2005,30(4):451-454.
    [10]吕有厂.穿层深孔控制爆破防治冲击型突出研究[J].采矿与安全工程学报,2008,25(3):337-340.
    [11]蔡峰,刘泽功,张朝举,等.高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J].煤炭学报,2007,32(5):499-503.
    [12]郭德勇,裴海波,宋建成,等.煤层深孔聚能爆破致裂增透机理研究[J].煤炭学报,2008,33(12):1381-1395.
    [13]张英华,倪文,尹根成.等.穿层孔水压爆破法提高煤层透气性的研究[J].煤炭学报,2004,29(3):298-302.
    [14] MT/T968-2005,煤裂隙描述方法[S].
    [15]张慧,李小彦,郝骑,等.中国煤的扫描电子显微镜研究[M].北京:地质出版社,2003.
    [16]罗颖都,朱春笙.如何正确计算煤的孔隙率[J].煤质技术,1994,(4):30-36.
    [17]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531-532.
    [18]张慧,李小彦.扫描电子显微镜在煤岩学上的应用[J].电子显微学报,2004,23(4):467-467.
    [19]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [20]姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学:地球科学,2010,40(11):1598-1607.
    [21]宫伟力,张艳松,安里千.基于图像分割的煤岩孔隙多尺度分形特征[J].煤炭科学技术,2008,36(6):28-32.
    [22]宫伟力,李晨.煤岩结构多尺度各向异性特征的SEM图像分析[J].岩石力学与工程学报,2010,29(增1):2681-2689.
    [23]杨更社.岩石损伤检测技术及其进展[J].长安大学学报(自然科学版),2003,3(6):47-55.
    [24]吴立新,王金庄,孟顺利.煤岩损伤扩展规律的即时压缩SEM研究[J].岩石力学与工程学报,1998,17(1):9-15.
    [25]吴俊.微孔隙特征及其与油气运移储集关系的研究[J].中国科学(B辑),1993,23(1):77-84.
    [26]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(增刊I):51-55.
    [27]傅雪海,秦勇,薛秀谦,等.煤储层孔、裂隙系统分形研究[J].中国矿业大学学报(自然科学版),2001,30(3):225-228.
    [28]朱卫华,印友法,蒋林华,等.硅粉水泥石中微孔孔径分布及其对强度的影响[J].建筑材料学报,2004,7(1):14-18.
    [29]刘晓鹏,胡晓新.近五年核磁共振测井在储集层孔隙结构评价中的若干进展[J].地球物理学进展,2O09,24(6):194-220.
    [30]谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比[J].天然气工业,2006,26(12):100-102.
    [31]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [32]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探,2001,29(5):28-30.
    [33]谢晓永,唐洪明,孟英峰,等.气体泡压法在测试储集层孔隙结构中的应用[J].西南石油大学学报(自然科学版),2009,3l(5):17-20.
    [34]朱育平.小角X射线散射-理论、测试、计算及应用[M].北京:化学工业出版社,2008.
    [35]赵秀,朱玉斌. SAXS方法及其在多孔材料研究中的应用[J].山西化工,2002,(22)1:65-67.
    [36] A.P.Radlinski, M.Mastalerz, A.L.Hinde. Application of SAXS and SANS in evaluation of porosity,pore size distribution and surface area of coal[J]. International Journal of Coal Geology,2004,59:245-271.
    [37]李志宏,吴东,顾永达.煤及半焦孔隙结构的SAXS研究[J].煤炭转化,1999,22(增刊):134-135.
    [38]韩德馨,任德贻,王延斌,等.中国煤岩学[M].上海华东师范大学出版社,1996.
    [39]张井,于冰,唐家祥.瓦斯突出煤层孔隙结构研究[J].中国煤田地质,1996,8(2):71-74.
    [40] J.H. Strange, J. Mitchell. Characterising Porous Media[J]. Lect. Notes Phys.,2006,684:407-430.
    [41]赵杰,姜亦忠,王伟男,等.用核磁共振技术确定岩石孔隙结构的实验研究[J].测井技术,2003,27(3):185-188.
    [42]肖立志.核磁共振成像测井与岩石核磁共振及其应用[M].北京:科学出版社,1998:22-41.
    [43]肖立志,柴细元,孙宝喜,等.核磁共振测井资料解释与应用导论[M].北京:石油工业出版社,2001:87-100.
    [44]刘堂宴,王绍民,傅容珊,等.核磁共振谱的岩石孔喉结构分析[J].石油地球物理勘探,2003,38(3):328-333.
    [45]何雨丹,毛志强,肖立志,等.利用核磁共振T2分布构造毛管压力曲线的新方法[J].吉林大学学报(地球科学版),2005,35(2):177-181.
    [46]何雨丹,毛志强,肖立志,等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,48(2):373-378.
    [47]邵维志,丁娱娇,刘亚,等.核磁共振测井在储集层孔隙结构评价中的应用[J].测井技术,2009,33(1):52-56.
    [48]运华云,赵文杰,周灿灿,等.利用T2分布进行岩石孔隙结构研究[J].测井技术,2002,26(1):18-21.
    [49]张蓬洲,李丽云,叶朝辉.用固体高分辨核磁共振研究煤结构,I我国一些煤的结构特征[J].燃料化学学报,1993,21(3):310-315.
    [50]张蓬洲,李丽云,叶朝辉.用固体高分辨核磁共振研究煤结构,煤、褐煤及其腐植酸结构特征[J].燃料化学学报,1993,21(3):327-331.
    [51]唐巨鹏,潘一山,李成全.利用核磁共振成像技术研究煤层气渗流规律[J].中国科学技术大学学报,2004,34(增刊):423-427.
    [52]石强,潘一山.煤体内部裂隙和流体通道分析的核磁共振成像方法研究[J].煤矿开采,2005,10(6):6-10.
    [53]赵海燕,宫伟力.基于图像分割的煤岩割理CT图像各向异性特征[J].煤田地质与勘探,2009,37(6):14-18.
    [54]任建喜,葛修润.岩石蠕变损伤扩展机理细观分析初探[J].岩石力学与工程学报,2001,20(增1):871-874.
    [55]葛修润,任建喜,蒲毅彬,等.岩石细观损伤演化规律的CT实时试验研究[J].中国科学E,2000,30(2):104-111.
    [56]葛修润,任建喜,蒲毅彬,等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195.
    [57]任建喜,葛修润,蒲毅彬.节理岩石卸载损伤破坏过程CT实时检测[J].岩土力学,2002,23(5):575-578.
    [58]杨更社,张长庆.冻融循环岩石损伤扩展研究初探[J].西安矿业学院学报,1999,18(1):1-6.
    [59]杨更社,张全胜,任建喜.冻结速度对铜川砂岩损伤CT数变化规律研究[J].岩石力学与工程学报,2004,23(24):4099-4104.
    [60]杨更社,张全胜,蒲毅彬.冻结温度影响下岩石细观损伤演化CT扫描[J].长安大学学报(自然科学版),2004,24(6)43-46.
    [61]李建胜,王东,康天合.基于显微CT试验的岩石孔隙结构算法研究[J].岩土工程学报,2010,32(11):1703-1708.
    [62]杨更社,谢定义,张长庆,等.煤岩体损伤特性的CT检测[J].力学与实践,1996,18(2):19-23.
    [63]葛修润,任建喜,蒲毅彬,等.煤岩三轴细观损伤演化规律的CT动态实验[J].岩石力学与工程学报,1999,l8(5):497-502.
    [64]尹光志,代高飞,皮文丽,等.单轴压缩荷载作用下煤岩损伤演化规律的CT实验[J].重庆大学学报,2003,26(6):96-100.
    [65]杨更社,谢定义,张长庆,等.煤岩体损伤特性的CT检测[J].力学与实践,1996,18(2):19-23.
    [66]毛灵涛,安里千,王志刚,等.煤样力学特性与内部裂隙演化关系CT实验研究[J].辽宁工程技术大学学报(自然科学版),2010,29(3):408-411.
    [67]孙加华,肖洪伟,幺忠文,等.声电成像测井技术在储层裂缝识别中的应用[J].大庆石油地质与开发,2006,25(3):100-103.
    [68]李铭,李艳华,楚泽涵.声频谱测井方法研究进展[J].地球物理学进展,2003,18(2):229-233.
    [69]韩绪山,张景考,刘振祥,等.煤层裂缝的声波扫描成像测量[J].煤田地质与勘探,2001,29(5):56-57.
    [70]王恩元,何学秋,刘贞堂,等.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004,29(3):189-292.
    [71]纪广洪.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004.
    [72]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].徐州:中国矿业大学,1997.
    [73]李西蒙,黄炳香,刘长友,等.压剪破坏条件下型煤的声发射特征研究[J].湖南科技大学学报(自然科学版),2010,25(1):22-26.
    [74]刘保县,赵宝云,姜永东.单轴压缩煤岩变形损伤及声发射特性研究[J].地下空间与工程学报,2007,3(4):647-650.
    [75]刘保县,黄敬林,王泽云.单轴压缩煤岩损伤演化及声发射特性研究[J].岩石力学与工程学报,2009,28(增1):3234-3238.
    [76]苏承东,高保彬,南华,等.不同应力路径下煤样变形破坏过程声发射特征的试验研究[J].岩石力学与工程学报,2009,28(4):757-766.
    [77]来兴平,吕兆海,张勇,等.不同加载模式下煤样损伤与变形声发射特征对比分析[J].岩石力学与工程学报,2008,27(增2):3521-3527.
    [78]刘保县,李东凯,赵宝云.煤岩卸荷变形损伤及声发射特性[J].土木建筑与环境工程,2009,31(2):57-61.
    [79]曹树刚,刘延保,张立强,等.突出煤体单轴压缩和蠕变状态下的声发射对比试验[J].煤炭学报,2007,32(12):1264-1268.
    [80]曹树刚,刘延保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(增1):2794-2799.
    [81]徐涛,杨天鸿,唐春安.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,25(l0):1569-1574.
    [82]文光才,杨慧明,邹银辉.含瓦斯煤体声发射应力波传播规律理论研究[J].煤炭学报,2008,33(3):295-298.
    [83]聂百胜,何学秋,王恩元,等.煤体剪切破坏过程电磁辐射与声发射研究[J].中国矿业大学学报,2002,31(6):9-11.
    [84]窦林名,何学秋,王恩元,等.由煤岩变形冲击破坏所产生的电磁辐射[J].清华大学学报(自然科学版),200l,41(12):86-88.
    [85]王恩元,何学秋.煤岩变形破裂电磁辐射实验研究[J].地球物理学报,2000,43(1):131-137.
    [86]聂百胜.含瓦斯煤岩力电效应及机理的研究[D].徐州:中国矿业大学,2001.
    [87](苏联)B.B.霍多特.煤与瓦斯突出[M].宋士钊王佑安译.北京:中国工业出版社,1966.
    [88] Gan H,Nandi S P,Walker P L. Nature of porosity in American coals[J]. Fuel,1972,51:272-277.
    [89]刘常洪.煤孔结构特征的试验研究[J].煤矿安全,1993,8:1-5.
    [90]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(增刊I):51-55.
    [91]苏现波.煤层气储集层的孔隙特征[J].焦作工学院学报,1998,17(1):6-11.
    [92]李相臣,康毅力.煤层气储层微观结构特征及研究方法进展[J].中国煤层气,2010,7(2):13-17.
    [93]李强,欧成华,徐乐,等.我国煤岩储层孔-裂隙结构研究进展[J].煤,2008,17(7):1-3.
    [94] Jüntgen H. Research for future in situ conversion of coal[J]. Fuel,1987,66:443-453.
    [95]郝琪.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987,4:51-56.
    [96]王生维,陈钟惠,张明.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学-中国地质大学学报,1995,20(5):557-563.
    [97]朱兴珊.煤层孔隙特征对抽采煤层气影响[J].中国煤层气,1996,1:37-39.
    [98]苏现波,煤层气储集层的孔隙特征[J].焦作工学院学报,1998,17(1):6-11.
    [99]张素新,肖红艳.煤储层中微孔隙和微裂隙的扫描电镜研究[J].电子显微学报,2000,19(4):531-532.
    [100]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [101]张慧,李小彦,郝骑,等.中国煤的扫描电子显微镜研究[M].北京:地质出版社,2003.
    [102]陈同俊. P波方位AVO理论及煤层裂隙探测技术[D].徐州:中国矿业大学,2009.
    [103]李强,欧成华,徐乐,等.我国煤岩储层孔-裂隙结构研究进展[J].煤,2008,17(7):70-73.
    [104]苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤田地质与勘探,2002,30(4):21-24.
    [105]刘洪林,王红岩,张建博.煤储层割理评价方法[J].天然气工业,2000,20(4):27-29.
    [106]钟玲文.煤内生裂隙的成因[J].中国煤田地质,2004,16(3):6-9.
    [107]张慧,王晓刚,员争荣,等.煤中显微裂隙的成因类型及其研究意义[J].岩石矿物学杂志,2002,21(3):278-274.
    [108]王生维,张明,庄小丽.煤储层裂隙形成机理及其研究意义[J].地球科学-中国地质大学学报,1996,21(6):637-640.
    [109]王生维,陈钟惠,张明.煤基岩块孔裂隙特征及其在煤层气产出中的意义[J].地球科学-中国地质大学学报,1995,20(5):557-563.
    [110] Ammsove I I, Eremin I V. Fracturing in coal[M] Moscow:IIZDAT Publishers, Office of TechnicalServices, Washington, DC,1963.
    [111] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bedreservoir[A]In:Coalbed Methane and Coal Geology [C] Edited by R.Gayer, Iharris. GeologicalSociety Special Publication,1996,197-212.
    [112]毕建军,苏现波,韩德馨,等.煤层割理与煤级的关系[J].煤炭学报,2001,26(4):346-349.
    [113] Close J C. Natural fracture in coal. AAPG,1993,(38):119-132.
    [114]张彦平,等.国外煤层甲烷开发技术译文集.北京:石油工业出版社,1996.
    [115]王生维,陈钟惠.煤储层孔隙、裂隙系统研究进展[J].地质科技情报,1995,14(1):53-59.
    [116] Friesen W I, Mikula R J. Fractal dimensions of coal particles[J]. Journal of Colloid and InterfaceScience,1987,20(1):263-271.
    [117]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [118]王恩元,何学秋.煤岩等多孔介质的分形结构[J].焦作工学院学报,1996,15(4):19-23.
    [119]赵爱红,廖毅,唐修义.煤的孔隙结构分形定量研究[J].煤炭学报,1998,23(4):439-442.
    [120]王恩元,何学秋.煤层孔隙裂隙系统的分形描述及其应用[J].阜新矿业学院学报(自然科学版),1996,15(4):107-110.
    [121]张玉涛,王德明,仲晓星.煤孔隙分形特征及其随温度的变化规律[J].煤炭科学技术,2007,35(11):73-76.
    [122]康天合,赵阳升,靳钟铭.煤体裂隙尺度分布的分形研究[J].煤炭学报,1995,20(4):393-398.
    [123]谢和平,周宏伟.岩体断裂面渗流特性的分形研究[J].煤炭学报,1998,23(6):585-589.
    [124]谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003,23(4):1-9.
    [125] King, Gregory R. Numerical simulation of the simultaneous flow of methane and water through dualporosity coal seams during the degasification process [D]. The Pennsylvania State University,1985.
    [126] Airey.E.M. Gas emission from broken coal, an experimental theoretical investigation[J].International Journal of Rock Mechanics and Mining Sciences,1968,(5):475-494.
    [127]马东民.煤层气吸附解吸机理研究[D].西安科技大学,2008.
    [128] King.G.R., Ertekin, T.M.. A survey of mathematical models related to methane production from coalseams. Part II: non-equilibrium sorption models.[C] Proceedings of the1989Coalbed MethaneSymposium. The University of Alabama/Tuscaloosa,1989,139-155.
    [129]聂百胜,郭勇义,吴世跃,等.煤粒瓦斯扩散的理论模型及其解析解[J].中国矿业大学学报,2000,30(1):19-22.
    [130]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1997.
    [131] Bumb,A.C., MeKee.C.R.. Gas-well testing in the presence of desorption for coalbed methane anddevoman shale.The SPE/GRI/DOE Unconventional Gas Techonology Symposium. Louisville,Kentacky,1986.
    [132]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [133]孙培德,鲜学福.煤层瓦斯渗流力学的研究进展[J].焦作工学院学报(自然科学版),2001,20(3):161-167.
    [134]苏现波.煤层气地质学与勘探开发[M].科学出版社,2000.
    [135]彭守建,许江,陶云奇,等.地球物理场中煤岩瓦斯渗流研究现状及展望[J].地球物理学进展,2009,24(2):558-564.
    [136]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,(1):21-28.
    [137]赵阳升,胡耀青,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [138]董方庭等著.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001:1-5.
    [139] Zhou, S.N., Lin, B.Q.. The Theory of Gas Flow and storage in Coal Seams. China Coal IndustryPublishing House, Beijing,1998.(in Chinese).
    [140] Zhu, W.C., Liu, J., Sheng, J.C., Elsworth, D.. Analysis of coupled gas flow and deformation processwith desorption and Klinkenberg effects in coal seams. International Journal of Rock Mechanics andMining Sciences,2007,44,971-980.
    [141]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [142]华安增,孔园波,李世平,等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392.
    [143]郑士利,冯夏庭,张传庆,等.不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(9):1812-1814.
    [144] PALMER ID, VAZIRI HH. Modeling of openhole cavity completions in coalbed methane wells[J].IN SITU,1995,19(3):275-298.
    [145]陈颗,姚孝新,耿乃光.应力途径、岩石的强度和体积膨胀[J].中国科学,1979,(11):1093-1100.
    [146] Hubbert, M.K.. Darcy's law and the field equations of the flow of underground fluids. HydrologicalSciences Journal,1957,(2):23-59.
    [147]张我华,薛新华.孔隙介质的渗透特性初探[J].岩土力学,2009,30(5):1357-1360.
    [148]杨林德,闫小波,刘成学.软岩渗透性、应变及层理关系的试验研究[J].岩石力学与工程学报,2007,26(3):474-475.
    [149] Morrow C. A., Lockner D. A.. Permeability differences between surface‐derived and deep drillholecore samples[J]. Geophys. Res. Lett.,21(19),2151–2154.
    [150]王恩志,张文韶,韩小妹,等.低渗透岩石在围压作用下的耦合渗透实验[J].清华大学学报(自然科学版),2005,45(6):764-767.
    [151]黄远志,王恩志.低渗透岩石渗透率与有效围压关系的实验研究[J].清华大学学报(自然科学版),2007,47(3):341-343.
    [152] Yang T.H., Xu T., Liu H.Y., et al. Stress–damage–flow coupling model and its application to pressurerelief coal bed methane in deep coal seam[J]. International Journal of Coal Geology,2011,86:357-366.
    [153]黄炳香,邓广哲,刘长友.煤岩体水力致裂弱化技术及其进展[J].中国工程科学,2007,9(4):83-88.
    [154] Hubbert, M.K., Willis, D.G. Mechanics of hydraulic fracturing. Trans. AIME210,1957,153–166.
    [155] A. G. Olovyanny. Mathematical modeling of hydraulic fracturing in coal seams[J]. Journal of MiningScience,2005,41(1):61-67.
    [156]黄炳香.煤岩体水力致裂弱化的理论与应用研究[D].中国矿业大学博士学位论文,2009.
    [157] Hubbret M.K., Willis D G. Mechanics of hydraulic fracturing, Trans Am Inst Min Engre[J].1957,210:153-168.
    [158] Detournay E, Carbonell R. Fracture mechanics analysis of break-down process in minifrac or leak oftests[A]. Proceeding of Eu-rock’94[C]. Rotterdam: Balkema,1994,399-407.
    [159] Zhao Z, Kim H, Haimson B. Hydraulic fracturing initiation in granite [A]. Rock Mechanics [M].Aubertin, Hassani and Mitri(eds). Balkema Publishers, Rotterdam,1996:1279-1284.
    [160] M.M.Hossain, M.K.Rahman, S.S.Rahman. A comprehensive monograph for hydrnulic fractureinitiation from deviated wellbores under arbitrary stress regimes[J]. SPE,54360,1999.
    [161] M.M.Hossain, M.k.Rahman. Hydraulic fracture initiation and propagation: roles of wellboretrajectory, perforation and stress regmes[J]. J.Pet.Sci.Eng,2000,(27):129-149.
    [162] I. Berchenko, E. Detournay, N. Chandler, etal. An in-situ thermo-hydraulic experiment in a saturatedgranite I: design and results[J]. International Journal of Rock Mechanics&Mining Sciences,2004,41:1377-1394.
    [163] E. Detournay, T. Senjuntichai, I. Berchenko. An in situ thermo–hydraulic experiment in a saturatedgranite II: analysis and parameter estimation[J]. International Journal of Rock Mechanics&MiningSciences,2004,41:1395-1411.
    [164] B.C. Haimson. Hydraulic fracturing and rock characterization[J]. International Journal of RockMechanics and Mining Sciences,2004,41(3):1-6.
    [165] Andrei Sergiu Popa. Automatic hydraulic fracturing design for low permeability reservoirs usingrrtificial intelligence[D]. Doctor dissertation of West Virginia University,2004.
    [166] Morten Gj nnes, Antonio M.G.L. Cruz, Per Horsrud, et al. Leak-off tests for horizontal stressdetermination?[J]. Journal of Petroleum Science and Engineering,1998,20:63-71.
    [167] Andrew R. Piggott. Static and dynamic calculation of formation fluid displacement induced byhydraulic fracturing[J]. Appl. Math. Modelling,1996,20:714-718.
    [168] Riaz Khan. A study of the mechanisms of internal cake formation during drilling, well completionand hydraulic fracturing operations[D]. Dissertation of graduate studies in University of Alberta,2004.
    [169] Takatoshi Ito. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media:Rock[J]. Engineering Fracture Mechanics,2008,75:1753-1762.
    [170] Ruiting Wu. Some Fundamental Mechanisms of Hydraulic Fracturing[D]. Doctor thesis ofphilosophy in Georgia Institute of Technology,2006.
    [171] P. C. PAPANASTASIOU. A coupled elastoplastic hydraulic fracturing model[J]. InternationalJournal of Rock Mechanics&Mining Sciences,1997,34(3/4):240-431.
    [172] ZIFENG MA. Experimental studies of rock fracture behavior related to hydraulic fracture[D]. Doctorthesis of philosophy in material engineering of the University of Illinois at Chicago,2000.
    [173] B. Bohloli, C.J. de Pater. Experimental study on hydraulic fracturing of soft rocks: Influence of fluidrheology and confining stress[J]. Journal of Petroleum Science and Engineering,2006,53:1-12.
    [174] B. Legarth, E. Huenges, G. Zimmermann. Hydraulic fracturing in a sedimentary geothermal reservoir:Results and implications[J]. International Journal of Rock Mechanics&Mining Sciences,2005,42:1028-1041.
    [175] IVAN GIL. Hydraulic fracturing of poorly consolidated formations: considerations on rockproperties and failure mechanisms[D]. Doctor dissertation of philosophy at the University ofOKLAHOMA,2005.
    [176] Hong Chang. Hydraulic fracturing in particulate materials[D]. Doctor thesis of philosophy inGeorgia Institute of Technology,2004.
    [177] Hyun Moon, B.S., M.S. Mathematical modeling and simulation analysis of hydraulic fracturepropagation in three-layered poro-elastic media[D]. Doctor thesis of philosophy in the Ohio StateUniversity,1992.
    [178] Andrew P. Bunger. Near-surface hydraulic fracture[D]. Minneapolis: Doctor thesis of philosophy atUniversity of Minnesota,2005.
    [179] Hanson M E,Anderson G D, Shaffer, R J.Theoretical and experimental research on hydraulicfracturing. Transactions of the ASME. Journal of Energy Resources Technology[J].1980,102(2):92-98.
    [180] Fowler AC., Scott D R. Hydraulic crack propagation in a porous medium[J]. Geophysical JournalInternational,1996,127(3):595-604.
    [181] Juncal Fan. Computer modeling of SCC in gas pipe steel and hydraulic fracture in stratifiedporo-elastic media[D]. Thesis for the degree of doctor of philosophy in materials engineering of theUniversity of Illinois at Chicago,2001.
    [182] Philippe R.B. Devlooa, Paulo Dore Fernandesb, S onia M. Gomesc, et al. A finite element model forthree dimensional hydraulic fracturing[J]. Mathematics and Computers in Simulation,2006,73:142-155.
    [183] J. Adachi, E. Siebrits, A. Peirce, et al. Computer simulation of hydraulic fractures[J]. InternationalJournal of Rock Mechanics&Mining Sciences,2007,44:739-757.
    [184] Matthew Jacklin Kennedy. Finite element calculations of hydraulic fracturing during horizontaldirectional drilling[D]. Doctor thesis of master of science(engineering)in Queen’s University,2004.
    [185] Yaochen Li, B.S., M.S. Finite element simulation of hydraulic fracturing in porous media[D].Indiana: Doctor thesis of philosophy in University of Notre Dame,1991.
    [186] AHMAD GHASSEMI. Three-dimensional poroelastic hydraulic fracture simulation using thedisplacement discontinuity method[D]. Norman:Doctor dissertation of geological engineering inUniversity of Oklahoma,1996.
    [187] Teufel L W, Clark J A. Hydraulic fracture propagation in layered rock: Experimental studies offracture containment[J]. Society of Petroleum Engineers Journal,1984,24(1):19-32.
    [188] Roegiers J C, BenNaceur, K. Stress relief by hydraulic fracturing-dream or reality?[C]. Proc ISRMInternational Symposium on Static and Dynamic Considerations in Rock Engineering, Swaziland,10–12September,1990, P257–263. Publ Rotterdam: A A Balkema,1990.
    [189] Bingxiang HUANG, Changyou LIU, Junhui FU, et al. Hydraulic fracturing after water pressurecontrol blasting for increased fracturing[J]. International Journal of Rock Mechanics and MiningSciences,2011,48(6):976-983.
    [190] Deily, F.H., Owens, T.C. Stress around a wellbore. SPE2557,44th SPE Ann. Fall Meeting of AIMEheld in Denver, CO,1969, Sep.28–Oct.1.
    [191] Jinsong Huang, D.V.Griffiths, Sau-WaiWong. Initiation pressure, location and orientation ofhydraulic fracture[J]. International Journal of Rock Mechanics&Mining Sciences,2012,49(1):59-67.
    [192] GuangQing Zhang, Mian Chen. Dynamic fracture propagation in hydraulic re-fracturing[J]. Journalof Petroleum Science and Engineering,2010,(70):266-272.
    [193] P. C. Papanastasiou. A coupled elastoplastic hydraulic fracturing model[J]. Int. J. Rock Mech.&Min.Sci.,1997,34(3-4):240-254.
    [194] B. LENOACH. The crack tip solution for hydraulic fracturing in a permeable solid[J]. J. Mech. Phys.Solids,1995,43(7):1025-1043.
    [195] Tang CA, Tham LG, Lee PKK, eta1. Coupling analysis of flow, stress and damage(FSD) in rockfailure[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):477-489.
    [196] Takatoshi Ito. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media:Rock[J]. Engineering Fracture Mechanics,2008,75:1753-1762.
    [197] M.K. Rahman, A.H. Joarder. Investigating production-induced stress change at fracture tips:Implications for a novel hydraulic fracturing technique[J]. Journal of Petroleum Science andEngineering,2006,51:185-196.
    [198] Behrmaan, L.A., Elbel, J.L. Effect of perforations on fracture initiation. J. Pet. Technol.,1991, May,608–615.
    [199] Abass, H.H, Brumley, J.L., Hedayati, S., Gazi, N. Oriented perforations—a rock mechanics view.SPE28555, SPE Middle East Oil Show and Conf., Bahrain,1995, Mar,11–14.
    [200]张广清,陈勉,赵燕波.新井定向射孔转向压裂裂缝起裂与延伸机理研究[J].石油学报,2008,29(1):116-119.
    [201] O. I. Chernov, I. I. Barsukov, G. E. Posokhov. Oriented hydraulic fracturing of a mass of rocksenclosing “international” diamond pipe[J]. Journal of Mining Science,1997,33(6):582-586.
    [202] Lekontsev YM, Sazhin PV. Application of the directional hydraulic fracturing at BerezovskayaMine[J]. Journal of Mining Science,2008,44(3):253-258.
    [203] Narendran, V.M., Cleary, M.P. Analysis of growth and interaction of multiple hydraulic fractures.SPE12272, Reservoir Simulation Symposium, San Francisco, CA,1983, Nov.15–18.
    [204]罗天雨.水力压裂多裂缝基础理论研究[D].西南石油大学博士学位论文,2006.
    [205]李根生,黄中伟,田守嶒,等.水力喷射压裂理论与应用[M].科学出版社,2011,92-113.
    [206]姜浒,陈勉,张广清,等.定向射孔对水力裂缝起裂与延伸的影响[J].岩石力学与工程学报,2009,28(7):1321-1326.
    [207]周健,陈勉,金衍,等.裂缝性储层水力裂缝扩展机理试验研究[J].石油学报,2007,28(5):109-113.
    [208]黄炳香,程庆迎,刘长友,等.煤岩体水力致裂理论及工艺技术框架[J].采矿与安全工程学报,2011,28(2):167-173.
    [209]黄炳香.坚硬煤岩体水力致裂裂缝扩展特征研究[D].西安科技大学学位论文,2004.
    [210]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [211]达尔恩.多孔介质-流体渗移与孔隙结构[M].北京:石油工业出版社,1990.
    [212] Morrow,N. R. Capillary Pressure Correlations For Uniformly Wetted Porous Media[J].CPTJ.,1976,15(4):286~295.
    [213]仵彦卿,张卓元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [214] James G B. Exact effective-stress rules in rock mechanics[J]. Physical Review A,1992,46(6):3307-3311.
    [215]赵阳升,冯增朝,文再明.煤体瓦斯愈渗机理与研究方法[J].煤炭学报,2004,29(3):293-297.
    [216] RANDOLPH P L, SOEDER D J. Porosity and permeability of fight sands[R]. SPE12836,1984:13-15.
    [217] MORROW N R, GATHER M E, BUCKLEYJ S. Effects of drying on absolute and relativepermeabilities of low permeability gas sands[R]. SPE21880,1991:15-17.
    [218]胡耀青,赵阳升,杨栋,等.温度对褐煤渗透特性影响的试验研究[J].岩石力学与工程学报,2010,29(8):1585-1590.
    [219]胡耀青,赵阳升,杨栋,等.煤体的渗透性与裂隙分维的关系[J].岩石力学与工程学报,2002,21(10):1452-1456.
    [220]马占国,缪协兴,陈占清,等.破碎煤体渗透特性的试验研究[J].岩土力学,2009,30(4):985-988.
    [221]马光第,赵阳升,段康廉.煤体渗透性及其应用的研究[J].山西矿业学院学报,1990,8(3):145-155.
    [222]方志明,李小春,白冰.煤岩吸附量–变形–渗透系数同时测量方法研究[J].岩石力学与工程学报,2009,28(9):1828-1833.
    [223]黄炳香,程庆迎,刘长友.裂隙水压力对煤岩体细观结构破坏分析[J].湖南科技大学学报(自然科学版),2009,24(1):1-4.
    [224] Brace W F, Walsh J B, Frangos W T. Permeability of granite under high pressure[J]. J. Geophy. Res.1968,73(6):2225-2236.
    [225]李小春,高桥学,吴智深,等.瞬态压力脉冲法及其在岩石三轴试验中的应用[J].岩石力学与工程学报,2001,20(增刊):1725-1733.
    [226]陈钟祥,刘慈群.双重孔隙介质中二相驱替理论[J].力学学报,1980,(2):109-119.
    [227] M.I.J. van Dijke, K.S. Sorbie. Pore-scale modelling of three-phase flow in mixed-wet porous media:multiple displacement chains[J]. Journal of Petroleum Science and Engineering,2003,39:201–216.
    [228] Zhao Weishu, Ioannidis Marios A. Gas exsolution and flow during supersaturated water injection inporous media: I. Pore network modeling[J]. Advances in Water Resources,2011,34:2-14.
    [229] Khalil Ziad, Saad Mazen. On a fully nonlinear degenerate parabolic system modeling immisciblegas-water displacement in porous media[J]. Nonlinear Analysis: Real World Applications,2011,12:1591-1615.
    [230] Somerton WH. Effect of Stress on Permeability of Coal. Int. J. Rock Mech. Min. sci.,1974,12:129-145.
    [231]赵阳升,杨栋,郑少河,等.三维应力作用下岩石裂缝水渗流物性规律的实验研究[J].中国科学E辑,1999,29(1):82-86.
    [232]程庆迎,黄炳香,李增华,等.煤体固液耦合的结构及渗透性演变规律[J].采矿与安全工程学报,2012,29(3):400-406.
    [233] Yang Z B, Qin Y, Wang Z F, et al. Desorption-diffusion model and lost gas quantity estimation ofcoalbed methane from coal core under drilling fluid medium[J]. Sci China Earth Sci,2010,40(2):171-177.
    [234] Stuart Day, Richard Sakurovs, Steve Weir. Supercritical gas sorption on moist coals[J]. InternationalJournal of Coal Geology,2008,74:203-214.
    [235] Day Stuart, Fry Robyn, Sakurovs Richard. Swelling of moist coal in carbon dioxide and methane[J].International Journal of Coal Geology,2011,86:197-203.
    [236] Fokker Peter A., Verga Francesca. Application of harmonic pulse testing to water–oil displacement[J].Journal of Petroleum Science and Engineering,2011,79:125–134.
    [237] Amaziane B., Antontsev S., Pankratov L. Time of complete displacement of an immisciblecompressible fluid by water in porous media: Application to gas migration in a deep nuclear wasterepository[J]. Nonlinear Analysis: Real World Applications,2012, doi:10.1016/j.nonrwa.2012.01.009.
    [238] Li Fen, Hou Jian, Qiu Maoxin, et al. CT experiments and image processing for the water-oildisplacement at pore scale[J]. Procedia Engineering,2012,29:3831-3835.
    [239] Nicot Jean-Philippe, Hovorka Susan D., Choi Jong-Won. Investigation of water displacementfollowing large CO2sequestration operations[J]. Energy Procedia,2009,1:4411-4418.
    [240] Zhao Yangsheng, Hu Yaoqing, Yang Dong. An experimental research on the seepage law of two-phase fluid of gas-liquid in rock fracture [A].9th Int. Congress of rock mechanics [C]. Paris,1999.805-807.
    [241] Chen Zhongxiang, Chen Yuguo. Fluid displacement in a medium with double-porosity in thegravitational field[J]. Acta Petrolei Sinica,1981,2(4):39-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700