用户名: 密码: 验证码:
复杂输水系统的水力仿真与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
修建大型长距离输水工程是调节水资源时空分布不均,解决水资源供需矛盾的最有效、最直接的手段。输水系统在发生水力过渡过程时系统沿线的水力要素随时间发生急剧的变化,如不在设计与运行时加以控制,往往会超出恒定流的设计范围,对输水过程造成不利影响。因此,在设计和运行管理阶段都必须对水力过渡问题给予足够的重视,才能确保工程的安全与可靠。对输水系统在各种工况下的水力仿真和控制进行系统全面的分析和研究势在必行。
     本文以复杂的输水系统为研究对象,通过输水系统整体数值模拟与局部模型试验相结合,针对引发输水系统过渡过程的流量调节、泵站事故、检修、不对称输水以及管道充水等各种工况,构建相应的数学模型,在对各种不同的水力过渡过程进行模拟仿真的基础上,研究复杂输水系统在不同工况下的非恒定流水力特性,并从工程设计和运行角度提出针对相应非恒定流工况的水力设计与控制原则,本文的主要结论可以概括成如下几个方面:
     (1)针对代表复杂输水系统水力过渡过程的无压流、有压流、无压接有压、明满流交替等不同非恒定流过程,对特征线法和隐式差分法进行对比,研究和确定了两种方法在不同输水方式和水流状态下的适用性。通过采用自由气体-液体离散模型和变波速模型对气液二相瞬变流的模拟,对气液二相流的水力特性进行了分析和研究,并对自由气体-液体离散模型和变波速模型的适用性进行了研究。
     (2)根据不同流态,通过物理模型试验对保水堰的流量系数、局部损失系数、淹没系数等特性参数进行了测量和分析,并对保水堰的流量系数、淹没系数对水力仿真的敏感性进行了分析。利用模型试验数据对巴甫洛夫斯基的堰流淹没系数数据进行了补充,并构造了保水堰淹没系数关于淹没度的函数曲线,对保水堰的边界提出了动态淹没系数的改进方法,可以很好的模拟保水堰的各种流态变化,为保水堰过渡流态的准确模拟提供了一种可供借鉴的方法。
     (3)分别建立了无压接多孔并联分段低压输水系统的流量调节、事故停泵、单孔检修的水力仿真模型,预测过渡过程中输水系统的压力、水位、流速和流量等水力参数的变化规律,对分段低压输水结构的水力特性进行分析,寻找可靠合理的输水运行控制方案。提出了复杂输水系统的流量调节及事故停泵的水力控制原则。针对长距离并联输水箱涵的检修操作,提出了一种补水的控制方法,通过在检修箱涵的首尾设置补水孔,利用非检修箱涵向检修箱涵补水,对长距离并联输水箱涵单孔检修所造成的闸后检修箱涵脱空进行了有效控制,该控制方法对于长距离有压输水系统具有一定的推广应用价值,对于长距离并联输水箱涵连续关闸和变孔数运行等运行操作的水力控制也有一定的借鉴意义。
     (4)建立了多孔并联的无压接有压的输水系统的不对称输水仿真模型,对于无压段的不对称输水对下游有压管段的影响进行了分析,针对于有压段的不对称输水问题,为连续关闸和连续开闸的操作确定了最佳的闸门操作序列,并将补水的方法成功应用于连续关闸的过渡过程控制,最后提出了长距离输水系统不对称输水的控制原则。
     (5)将虚拟流量法与隐式差分法相结合构建了有压管道充水操作的数学模型,实现了对有压管道充水过程的准确模拟,对有压管道在充水过程中的水力特性进行了分析和研究,并在水力仿真的基础上提出了变流量充水的控制方法,既保证了充水过程中输水管道的安全,又缩短了管道的充水时间。
     (6)针对水力控制中出现的具体问题,对分段低压输水系统各输水单元的具体建筑物指标和参数反映出的单元之间的相互联系进行分析和研究,最后在水力控制的基础上提出了分段低压输水系统的整体优化设计原则,此优化原则可以作为分段低压输水系统的设计依据,有较大的推广应用价值。
The long-distance water diversion project is the most effective and direct countermeasure to the supply-demand contradiction of water resource. The flow and hydraulic pressure of the water diversion system is unstable and maybe overstep the design scope in hydraulic transient, which will be critical with the safety of the project. For ensuring the security of the project, much importance must be attached to the hydraulic transient. So the analysis and study on hydraulic simulation and control to the hydraulic transient of water diversion system under various work conditions must be developed.
     In this paper, the complex water diversion system is the study object. According to the flow regulation, pumping station accident, inspection, asymmetric water diversion and Water-filling in pressure conduits, the mathematic models are established to simulate the hydraulic transient. The hydraulic characteristics of unsteady flow are researched under various work conditions and the optimization control principles and project design schemes are proposed from the view of project design and operation. Some achievement of the thesis is listed below:
     1. Comparison between characteristic line method and implicit difference method is based on the solution to the transient of free flow, pressure flow, free flow connected with pressure flow and free-pressure flow of water diversion system. Then the characteristics of the two methods are analyzed and the applicability of the two methods to various water diversion modes and transient types is studied and ascertained. The discrete gas-liquid model and the variable wave speed model are used to simulate the gas-liquid two-phase transient flow. The hydraulic characteristics of two-phase transient flow are analyzed and the applicability of the two models to two-phase transient flow is researched.
     2. According to the various flow pattern of water conservation weir, the flow coefficient, the local head loss coefficient and submerging coefficient are measured and analyzed through the physical model tests. Then the sensitivities of the flow coefficient and submerging coefficient are analyzed. In order to make the exact simulation of the transition flow pattern of water conservation weir, a new method of dynamic submerge coefficient of water conservation weir is brought forward by using curvilinear equations based on model test data andПавловский’s data. Then it is proved that the method of dynamic submerge coefficient of water conservation weir is applied and universal to simulate the transition flow pattern of water conservation weir.
     3. The numerical models of open channel and multiple-hole stepped low-pressurized water diversion system are established to simulate the unsteady flow results from flow regulation and pumping station accident and to forecast the pressure, the water level, the flow and the current velocity in the transition. The hydraulic characteristics of stepped low-pressurized water diversion system are analyzed and the hydraulic control principle is proposed for flow regulation and pumping station accident of complex water diversion system. According to the inspection of multiple-hole water diversion culverts, a water replenishing method is brought forward to control the water hammer. Water replenishing holes are set at the head-tail end of water diversion culverts and adjacent culverts replenish water to inspection culvert to control and slow up the transient that result from the inspection. At last the sizes of the water replenishing holes and the inspection well are optimized based on hydraulic control. This water replenishing method has great applied value to hydraulic control of the inspection and has reference meaning to hydraulic control of continuous sluice shut of long-distance pressure water diversion system.
     4. The numerical models of open channel and multiple-hole stepped low-pressurized water diversion system are established to simulate the unsteady flow results from asymmetric water delivery. The influence of asymmetric water delivery in open channel on transient in pressure pipeline downstream is analyzed. According to the asymmetric water delivery in pressure pipeline, optimal sequences of continuous shut and open to inspection gates are proposed and water replenishing method is applied to hydraulic control on continuous sluices shut successfully. At last the hydraulic control principle is brought forward for asymmetric water delivery of long-distance water diversion system.
     5. Based on fictitious flow method and implicit difference method, the numerical model of water-filling in pressure conduits is established to simulate the water-filling process well and truly. Based on the hydraulic simulation, the hydraulic characteristics of the water-filling process are researched and the method of variable flow water-filling is proposed which can ensure the security of pipeline and shorten time of water-filling process.
     6. According to practical problems in hydraulic control, the correlations among the water delivery units are analyzed and researched that are reflected by structure parameters of the water delivery units of stepped low-pressurized water diversion system. Based on hydraulic control and analysis, the principia of optimization to the stepped low-pressurized water diversion system is proposed, which can be used as design basis of stepped low-pressurized water diversion system and have great application value.
引文
[1]杨立信.国外调水工程[M].中国水利水电出版社,2003.26-27.
    [2]张修真,洛叙六,俞澄生.南水北调-中国可持续发展的支撑工程[M].中国水利水电出版社,1999.1-3.
    [3]沈洪.国外调水工程纵横谈[J].四川水利,2000,21(5):56-58.
    [4]水利部南京水文水资源研究所.21世纪中国水供求[M].北京:中国水利水电出版社,1999.127-154.
    [5]陆孝平.我国跨流域调水工程的现状与展望[J].水利水电工程设计,1996(2):2-5.
    [6]黎安田.长江流域的水与可持续发展[M].北京:中国水利水电出版社,1999.8, 230-262.
    [7]中国农业百科全书(水利卷上册)[M].北京:农业出版社,1987.402-404.
    [8]徐元明.国外跨流域调水工程建设与管理综述[J].人民长江,1997,28(3):11-13.
    [9]邓郎.调水工程全球大扫描[J].经济月刊,2000(10):70-72.
    [10]中国水利报社编.中国江河[M].北京:中国科学技术出版社,2000.395-401.
    [11]沈佩君,邵东国.国内外跨流域调水工程建设的现状与前景[J].武汉水利电力大学学报,1995,28(5):463-469.
    [12]宋祖诏,张思俊,詹美礼.取水工程[M].北京:中国水利水电出版社,2002.1-3.
    [13]C. Taylor, K. Morgan. Computational techniques in transient and turbulent flow v.2 Recent advances in numerical methods in fluids[J]. Swansea:Pineridge Press,1981.
    [14]Ted Belytschko, Thomas J.R. Hughes. Computational methods for transient analysis[M]. Amsterdam, New York: North-Holland, New York, N.Y. U.S.A. Sole distributors in the USA and Canada, Elsevier Science Pub. Co, 1983.
    [15]Victor L. Streeter, E.Benjamin Wylie. Fluid mechanics[M]. NewYork: McGraw-Hill,1985.
    [16]胡健伟,汤怀民.微分方程数值解法[M].北京:科学出版社,1999.
    [17]Streeter, V.L. Water Hammer Analysis of Pipe Lines[J]. Proc.ASCE,Hydr. Division, Vol. 90, No.HY4, July 1964.
    [18]Streeter.V.L., Wylie,E.B.Hydraulic Transients[M]. McGraw-Hill Book Co, New York, 1967.
    [19]E. Benjamin Wylie, Victor L. Streeter. Fluid transients[M]. New York:McGraw-Hill International Book Co., 1978.
    [20]P.W.France. Finite element solution for mass oscillations in a surge tank on sudden valve opening[J]. Advances in Engineering Software 1996(26): 185-187.
    [21]Taylor, S.E.M., Johnston.D.N., Longmore.D.K. Modeling of transient flow in hydraulic pipelines[J]. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems & Control Engineering, 1997, 211(6): 447-456.
    [22]谭维炎.计算浅水动力学-有限体积法的应用[M].北京:清华大学出版社, 1998.9.
    [23]郑源,刘德有,张健.有压输水管道系统气液两相瞬变流研究综述[J].河海大学学报(自然科学版),2002.11,Vol.30,No.6:21-25.
    [24]阮新建,王长德.渠道运行最优控制与运行模拟仿真[J].人民长江,2003.10, Vol.34,No.10:30-32.
    [25]韩延成,高学平.长距离输水工程最优控制数学模型[J].水利水电技术,2005, 36(10):62-66.
    [26]万五一.长距离分段低压输水系统水力特性研究[D].硕士学位论文,天津大学,2001.9.
    [27]练继建,万五一,王云仓.长距离分段低压输水的水力特性[J].水利水电技术,2001,32(12):45-46.
    [28]万五一,练继建,崔广涛,分段低压输水管系的水力振荡特性[J].水利学报, 2003 (8):16-20.
    [29]练继建,万五一.昆明掌鸠河引水供水工程输水系统运行仿真与优化研究阶段报告[R].2001,7.
    [30]Lian Jijian, Mu Xiangpeng, Wan Wuyi. Analysis on Oscillation and Structural Optimization of Stepped Low-Pressure Water Transfer Project[A]. Proceedings of the Congress-International Association for Hydraulic Research[C]. 2005, 31ST, vol2.
    [31]Alexander A. Menabreas Note on Water hammer[J]. 1858. Journal of the Hydraulics Division Proc. ASCE, Vol.102, Jan.1976.
    [32]Joukovsky, N.E. Water Hammer. Imperial Academy Sc. of St. Petersburg, 1898 and 1900, vol.9 (Translated by Miss O.Simin), Proc. Am. Water-Works Assoc. 1904: 341-424.
    [33]Allievi.L. Theory of Water Hammer(translated by E. E. Halmos)[M]. Riccardo Garoni, Rome, 1925.
    [34]Rich.G.. Waterhamer Analysis by the Laplace-mellin Transformations[J]. Trans.ASME, 1945.
    [35]Rich.G.A. Hydraulic transients[M]. New York, N.Y., 1951.
    [36]索丽生.国外有压瞬变流研究进展[J].河海科技进展.1991,11(2):9-15.
    [37]Gray C.A.M..Analysis of Water-hammer by Characteristics[J].Trans. ASCE, 1954.
    [38]K.麦赫默德,K.叶夫维奇.林秉南等译.明渠不恒定流[M].北京:水利电力出版社,1987.5.
    [39]林秉南.明渠不恒定流研究的现状与发展[A].林秉南论文集[C].中国水利水电出版社,2000,340-373.
    [40]郑邦民,赵昕.计算水动力学[M].武汉大学出版社,2001.8.1-10,14-22, 59-71,103-113.
    [41]Strelkoff.T. One-Dimensional Equations of Open Channel Flow[J]. Hyd. Div. ASCE. vol.95, May.1969: 861-876.
    [42]Amein.M., Fang.C.S. Implicit Flood Routing in Natural Channels[J]. Hyd. Div. ASCE, vol.96, Dec.1970: 2481-2500.
    [43]Yen.B.C. Open-Channel Flow Equations Revisited[J]. Eng. Mech. Div. ASCE, vol.99, Oct.1973: 979-1009.
    [44]Mahmood.K., Yevjevich.V. Unsteady Flow in Open Channels[M]. Water Resources Publications, Fort Collins, Colorado, 1975.
    [45]Forsythe.G.F., Wasow.W.R. Finite-Difference Methods for Partial Differential Equations[M]. John Wiley and Sons, New York, 1960.
    [46]Liggett.J.A., Woolhiser.D.A. Difference Solutions of the Shallow-Water Equation[J]. Eng. Mech. Div. ASCE., vol. 93, April.1967: 39-71.
    [47]Lax.P.D. Weak Solutions of Nonlinear Hyperbolic Partial Differential Equations and Their Numerical Computation[J]. Communications on Pure and Applied Mathematics, Vol.7, 1954: 159-163.
    [48]Richtmyer.R.D. A Survey of Difference Methods for Non-Steady Fluid Dynamics[R]. NCAR Technical Notes 63-2,Colorado, 1962.
    [49]Abbot, M.B., An Introduction to the Method of Characteristics[M].American Elsevier, New York.1966.
    [50]Strelkoff,t., Numerical Solution of Saint-Venant Equations[J]. Hyd. Div., ASCE., vol.96, Jan. 1970:223-252.
    [51]Cooley, R.L., Moin, S.A., Finite Element Solution of Saint-Venant Equations[J]. Hyd. Div., ASCE., vol.102, Sept.1976:1299-1313.
    [52]H.M.乔德里.陈家远,孙诗杰,张治滨译.实用水力过渡过程[M].四川省水力发电工程学会,1985.9.
    [53]Gelfand, I.M., Lokutsievski, O.V., The Double Sweep Method for Solution of Difference Equations[M]. North Holland Publishing Co., Amsterdam, 1964.
    [54]过祖源,龙期泰,王守仁.给水输水干管中水锤压力的试验研究[A].中国土木工程学会1962年论文选集[C].
    [55]王树人,刘天雄,彭天玫.水击理论与水击计算[M].清华大学出版社, 1981.5.1-16,53-80.
    [56]丁浩.水电站有压引水系统非恒定流[M].水利电力出版社,1986.1-6.
    [57]王学芳.工业管道中的水锤[M].北京:科学出版社,1995.
    [58]汤荣铭,王学芳.防水锤偏心蝶式止回阀的设计与研究[J].阀门,1998(2): 1-5.
    [59]刘光临,刘梅清.泵系统中调压塔水锤防护特性的研究[J].水利学报,1995(3): 1-11.
    [60]刘光临,冯卫民.多泵并串联泵系统运行特性的研究[J].流体机械,1995, 23(1):14-19.
    [61]刘光临.带引水管的泵站进水池口涌浪的计算与研究[J].给水排水,1989(5): 2-6.
    [62]刘时芳,刘梅清.长距离输水管道水锤过程预测及防护[J].华中电力,2001, 14(1):21-23.
    [63]刘梅清,邱锦春,周龙才等.泵管渠池复杂抽水系统的过渡过程计算[J].武汉大学学报(工学版),2003,36(4):6-9.
    [64]刘光临,刘梅清.采用单向调压塔防止长输水管道水柱分离的研究[J].水利学报,2002(9):44-48.
    [65]刘光临,刘梅清.多泵并串联复杂泵系统水锤分析及其控制[J].农业机械学报,1998,29(3):59-64.
    [66]刘光临,刘梅清,长管道系统中的水锤及其防护研究[J].武汉水利电力大学学报,1996,29(5):36-41.
    [67]刘梅清,刘光临.大型泵站水力过渡过程计算及蓄能式液压启闭闸门的研究[J].农业机械学报,2000,31(3):55-58.
    [68]李进平,李修树.有压管道瞬变流摩阻的数值模拟[J].人民长江,2000.6, 31(6):34-36.
    [69]李进平,杨建东.非恒定摩阻对管道水力过渡过程的影响[J].武汉大学学报(工学版),2002.4,35(2):13-17.
    [70]杨开林.电站与泵站中的水力瞬变及调节[M].北京:中国水利水电出版社, 1999.
    [71]中国水利水电科学研究院.山西省万家寨引黄工程全系统运行计算机仿真水力系统调节控制数学模型报告[R].1998.12.
    [72]练继建.南水北调中线干线工程天津干线水力仿真与控制优化研究[R].天津大学水利水电工程系,2007.
    [73]徐国宾,练继建.引滦入津工程新建州河暗渠及出口闸水力学模型实验及计算研究报告[R].天津大学水利水电工程系,2003.11.
    [74]万五一,李大鸣.宁波市白溪水库引水工程水利过渡过程计算[R].天津大学水利水电工程系,2003.7.
    [75]练继建,穆祥鹏.南水北调中线一期工程天津干线科研设计阶段全箱涵(无压接有压)全自流方案水力数值仿真研究[R].天津大学水利水电工程系,2006.1,2007.3.
    [76]练继建,彭新民.南水北调工程天津干线模型试验研究[R].天津大学水利水电工程系,2005.6.
    [77]练继建,孙济洲.天津市引滦入津水源保护工程管理信息系统工程水业务系统研究[R].天津大学水利水电工程系,2007.12.
    [78]华东水利学院,华北水利水电学院.水电站[M].北京:水利出版社.
    [79]王世泽.水电站建筑物[M].北京:水利电力出版社,1987.
    [80]王树人等.水电站建筑物[M].北京:清华大学出版社,1992.3.
    [81]王俊.长距离输水工程水力过渡过程的研究[D].硕士学位论文,天津,天津大学,2003,28-30.
    [82]C. Taylor and K. Morgan, Computational techniques in transient and turbulent flow v.2 Recent advances in numerical methods in fluids[M]. Swansea: Pineridge Press, 1981
    [83]Abbot M B, Havno K, Lindberg S. The fourth generation of numerical modeling in hydraulics[J]. Journal of Hydraulic Research,1991.29(5):581-600.
    [84]Courant.R., Friedrichs.K.O. supersonic flow and shock waves[M]. Interscience publishers, New York, 1948.
    [85]陈壁宏,周发毅.水电站和泵站水力过渡流[M].大连:大连理工大学出版社,2001.
    [86]熊洪允,曾绍标,毛云英.应用数学基础(下)[M].天津大学出版社,1998. 85-87.
    [87]陆金甫,关治.偏微分方程的数值解法[M].北京:清华大学出版社,1987.
    [88]王新宏,张强,杨方社.Preissmann隐式差分格式在渭河下游洪水演进计算中的应用[J].西北水力发电,2003,(3):1-4.
    [89]练继建,王俊,万五一.变时步的特征线法计算复杂输水系统的水力过渡过程[J].水利水电技术,2003,34(9):12-14.
    [90]邓辉.水电站尾水明满流过渡过程数值模拟研究[D].天津大学,2007.6.
    [91]Wylie E B, Simulation of Vaporous and Gavitation[J]. AMSE. Journal of Fluid Engineering, Vol.106,sep.1984:307-311.
    [92] J.A.福克斯.陈祖泽翻译.管网中不稳定流动的水力分析[M].石油工业出版社,1986.1,95-109.
    [93]Simpson A R and Bergant A. Numerical Comparison of Pipe-Column-Separation Models[J]. Hyd. Engrg, ASCE, 120(3), 1994:361-377.
    [94]Pearsall,I. The velocity of water hammer waves in symposium[J]. Surges in Pipelines, Inst.Mech.Eng. 1965
    [95]Karplus.M.B. The velocity of sound in a liquid containing gas bubblies[R]. Armour Research Earth Foundation Report, June,1958.
    [96]秋元德三.支培法,徐关泉,严亚芳翻译.水击与压力脉动[M].电力工业出版社,1981.2,92-95.
    [97]万五一,李玉柱,王建军.保水堰的交替水流数值模拟初探[J].水利水电科技进展,2006(2):20-22.
    [98]练继建,郑政,李琳,许国锋.多孔并联分段低压输水系统的水力特性和控制[J].水利学报,37(8):950-957.
    [99]夏毓常,张黎明.水工水力学原型观测与模型试验[M].北京:中国电力出版社,1999.
    [100]П.Г.Киселев,СПравочникпоГидравическим,Расчетам,Госенергоиздат, 1972.
    [101]张绍芳.堰闸水利设计[M].北京:水利水电出版社,1987.
    [102]李琳,穆祥鹏,练继建.保水堰交替水流数值模拟研究[J].水利水电技术, 2007,38(3):36-39.
    [103]彭新民,穆祥鹏,万五一.水头压力及管道特性对水击波速变化的影响[J].水利水电技术,2003(9).
    [104]吴持恭.水力学[M].北京:高等教育出版社,1982.11.
    [105]引滦入津工程建筑物技术指标[Z].天津市引滦工程管理局,1999,9.
    [106]天津市水利科学研究所,天津大学水利水电工程系.南水北调天津干线PCCP原状管糙率测试阶段报告[R].2004.3.
    [107]王韦.平底闸潜没孔流流量系数的初步分析[R].原水利部南京水利试验处研究试验报告汇编.1955.
    [108]杨敏,李强,李琳,郑杨.有压管道充水过程数值模拟[J].水利学报,2007.2, Vol38(2):171-175.
    [109]杨开林,时启燧.引黄入晋输水工程充水过程的数值模拟及泵站充水泵的选择[J].水利学报,2000,(5):76-80.
    [110]许景贤,林斌良.二滩水电站尾水隧洞过渡过程中明满流的试验研究[J].水力发电学报,1990,31(4):58-70.
    [111]丁振华,许景贤.导流洞改作发电尾水洞过渡过程中明满流的数学模型[J].水利学报,1996,(9):1-10.
    [112]许景贤,曾文其.二滩水电站尾水系统水流特性的试验研究[J].水力发电学报,1994,35(1):35-43.
    [113]杨开林.明渠结合有压管调水系统的水力瞬变计算[J].水利水电技术,2002, 33(4):5-11.
    [114]王念慎,郑大琼,任钟淳等.长距离明渠输水工程实时控制研究[J].河海大学学报,1998,26(5):50-56.
    [115]郑铭.两相流流动瞬变的计算方法及实验研究[J].江苏理工大学学报(自然科学版),1999,20(1):35-40.
    [116]A.lai, K.F.Hau, R.Noghrehkar, Investigation of waterhammer in piping networks with voids containing non-condensable gas[J]. Nuclear Engineering and Design 2000. vol197: 61-74.
    [117]Angus, R.W., Simple Graphical Solutions for Pressure Rise in Pipe and Pump Discharge Lines[J]. Engineering Institute of Canada, Feb.1935, 72-81.
    [118]Angus,R.W., Waterhammer Pressure in Compound and Branched Pipes[J]. Proc. ASME, 1956.
    [119]Streeter,V.L., Valve Stroking to Control Waterhammer[J]. Jour. Hyd. Div., ASCE, vol89, March 1963: 39-66.
    [120]Petry, B.; Mehdi, A, Controlling waterhammer at small hydro plants by valve stroking[J], International Journal on Hydropower & Dams.1996,3(4): 56-61.
    [121]李强.长距离输水系统明满流及不对称输水控制研究[D].天津大学,2007.1.
    [122]G. Mariaux, Y. Gervais, Transient Behavior of Complex Aeraulic or Hydraulic Networks Including Centrifugal Fans or Pumps[J]. Journal of Engineering Mechanics, 2000, 126(11): 1180-1188.
    [123]李琳.基于遗传算法的泵站系统优化调度研究[D].天津大学,2007.1,1-10.
    [124]王念慎,郑大琼,任钟淳.长距离明渠输水工程实时控制研究[J].河海大学学报,1998.9,Vol.26(5):50-56.
    [125]王念慎,郭军,董兴林.明渠瞬变流最优等容量控制[J].水利学报,1989 (12):12-20.
    [126]王长德,阮新建.南水北调中线总干渠控制运行设计[J].人民长江,1999, 30(1):19-21.
    [127]阮新建,刘自奎,蔡明贵等.渠道运行控制数学模型及系统特性分析[J].武汉大学学报(工学版),2002,Vol.35(2):40-44.
    [128]王长德,阮新建.渠道运行最优控制与运行模拟仿真[J].人民长江,2003,34(10):30-32.
    [129]考蒂斯塔(英).郝中堂,杨德铨翻译.计算水力学基础[M].水利电力出版社,1987.5,41-50.
    [130]杨景芳.微机计算水力学[M].大连理工大学出版社,1991.5,73-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700