用户名: 密码: 验证码:
高陡岩质斜坡崩落岩体运动参数、击浪高度及其对工程影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型水电工程往往都建在深切峡谷当中,库岸斜坡的整体稳定性多是被关心的焦点之一,但在陡峻岸坡表部也存在有潜在破坏可能的大型危险岩体,其发育状况、分布、稳定性、失稳危害等方面的研究相对薄弱许多。尤其是斜坡上存在的欠稳定状态的大型危岩体,一旦失稳下落入大坝前后的水体里,会产生什么后果,也是至今为止还没有人讨论过的问题。
     拉西瓦电站坝区山高坡陡,峡窄谷深,高陡的岸坡大量分布有规模不同的危岩体,是威胁大坝施工和运营安全的主要地质灾害类型之一。针对上述问题,本文以拉西瓦电站坝址右岸高陡边坡危岩体为研究对象,通过现场调查、结构面资料分析及3D激光扫描技术等手段,采集拉西瓦高陡边坡危岩体信息,较系统和准确掌握了研究区危岩体的发育情况和分布特征。采用Rockfall软件模拟高陡边坡危岩体坠落的运动轨迹,求得各危岩体落入水库或水垫塘时的运动速度和冲击动能等参数,期望通过这些定量参数,以解析解计算高陡边坡危岩体坠落至水库中产生击浪的高度和传播状况,以便为电站运营提供可能的危害预警。研究取得了以下主要成果:
     (1)通过对拉西瓦电站坝址右岸高边坡危岩体调查研究,查明了右岸坝址危岩体的分布规律,危岩体发育与地形地貌、岩体结构、岩体风化、地应力条件及卸荷、地震、空隙水压力等关系密切。
     (2)拉西瓦坝址右岸危岩体失稳破坏多发生于降雨过程中,控制危岩体发育的几组不利结构面在雨水渗入时,一方面降低了结构面的摩擦力,另一方面其空隙水压力的增大直接提供给危岩体向临空面的推力,从而导致危岩体失稳。
     (3)采用工程地质调查、ILRIS 3D激光数值扫描、结构面分析的方法,提取了坝址右岸坝前500m和水垫塘范围内对坝址工程危害较大的危岩体信息,对危岩体位置、形态、规模、失稳下落的运动特征等进行系统定位分析。
     (4)根据危岩体发育的位置,垂直于河流流向剖切了9条剖面,做为实际计算剖面,采用Rockfall软件,对坝址右岸26块危岩体下落的运动过程进行数值模拟,分析危岩体坠落的运动轨迹,确定落点位置,分别计算了危岩体坠落到坝前和水垫塘的冲击动能和速度。
     (5)提出落石高速坠入水体里将会产生击浪的概念,通过多次试验,对落石击浪形成过程进行分析,提出了击浪产生的机理,即:落石坠入水面,由于具有较快的速度,落点周围一定范围内的水体受到落石体积和落石速度作用而加速运动,这些被加速的水体受周围静止水体的阻碍,会向水面上方运动,在平静水面上方形成一水柱。这个水柱在回落过程中自身呈自由落体状态,水柱降至水面时,势能转化为动能,形成上下波动的阻尼振动,推动周围水体运动,形成的波浪,并逐渐向四周传播。
     (6)根据试验分析,落石初始击浪的体积由两部分组成,一部分是落体体积,另一部分为落体在水中由于受到水阻力减速运动形成的冲击体积。运用水动力学原理,结合现场试验观察,推导出落石击浪的初始波浪高度、传播速度、传播影响范围的计算公式。公式有较强的适应性,具有实际意义。
     (7)利用推导的计算公式,对拉西瓦电站坝址右岸26块危岩落入水库产生的击浪初始浪高和传播进行计算,对结果比对分析,有较好的对应性。
     (8)研究了控制落石击浪产生的主要因素和影响因素。落石具备一定体积和一定入水速度是落石击浪形成的必要条件。其它影响因素,如落石入水时的最大横截面积不同,也会引起的击浪高度值发生变化。
     (9)根据计算结果,W5、W6、W8、W9、W13危岩体坠落产生的击浪传播到坝前的波浪高度11.72~63.3m。
Large hydropower projects are often built in deep valleys and the scientists usually focus their researches on stability of overall slope in reservoir sites. Although there are big and less stable rockmass on the surface layer of steep slope in reservoir sites, whose unstability would pose rockfall risk on the reservoir safty both in construction and during its operation, researches about this issue reported few till now. This dissertation focused on study of motion of these big and less stable rockmass when rockfall takes place, bouncing surge of waves triggered by rockfall rockmass striking into the water in reservoir, and the its impact on reservoir safty.
     In the dam area of Laxiwa hydropower station, the mountain is high and the canyon narrow. A large number of different size dangerous rockmass spread on the high-steep slopes, which is one of the main potential geological hazards menacing the safety of dam in construction and operation. based on field investigation, data analysis of discontinuities and using three-dimensional laser scanning technique, the dissertation described the development and distribution of dangerous rockmasses in study area. With software RocFall employed, the rockfall motion was simulated and gained the motion parameters, including the trajectory of rockfall motion , impact energy, and impact velocity. Based on these quantitative parameters, the height of bouncing surge and its propagation length of the water waves are suggested, which is triggered by rockfall striking into the water in the reservoir from the high-steep rockmass slopes. These significant results would provide the base information for the early warning for potential hazards in this hydropower station and also for similar researches for method reference.
     The research has made the following main achievements:
     (1)Through the research of the dangerous rockmass on the right bank high-steep slope of Laxiwa hydropower station, the distribution for those rocks was gotten. The studies have linked the dangerous rockmass to many factors, such as terrain condition, structure of rockmass, rock weathering, stress condition, unloading, earthquakes, and water pressure of void space.
     (2)Failure of the dangerous rockmass often occurs during the rainy season. When the rainwater infiltrates into the adverse structure face which control the development of dangerous rockmass, the friction of those structural face was reduced on the one hand, and the increase of water pressure of void space provided a thrust for the dangerous rockmass to the free surface of the thrust on the other hand, leading to dangerous rockmass out of control.
     (3)Using the geological survey, ILRIS 3D laser scanning technique and block theory, the author collected the information about the dangerours rockmass in the study area, and analyzed their location, shapes, sizes, and instability characteristics.
     (4) According to the position of dangerous rockmass, nine profiles perpendicular to the rivers flow were drawn, which were used as actual calculation profiles. As a tool, the computer program RocFall assisted us with probabilistic simulation of 26 rockfalls. The dissertation analyzed and explained the location of the rock stop and trajectory of rockfall motion, and also presented the result of the kinetic energy, the velocity and the bounce-height when the rock fall into the reservoir.
     (5)The dissertation proposed a concept that high-speed rock falling into the reservoir will cause a striking wave, called the surge due to rockfall. The formation mechanism of such surge due to rockfall was theoretically analyzed as following. When the high-speed rock falls into the water with a high speed, it has an impact to the range of water bodies around the rockfall by the rockfall volume and rockfall velocity. They will cause the surrounding water in accelerated motion. Since the obstruct from the quiescent water surrounding it, these water will move to the surface of the reservoir and form a water column above the water surface. During the water column fall to reservoir, it promote the sport around the water forming waves, and spread to the surrounding gradually.
     (6)According to the test analysis, the volume of initial surge due to rockfall consists of two parts, part of a rockfall size, and the other part is the impact volume which is engendered by the retarded motion of the falling body in the water due to the friction of water. Learning from the calculation method for landslide generated waves, and based on water dynamics, the dissertation presented the equations and the algorithm to calculate the height , the propagation and the incidence of the surge due to rockfall. The formula has strong adaptability and could be applied to similar engineering projects.
     (7)By using the computing formula, the initial wave height and spread are calculated. This surges were caused by 26 rockfalls from the right bank slope of Laxiwa hydropower station falling into the reservoir assumed .
     (8)The dissertation studied the main factors and influencing factors of controlling rockfall. The necessary condition of strike wave is that rockfall has certain volume and falling velocity.
     (9)According to the calculation results, wave heights of rock falling produces from W5, W6, W8,W9, W13 spread to the front of the dam are greater than 11.72-63.3 meters.
引文
[1] Agliardi F etc..High resolution three-dimensional numerical modeling of rockfalls[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40:455-471.
    [2] A. Azzonit etc..Analysis and Prediction of Rockfalls Using a Mathematical Model[J].Int. J. Rock Mech. Min. Sci. & Geomech. Abstr,1995,32(7):709-724.
    [3] A. Abellán etc..Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain)[J].Engineering Geology,2006,88:136-148.
    [4] A. Cazzania etc..Dynamic finite element analysis of interceptive devices for falling rocks[J]. International Journal of Rock Mechanics & Mining Sciences,2002,39:303-321.
    [5] Andrea Panizzo,Giorgio Bellotti,Paolo De Girolamo. Application of wavelet transform analysis to landslide generated waves[J]. Coastal Engineering, 2002,44:321-338.
    [6] BRIZMER V, KLIGERMAN Y, ETSION I. The effect ofcontact conditions and material properties on theelasticity terminus of a spherical contact[J]. International ournal of Solids and Structures, 2006, (43):5736-5749.
    [7] Budetta, P.,Santo, A.Morphostructural evolution and related kinematics of rockfalls in Campania (southern Italy)[J]. Engineering Geology,1997,l(36):197-210.
    [8] Bourrier Franck etc.. Toward objective rockfall trajectory simulation using a stochastic impact model[J]. Geomorphology,2009,110(3):68-79
    [9] Cam.Franks Characteristics of some rainfall induced landslides on natural slopes, Lantau island, HongKong [J]. Quarterly Journal of Engineering Geology,1999,32:247-259.
    [10] C. B. Harbitz. G. Pedersen, B. Gjevik. Numerical Simulations of Large Water Waves due to Landslides [J]. Journal of Hydraulic Engineering,1993,119(12):1325-1342.
    [11] Christopher G.Koutitas,Bruce L. Finite Element Approach to Waves Due to Landslides[J].Journal of the Hydraulics Division,1977,103(9):1021-1029.
    [12] CHRISTOPHER J. VANDEWATER etc..Classifying and Assessing the Geologic Contribution to Rockfall Hazard[J].Environmental & Engineering Geoscience,2005,14(2):141-154.
    [13] CHAU K T, WONG R H C, WU J J.Coefficient of Restitution and Rotational motions of Rockfall Impacts[J].International Journal of rock mechanics and mining sciences,2002,39:69-77.
    [14] Chau K.T.,Wong R.H.C.,Lee, C.F.Rockfall Problems in Hong Kong and some new experimental results for coefficients of Restitution[J].International Journal of rock mechanics and mining sciences and geomechanics,1996,35(4-5):662-663
    [15] Chau K T, Wong R H C, WU J J. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39: 69-77.
    [16] D.Donald Davidson,Bruce L.McCartney.Water Waves Generated by Landslides in Reservoirs[J]. Journal of the Hydraulics Division,1975,101(12):1489-1501.
    [17] Donald C.Raney, H. Lee Butler. Landslide Generated Water Wave Model[J]. Journal of the Hydraulics Division, 1976,102(9):1269-1282.
    [18] Douglas Nichol. Rockfall check fence satpeny Clipon the A55 North Wales Coast Road, UK[J]. Quarterly Journal of Engineering Geology,1999.
    [19] E.Anderheggen & A.Volkwein. Rockfall protection system GEOBRUGG RX-300 Dimo[Z]. Switzerland, 2004.
    [20] E. Noda. Water waves generated by landslides[J].Journal of the Waterways,Harbors and Coastal Engineering Division,1970,96(4):835-855.
    [21] E. H. Kennard.Generation of Surface Waves by a Moving Partition[J]. Quarterly of Applied Mathematics, 1949,7(3):303-312
    [22] F Nicot,B Cambou,G Mazzoleni.Design of rockfall restraining nets from a discrete element modeling[J].Rock Mechanics and Rock Engineering,2001,34(2):99-118.
    [23] Fausto Guzzettia, Giovanni Crostab etc..STONE: a computer program for the three-dimensional simulation of rock-falls[J].Computers & Geosciences,2002,28:1079-1093.
    [24] F. Agliardi etc..High resolution three-dimensional numerical modelling of rockfalls[J].International Journal of Rock Mechanics & Mining Sciences,2003,40:455-471.
    [25] Fredric Raichlen, Jiin Jen Lee, Catherine Petroff, et al. The Generation of Waves by a Landslide: Skagway, Alaska-A Case Study[C]. Coastal Engineering Conference Proceeding, 1996,1293-1306
    [26] G. Grasselli etc..3D Behaviour of bolted rock joints: experimental and numerical study[J]. International Journal of Rock Mechanics & Mining Sciences,2005,42:13-24.
    [27] Giani, G.P. Rock Slope Stability Analysis[R].Rotterdam, Balkema ,1992.
    [28] Gerber W,Haller B.Safe and Economical Rockfall Protection Barriers[C]. Proceedings of 1st Asian Rock Mechanics Symposium,1997.Korea:13-15 October.
    [29] H. Bruno. Advanced wire rope net system for rockfall protection[Z]. Switzerland , 1994.
    [30] Hengxing Lan etc..RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling[J].Computers & Geosciences, 2007, 33:262-279.
    [31] Hoek E.Rockfall-A Program in Basic for the Analysis of Rockfall from slopes[C]. Golder Associates, Vancouver,B.C.1987.
    [32] HEINRICH P.Nonlinear water waves generated by submarine and aeria landslides[J].J Wtrwy Port Coast and Oc Engrg1,ASCE,1992,118(3):249-266.
    [33] Hoek, Evert.Unpublished notes. NSERC Industrial Research Professor of Rock Engineering. Department of Civil Engineering, University of Toronto, Canada.
    [34] Hungr,Evans, S.G. Engineering evaluation of fragmental rockfall hazards. Proc[C]. 5th International Symposium on Landslides, Lusanne, 1988, l(1):685-690.
    [35] HARBIZT C B, PEDERSEN G, GJEVIK B. Numerical Simulations of Large Water Waves Due to Land-slides[J]. Hydraulic Engineering,1993,119(12):1325-1341.
    [36] J.Zvelebil etc..Monitoring based time-prediction of rock falls:three case-histories[J].Phys. Chem. Earth,2001,26(2):159-167.
    [37] J. W. Kamphis, R. J. Bowering. Impulse Waves Generated By Landslides[C]. ASCE, Proceedings of the 12th Coastal Engineering Conference,1971,1:689-699.
    [38] Kharaz A H,Gorham D A,Salman A D. Anexperimental study of the elastic rebound of spheres[J]. Powder Technology, 2001, 120: 281-291.
    [39] Kiersch G A. Vajont Reservoir Desaster[J].Civil Engineering,ASCE,1964,34(3):32-39.
    [40] Luuk K.A. Dorren etc..Mechanisms, effects and management implications of rockfall in forests[J]. Forest Ecology and Management,2005,215:183-195.
    [41] Lulseged Ayalew.Slope failures in the Blue Nile basin, as seen from landscape evolution perspective[J].Geomorphology,2004,57:95-116.
    [42] L.R. Richards, B. Peng, D.H. Bell. Laboratory and Field Evaluation of the Normal Coefficient of Restitution for Rocks[C]. Eurock Confererce, Finland,2001.
    [43] Markus Stoffela etc..Analyzing rockfall activity (1600–2002) in a protectionforest—a case study using dendrogeomorphology[J].Geomorphology,2005,68:224-241.
    [44] Markus Stoffel etc..Assessing the protective effect of mountain forests against rockfall using a 3D simulation model[J].Forest Ecology and Management,2006,225:113-122.
    [45] MANGWANDI C, CHEONG Y S, ADAMS M J, et al.The coefficient of restitution of different representativetypes of granules[J]. Chemical Engineering Science,2007, (62): 437-450.
    [46] N. Sasiharan etc..Numerical analysis of the performance of wire mesh and cable net rockfall protection systems[J].Engineering Geology,2006 ,88:121-132.
    [47] Norikazu Matsuoka.Rockfall activity from an alpine cliff during thawing periods[J]. Geomorphology,1999,28:309-328.
    [48] NORBERT H. MAERZ etc..New Risk–Consequence Rockfall Hazard Rating System for Missouri Highways Using Digital Image Analysis[J].Environmental & Engineering Geoscience,2005,14(3):229-249.
    [49] Pfeiffer T.J.,Higgins J.A. Rockfall hazard analysis using the Colorado rockfall simulation program[R].TRB transportation Research Board,1990.
    [50] P. Heinrich.Nonlinear Water Waves Generated by Submarine and Aerial Landslides[J]. Journal of Waterway,Port, Coastal and Ocean Engineering,1992,118(3):249-266.
    [51] Pfeiffer, T.J.,Bowen, T.D..Computer Simulation of Rockfalls[C].Bulletin of Association of Engineering Geologists,1989,26(1):135-146.
    [52] Pfeiffer, T.J.,Higgens, J.D..Rockfall Hazard Analysis Using the Colorado Rockfall Simulation[R]. Transportation Research Record 1288, TRB, National Research Council, Washington, D.C., 1990, 117-126.
    [53] P. Heinrich,S. Guibourg,A. Mangeney,et al. Numerical Modeling of a Landslide- enerated Tsunami Following a Potential Explosion of the Montserrat Volcano[J]. Phgs. Chem. Earrh (A), 1999,24, (2): 163-168.
    [54] R.M.Spang. Protection against rockfall—Stepchild in the design of rockslopes[C]. Montreal: Proc. 6th. Int. Congr. Rock Mech ,1987.
    [55] R.M.Spang, & R.Bolliger.From the timber fence to the high-energy net-Developments in rockfall protection from the origins to the present[Z]. Switzerland, 2002.
    [56] R.L.Schuster,R.J.kirzed.滑坡的分析与防治.铁道部科学研究院西北研究所译[M].北京:中国铁道出版社,1987.
    [57] Robotham, M.E.,Wang, H., Walton, G..Assessment of risk from rockfall from active and abandoned quarry slopes[J]. Institution of mining and Metallurgy, Section A, 1995,104: A25-A33
    [58] Robert L. Wiegel,Edward K. Noda,Dennis M. Gee,et al. Water Waves Generated by Landslides in Reservoirs[J]. Journal of the Waterways, Harbors and Coastal Engineering Division, 1970,96(2): 307-333.
    [59] Rudy Slingerland,Barry Voight Paolo. Evaluating Hazard of Landslide-Induced Water Waves[J]. Journal of the Waterway Port Coastal and Ocean Division, 1982,108(4): 504-512.
    [60] Richard L.Cooley, Syed Afaq Moin.Finite Element Solution of Saint-Venant Equations[J].Journal of the Hydraulics Division,1976,102(6):759-775.
    [61] Schweigl Joachim,Ferretti Carlo,N?ssing Ludwig. Geotechnical characterization and rockfall simulation of a slope: a practical case study from South Tyrol (Italy)[J]. Engineering Geology, 2003,67(3):281-296.
    [62] Simone Perret etc..Spatial and temporal rockfall activity in a forest stand in the Swiss Prealps-A dendrogeomorphological case study[J].Geomorphology,2006,74:219-231.
    [63] SEIFRIED R, SCHIEHLEN W, EBERHARD P.Numerical and experimental evaluation of the coefficient of restitution for repeated impacts[J]. International Journal of Impact Engineering, 2005, (32): 508-524.
    [64] S.Assier Rzadkiewicz,C.Mariotti,P.Heinrich. Modelling of Submarine Landslides and Generated Water Waves[J]. Phys. Chem. Earth, 1996,21(12):7-12.
    [65] Stevens, Warren D.. RocFall: a Tool for Probabilistic Analysis, Design of Remedial Measures and Prediction of Rockfalls[D]. Canada :Master of Applied Science, Graduate Department of Civil Engineering, University of Toronto. 1998.
    [66] S. T. Grilli,P.Watts. Modeling of waves generated by a moving submerged body. Applications to underwater landslides[M]. Engineering Analysis with Boundary Elements, 1999 (23):645-656.
    [67] Spang R M.Rockfall Barriers Design and Practise in Europe[A].Proc One Day Seminar on Planning, Design and Implementation of Debris Flow and Rockfall Hazards Mitigation Measures[C].Hong Kong,1998:91-98.
    [68] Spang R M,Rautenstrauch R W.Empirical and Mathematical aproaches to rockfall protection and their pratical application[C].In landsl.des.procedings of the 5th symposium on Landsldes, 1988,2.
    [69] THORNTON C. Coefficient of restitution for collinearcollisions of elastic-perfectly plastic spheres [J]. Journalof Applied Mechanics, Transactions of ASME, 1997,64: 383-386.
    [70] THORNTON C, NING Z. A theoretical model for thestick/bounce behavior of adhesive, elastic– plasticspheres[J]. Powder Technology, 1998, 99: 154-162.
    [71] THORNTON C, NING Z, WU C Y, et al. Contactmechanics and coefficient of restitution[P]. In: Poschel T,Luding S, editors. Granular gases. Berlin: Springer, 2001:184-194.
    [72] Varnes D S. Slope movement stypes and processes.RLS chuster & R J, Krized (eds)Landslides Analysis and Contro[M].National Academy of Sciences Washington,D C,1978:8-39.
    [73] WU C Y, LI L Y, THORNTON C. Rebound behavior of spheres for plastic impacts[J]. International Journal ofImpact Engineering, 2003, (28): 929-946.
    [74] WAGG D J. A note on coefficient of restitution modelsincluding the effects of impact induced vibration[J].Journal of Sound and Vibration, 2007, 300: 1071-1078.
    [75] Wu, Shie-Shin.Rockfall evaluation by computer simulation[R]. Transportation Research Records, 1985,1031:1-5,
    [76] Yang M,Fukawa T et al..The application of three-dimensional DDA with a spherical rigid block to rockfall simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41(3): 476-476.
    [77]毕辉.铁路沿线崩塌落石的综合治理[J].甘肃科技纵横,2003,32(3):77-78.
    [78]苌江,刘文泉,史雅语.爆破抛石涌浪的形态与危害及其防范[J].工程爆破,2001, 7(1):837-88.
    [79]陈洪凯.散体滑坡室内启动模型试验[J].山地学报,2002,20(1):112-115.
    [80]陈洪凯,王蓉,唐红梅.危岩研究现状及趋势综述[J].重庆交通学院学报.2003, 22(3): 18-22.
    [81]陈洪凯,唐红梅,胡明等.三峡库区危岩研究及防治新理念[J].中国地质灾害与防治学报, 2004a,15(s1):27-32.
    [82]陈洪凯,唐红梅,刘光华等.危岩支撑和支撑-锚固技术计算方法研究[J].岩土工程学报,2004b,26(3):383-388.
    [83]陈洪凯,唐红梅,胡明.危岩锚固计算方法研究[J].岩石力学与工程学报,2005,24(8):1321-1327.
    [84]陈洪凯等.危岩防治原理[M].北京:地震出版社,2006:23-50.
    [85]陈喜昌等.落石堆积的结构特征与斜坡破坏型式之转换[J].中国地质灾害与防治学报,2004,15(1):5-10.
    [86]陈喜昌等.扩离-落石灾害防治浅论[J].岩石力学与工程学报,2002,21(9): 1430-1432.
    [87]陈学德.水库滑坡涌浪研究的综合评述[J].水电科研与实践,1984,1(1):78-96.
    [88]陈学德.水库滑坡涌浪的经验算法及程序设计[M].武汉:水利电力部中南勘测设计院科研所,1984,1-18.
    [89]陈国宝.易崩落危岩的调查与防治[J].煤田地质与勘探,1999,(27):17-18.
    [90]重庆武隆山体滑坡事故.[EB/OL].[2009-6-5]. http://news.sohu.com/s2009/ chongqinghuapo_gd /index.shtml.
    [91]董秀军,黄润秋.三维激光扫描技术在高陡边坡地质调查中的应用[J].岩石力学与工程学报:增刊(2),2006,179:3629-3635.
    [92]董秀军等.三维激光扫描技术在国道213线都汶路震后抢通保通工作地质灾害应急调查中的应用[R].2008.
    [93]苟定才等.内昆铁路沿河谷地段主要工程地质问题与线路方案的地质比选研究[J].地球科学进展,2004,19:223-227.
    [94]高云河,雷建海,田景富等.流杯池小区危岩落石运动特征分析及其防治建议[J].地球与环境. 2005,33(3):150-154.
    [95]郭洪巍,吴葱葱.水库滑坡涌浪的数学模型及其应用[J].华北水利水电学院学报, 2000, (1): 24-27.
    [96]哈秋舲,胡维德.水库滑坡涌浪计算[J].人民长江,1987, 18 (2):30-36
    [97]贺咏梅,阳友奎.崩塌落石的SNS柔性防护系统的设计选型与布置[J].公路,2001,11: 14-19.
    [98]贺咏梅,阳友奎.SNS边坡柔性防护系统的标准化问题[J].路基工程,2002,(3):18-23.
    [99]贺咏梅,阳友奎.TECCO高强度钢丝格栅柔性防护系统[J].公路,2003,(7): 166-169.
    [100]贺咏梅,彭伟,阳友奎.边坡柔性防护系统的典型工程应用[J].岩石力学与工程学报, 2006, 25(2):323-328.
    [101]何思明,吴永,李新坡.滚石冲击碰撞恢复系数研究[J].岩土力学,2009,30(3): 523-627
    [102]胡厚田.崩塌与落石[M].北京:中国铁道出版社,1989.
    [103]胡厚田.崩塌落石综合预测方法的研究[J].铁道工程学报,1996,2:182-190.
    [104]湖北岩崩事故发现35具遇难者遗体[EB/OL].[2007-12-04]. http://news.sina.com.cn /c/2007-12-04/201014449275.shtml.
    [105]湖南省水利电力勘测设计院.水库库岸滑坡掀起的涌浪估算[C].铁道部科学研究院西北研究所.淆坡文集,北京:人民铁道出版社,1976,342-347.
    [106]黄种为,董兴林.水库库岸滑坡激起涌浪的试验研究[C].水利水电科学研究院科学研究论文集第13集(水力学),北京:水利出版社,1983,157 -170.
    [107]韩祥森.雅砻江锦屏一级水电站高位边坡危岩体成因机理及其稳定性研究[D].成都:成都理工大学硕士学位论文.2006.
    [108]姜治兵,金峰,盛君.滑坡涌浪的数值模拟[J].长江科学院院报,2005,22(5):1-3.
    [109]姜治兵.水库滑坡涌浪灾害的数值研究[D].武汉:长江科学院,2004.
    [110]江缵高,左伯麟等译.И.B.波波夫著.工程地质学[M].北京:地质出版社,1957.
    [111]江波.水库库岸滑坡实例[C].铁道部科学研究院西北研究所.滑坡文集,北京:人民铁道出版社,1976,260-264
    [112]孔书祥,康荣良等.金温铁路崩塌落石的成因与防治[J].铁道建筑,2004,3:P51-52.
    [113]吕庆,孙红月,翟三扣等.边坡滚石运动的计算模型[J].自然灾害学报,2003, 12(2): 9-84.
    [114]李现宾.拱桥—框架棚洞在落石病害整治中的应用[J].西部探矿工程,2004 ,10:118-119.
    [115]李未,王如云,刘向阳.滑坡涌浪的产生与传播波形分析[J].浙江水利水电专科学校学报, 2003, 15(1):1-3.
    [116]林宗元.岩土工程治理手册[M].沈阳:辽宁科学技术出版社,1993.
    [117]刘传正等.贵州省纳雍县岩脚寨危岩崩塌灾害成因初步分析[J].中国地质灾害与防治学报,2004, 15(4):18-19.
    [118]刘永平等.某高陡边坡崩塌落石运动特征分析及其防治[J].水文地质工程地质,2005,1:30-33.
    [119]刘卫华.高陡边坡危岩体稳定性、运动特征及防治对策研究[D].成都:成都理工大学,2008.
    [120]刘建秀.流体力学滑坡涌浪区的样条边界元法[J].黄淮学刊,1994, 10 (3) : 35-38.
    [121]卢传福.悬崖落石抛射计算[J].铁道工务,1998,3:48-56.
    [122]马立广.地面三维激光扫描仪的分类与应用[J].地理空间信息, 2005a, 3(3):60-62.
    [123]马立广.地面三维激光扫描测量技术研究[D].武汉:武汉大学,2005b.
    [124]聂德新等.拉西瓦水电站坝址地应力特征与岩体力学参数评价[R].2002.
    [125]聂德新,杨天俊等.高混凝土拱坝建基岩体工程地质岩体力学综合研究报告[R].2005.
    [126]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:中国水利出版社,1980.
    [127]青海拉西瓦水电站山体滑坡确认8人死亡. [EB/OL].[2007-07-23]. http://news.qq.com /a/20070723/003232.htm.
    [128]任坤杰,金峰,徐勤勤.滑坡涌浪垂面二维数值模拟[J].长江科学院院报,2006,23(2):2-4.
    [129]唐红梅等.危岩落石运动路径研究[J].重庆建筑大学学报,2003,25(1):17-23.
    [130]唐红梅.危岩拦石墙计算方法研究[J].中国地质灾害与防治学报,2005,16(3):12-15.
    [131]铁道部第一设计院铁路工程设计技术手册特殊条件下路基[M].北京:中国铁道出版社, 1984
    [132]王育林,陈凤云等.危岩体崩滑对航道影响及滑坡涌浪特性研究[J].水道港口, 1992,(03).
    [133]王晓鸿,刘汉超,张倬元.滑坡涌浪的二维有限元分析[J].地质灾害与环境保护,1996,7(4):19-22.
    [134]王兰生等.黄河拉西瓦水电站坝址区高边坡稳定性及工程处理措施研究[R].2002.
    [135]汪洋,殷坤龙.水库库岸滑坡的运动过程分析及初始涌浪计算[J].中国地质大学学报, 2003, 28(5):579-582.
    [136]汪洋.水库库岸滑坡速度及其涌浪灾害研究[D].北京:中国地质大学.2005.
    [137]魏永幸.崩坍落石灾害模型及其防治工程决策[J].地质灾害与环境保护,2004,15(2): 27-31 .
    [138]韦启珍,雷秀丽.崩塌落石运动参数的数值模拟研究[J].中国水运,2008,8(3): 165-166.
    [139]亚南,王兰生等.崩塌落石运动学的模拟研究[J].地质灾害与环境保护,1996,(2):25-32.
    [140]严骏龙.水库滑坡涌浪的二维有限元分析方法[J].水利学报,1983(7):41-461
    [141]阳友奎等.坡面地质灾害柔性防护的理论与实践[M].北京:科学出版社,2005.
    [142]阳友奎,贺咏梅.斜坡坡面地质灾害SNS柔性防护系统概论[J].地质灾害与环境保护, 2000,(2):28-33.
    [143]杨其新,关树宝.落石冲击力计算方法的试验研究[J].铁道学报,1996,18(1):101-106.
    [144]杨正国.崩塌落石的SNS柔性防护技术及其运用[J].路基工程,1999,1: 42-45.
    [145]杨学堂,刘斯凤,杨耀.黄腊石滑坡群石榴树包滑坡涌浪数值计算[J].武汉水利电力大学(武昌)学报,1998,(3) :51-551.
    [146]杨锡武,王多银.用锚杆挡墙治理危岩的实践[J].路基工程,1995(1):4-6.
    [147]杨海清,周小平.边坡落石运动轨迹计算新方法[J].岩土力学,2009,30(11): 3411-3416.
    [148]杨淑碧,董孝璧等.重庆市中心区危岩稳定性研究[M].成都:成都科技大学出版社,1994.
    [149]杨江波,唐川,沈娜.四川康定师专前山危岩发育特征及应急治理对策[J].地质学报, 2009,29(1):59-61.
    [150]叶四桥.隧道洞口段落石灾害研究与防治[D].西南交通大学博士学位论文, 2008,159-171.
    [151]叶四桥,唐红梅,祝辉.基于落石运动特性分析的拦石网设计理念[J].岩土工程学报, 2007,29(4):566-571.
    [152]叶四桥,陈洪凯,唐红梅.基于落石计算的半刚性拦石墙设计[J].中国铁道科学, 2008,29(2):17-22.
    [153]叶四桥,陈洪凯,唐红梅.危岩落石防治技术体系及其特点[J].公路,2010,(7):80-84
    [154]袁银忠,陈青生.滑坡涌浪的数值计算及实验研究[J].河海大学学报,1990,8(5): 46-53.
    [155]袁晶,张晓峰,张为.可变网格下的水库湖泊涌浪数值模拟研究[J].水科学进展,2008,19(4):546-550.
    [156]曾廉.崩塌与防治[M].成都:西南交通大学出版社,1990:23-50.
    [157]张戎垦,王永国.陡坡崩塌及落石地段铁路选线勘察[J].铁道勘察,2004,2: 69-71.
    [158]张倬元,王士天.工程动力地质学[M].北京:地质出版社,1964.
    [159]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [160]张伟锋.危岩体危险性评价及防治对策研究-以雅砻江锦屏以及水电站为例[D].成都:成都理工大学.2007.
    [161]赵旭,刘汉东.运动学在边坡落石计算中的应用[J].华北水利水电学院学报,2004, 25(2):46-50.
    [162]赵旭.宝泉抽水蓄能电站开关站边坡落石运动学分析研究[D].郑州:华北水利水电学院, 2004.
    [163]赵允辉.危岩崩塌地质灾害调查评价与防治[J].中国地质灾害与防治学报.2004, 15:33-38.
    [164]郑黎明.宝成线略-广段崩塌落石灾害发展速度的预测[J],水文地质工程地质, 1994,1: 13-15.
    [165]周迎庆,阳友奎.治理边坡地质灾害的SNS柔性防护系统[C].滑坡文集.北京:中国铁道出版社,2000,(14):121-132.
    [166]周衍柏.理论力学教程[M].北京:人民教育出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700