用户名: 密码: 验证码:
膨胀颗粒污泥床(EGSB)反应器的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对肠衣废水的水质进行了分析,确定采用厌氧—好氧处理工艺。厌氧—好氧组合工艺能高效地处理高浓度难降解的肠衣废水,其总COD去除率达95.0%。厌氧膨胀颗粒污泥床(EGSB)反应器处理肠衣废水可以去除废水中绝大部分的有机污染物。EGSB反应器的适宜表面上升流速为1.60m/h~2.62m/h,最高容积负荷(VLR)为310.24kgCOD/m~3·d。厌氧反应器内的颗粒污泥性质发生了明显变化,颗粒污泥粒径分布主要集中在0.9~2.0mm范围内,最大的颗粒污泥直径有3.5mm左右。使用普通活性污泥法后续处理EGSB反应器的出水亦有较好的处理效果,其最佳水力停留时间为48h。
After monitoring the qualities of sausage wastewater, the best wastewater treating process was determined. The anaerobic process combined with aerobic biochemical process could degrade the high concentration sausage wastewater effectively, the Chemical Organic Demand (COD) is 95.0%. The Expanded Granular Sludge Blanket (EGSB) reactor could remove the most part of the organic contamination from the wastewater. The optimal range of superficial liquid velocity (Vup) was 1.60~2.62 m/h in the EGSB reactor, and the highest volume organic loading rate (VLR) of EGSB was 310.24 kgCOD/m3 ?d. During the operational process of EGSB reactor treating sausage wastewater, the characteristics of granular sludge changed greatly. The granular diameter was ranged in 0.9~2.0mm, the max granular diameter was over 3.5 mm. As the secondary treatment process, the general active sludge process could also get good removal rate of the effluent of EGSB reactor, and the optimal hydraulic retention time (HRT) was 48 h.
引文
[1] 唐受印,戴友芝等编著.食品工业废水处理.北京:化学工业出版社,2001:176~180
    [2] 杨建生,陈祖义等.厌氧-好氧二步法处理肠衣废水的研究.上海环境科学.1988,7(9):11~14
    [3] 陈坚主编.环境生物技术.北京:中国轻工业出版社,1999:127~128
    [4] 贺延龄编著.废水的厌氧生物处理.北京:中国轻工业出版社,1998:5~8,178~182
    [5] 王凯军编著.低浓度污水厌氧—水解处理工艺.北京:环境科学出版社,1991:10~121
    [6] Schroepfer G L et al.. The Anaerobic Contact Process as Applied to Packing House Wastes[J]. Sewage and Ind. Wastes, 1995,27(4):460~486
    [7] Young J, McCarty P L. Treatment of domestic strength wastewater with anaerobic hybrid reactors[J]. Water Pollute Control Fed, 1969, 41: 160~173
    [8] Guiot S R, Van Der Berg L.Performance and biomass retention of an upflow anaerobic reactor combining a sludge blanket and filter[J]. Biotechnol. Lett., 1984(6):161~164
    [9] Lettinga G.,Field J., Van Lier J., et al. Advanced anaerobic wastewater treatment in the near future[J]. Wat. Sci. Tech., 1997,35(10):5~12
    [10] De Man, A. W. A. et al. 5th Int. Symp. Anaerobic Digestion. Bologan, Italy. 1988: 735~738
    [11] Van der Last, A. R. M. and G. lettinga. 6th Int. Symp. Anaerobic Digestion. Sao Paulo, Brazil. 1991: 153~154
    [12] Dague R R. Anaerobic activated sludge[J]. J. War. Poll. Control Fed., 1996,38(2): 220~226
    [13] Lettinga G. Anaerobic treatment of sewage and low strength wastewater[C]. Proc of the 2nd Int. Sypm. on Anaerobic Digestion, 1981.
    [14] 裘湛,张之源.高速厌氧反应器处理城市污水的现状与发展.合肥工业大学学报(自然科学版).2002,25(1):117~122
    
    
    [15] 陈坚,卫功元.新型高效废水厌氧生物处理反应器研究进展.无锡轻工大学学报.2001,20(3):323~329
    [16] 郝晓地,张临新.颗粒状厌氧膨胀污泥床Biobed EGSB污水处理工艺.给水排水.1998,24(6):18~22
    [17] Nunez L A. Anaerobic treatment of slaughter house wastewater in an expanded sludge bed(EGSB) reactor. Wat. Sci. Tech., 1999,40(8): 99~106
    [18] Vab Der Last A R M, Lettinga G. Anaerobic treatment of domestic sewage under moderate climatic(Dutch) conditions using upflow reactors at increased superficial velocities. Wat. Sci. Tech., 1992,25(7): 167~168
    [19] Rebac S. High-rate anaerobic treatment of malting wastewater in a pilot-scale EGSB system under psychrophilic conditions. J. Chem. Tech. Biotechnol., 1997,68: 135~146
    [20] Dries J. High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor. Biodegradation, 1998(9): 101~111
    [21] Zoutberg George R., Frankin R. Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor; the Biobed EGSB reactor. Water Science and Technology, 1996,34(5~6): 375~381
    [22] Kato Mario T., Field Jim A., Lettinga G. Anaerobic treatment of low strength wastewaters in UASB and EGSB reactors. Water Science Technology, 1997,36(6~7):375~382
    [23] Kato M. T. et al.. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters. Biotechnology and Bioengineering, 1994,44(5): 469~479
    [24] Richard M. D., Freda R. H., Dennis L. H. Anaerobic digestion of short chain organic acids in an expanded granular sludge bed reactor. Water Research, 2000, 34(9): 2433~2438
    [25] Kato M T, Rebac S,Lettinga G. Anaerobic treatment of low-strength brewery wastewater in expanded granular sludge bed factor[J]. Applied Biochemistry and Biotechnology, 1999, 76 (1): 15~32
    [26] Rebac S, Van Lier J B,Lens P, et al. Psychorphilic anaerobic treatment of low strength wasterwaters[J]. Wat. Sci. Tech., 1999, 39 (5): 203~210
    
    
    [27] 任洪强.厌氧膨胀颗粒污泥床反应器工作特性研究[D].无锡:无锡轻工业大学,2000
    [28] 任洪强,丁丽丽,陈坚,伦世仪.EGSB反应器中颗粒污泥床工作状况及污泥性质研究.环境科学研究,2001,14(3):33~41
    [29] 季民,霍金胜.厌氧颗粒污泥膨胀床(EGSB)的工艺特征与运行性能.工业用水与废水.1999,30(4):1~4
    [30] 张振家,周伟丽,林荣忱.膨胀颗粒污泥床处理玉米酒精糟液的生产性试验.环境科学,2001,22(4):114~116
    [31] 左剑恶,王妍春,陈浩.膨胀颗粒污泥床(EGSB)反应器的研究进展.中国沼气,2000,18(4):3~8
    [32] 左剑恶,王妍春,陈浩等人.EGSB反应器的启动运行研究.给水排水,2001,27(3):26~30
    [33] 左剑恶,王妍春,陈浩,申强.膨胀颗粒污泥床(EGSB)反应器处理高浓度自配废水的实验研究.中国沼气,2001,19(2):8~11
    [34] 王凯军,Van der Last A R M, Lettinga G.水解与颗粒污泥膨胀床串联工艺处理城市污水[J].中国给水排水,1999,15(8):19~23
    [35] 王凯军.厌氧工艺的发展和新型厌氧反应器.环境科学.1998,19(1):94~96
    [36] 陈坚,任洪强等编著.环境生物技术应用与发展.北京:中国轻工业出版社,2001:84~85
    [37] 刘洪亮,钱易.中国江河湖海防治减灾对策.中国工程院第五次院士大会,北京,2000.
    [38] 国家环保局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1989:103~104,354,362~365
    [39] 刘芳编著.环境工程实验.北京:兵器工业出版社,1999:64~68
    [40] 刘雨,赵庆良等编著.生物膜法污水处理技术.北京:中国建筑工业出版社,2000:100~101
    [41] 乌锡康编著.有机化工废水治理技术.北京:化学工业出版社,1996:3~4
    [42] 董春娟,李亚新,吕炳南.微量金属元素对甲烷菌的激活作用.太原理工大学学报.2002,33(5):495~497
    
    
    [43] 李亚新,董春娟.激活甲烷菌的微量元素及其补充量的确定.环境污染与防治.2001,23(3):116~118
    [44] 丁丽丽,任洪强,华兆哲,陈坚.内循环式厌氧反应器启动过程中颗粒污泥的特性.环境科学.2001,22(3):30~34
    [45] 竺建荣,夏晓红,胡纪萃,顾夏声.进水浓度对UASB颗粒污泥形成的影响研究.环境科学.1992,13(6):33~38
    [46] 曹刚,徐向阳,冯孝善.碱度对UASB污泥颗粒化的影响.中国给水排水.2002,18(8):13~16
    [47] 于玉根,伦世仪.高浓度Cl~-和SO_4~(2-)对厌氧颗粒污泥的抑制效应及抑制机理的研究.中国沼气.1994,16(7):1~3
    [48] 何健,陈立伟,李顺鹏.高盐度难降解工业废水生化处理的研究.中国沼气.2000,18(2):12~16
    [49] 杨虹,朱章玉等.Cl~-和SO_4~(2-)对厌氧废水处理的抑制阈值.上海交通大学学报.1999,33(2):237~239
    [50] 文湘华,占新民等.含盐废水的生物处理研究现状.环境科学.1999,20(3):104~106
    [51] 伦世仪主编.环境生物工程.北京:化学工业出版社,2002:78~81
    [52] Letting, G. et al. Advanced Anaerobic wastewater Treatment in the Near Future[J]. Wat. Sci.& Tech.. 1997, 34(5~6): 5~12
    [53] 王建龙编著.生物固定化技术与水污染控制.北京:科学出版社,2002:165~178,185~207
    [54] 林加涵,魏文铃,彭宣宪编著.现代生物学实验(上册).北京:高等教育出版社,2000:41~43
    [55] A. Laguna, A. Ouattara, R. O. Gonzalez et al.. A simple and low cost technique for determining the granular merry of up-flow anaerobic sludge blanket reactor sludge. Water Science And Technology, 1999, 40(8): 1~8
    [56] 苏玉民,杨云龙等.脉冲上流式厌氧污泥床反应器的应用.环境科学.1996,17(1):50~53
    [57] 肖本益,王瑞明,贾士儒.二价金属离子对UASB颗粒污泥的影响.中国给水排
    
    水.2002,118(6):26~28
    [58] 黄筱萍,曹郁生,刘兰.微生物及胞外多聚物在颗粒污泥形成中的作用.江西科学.1997,15(4):264~270
    [59] 竺建荣,胡贵平,胡纪萃,顾夏声.胞外多聚物在污泥颗粒化过程中的作用研究.中国沼气,1993,11(3):5~10
    [60] 上海市环境保护局编.废水生化处理.上海:同济大学出版社,161~162
    [61] 张森林,刘林.序列活性污泥法处理屠宰污水.环境保护.1991,(11):9~11
    [62] 陆不凯,张景宏,陈宗红.用聚硫酸铁絮凝剂处理屠宰废水.环境污染与防治.1987,9(3):21-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700