用户名: 密码: 验证码:
密云水库富营养化阈值与外源磷素输入响应关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富营养化是水环境领域中遇到的突出问题。国内外对富营养化从概念、评价方法、发生机理和预测模型等方面进行了大量的研究,然而,对富营养化阈值方面的研究仍不充分,影响了富营养化的评价和防治。本论文从营养盐输入与富营养化响应关系入手,建立了基于营养盐阈值的富营养化风险评价方法体系,设计了模拟目标水体富营养化阈值的流水AGP试验,并选取北京市重要的地表水源密云水库进行实例研究。
     本文首先界定了富营养化阈值的概念:在水体富营养化过程中,某些限制性营养因子达到一定值后导致水体有机质(浮游生物)供给速率发生跃迁行为,表征这一临界效应的数值称为富营养化阈值。从阈值角度出发,本文定义富营养化为:水体限制性营养因子达到一定的阈值条件下,导致水体初级生产力大幅增加,造成水质恶化的过程。
     通过对比分析水质参数法、综合指数法、模糊数学法、藻种多样性法等评价方法的优缺点,本文提出了基于目标水体富营养化阈值的评价方法体系,主要内容包括:(1)目标水体富营养化限制因子的判识;(2)确定目标水体富营养化阈值;(3)根据阈值划分水体评价标准;(4)划分风险级别,进行风险评价。
     多元回归分析发现,透明度、硝酸盐氮、电导率、总磷、总氮与叶绿素a呈显著相关,总磷为密云水库富营养化限制因子。采用分层聚类分析法根据密云水库各监测点指标的相似性,将密云水库监测点划分为四组,其中第一组包括库西、白河主坝,第二组包括水九、潮河主坝、恒河、套里,第三组包括金沟,第四组包括库东。影响密云水库藻生长空间分布的主要因素可以归纳为两类:第一类是以硝酸盐氮、总氮为代表的营养因子,第二类是以水温、电导率、pH值为代表的环境因子。水质状况由好到差的顺序依次为:Group1>Group2>Group4>Group3。选取库东分析时间分布因子,影响藻生长时间分布的主要因素可归纳为三类:第一类是以硝酸盐氮、总氮、总磷为主的营养因子;第二类由总磷、水深、溶解氧、pH等环境因子和营养因子共同作用;第三类由氨氮决定。密云水库浮游藻类结构年内变化明显。
     通过设计模拟外源输入对富营养化作用的AGP试验装置和方法,模拟了不同环境条件、营养条件下密云水库优势藻种演变和富营养化过程,结合使用MATLAB 7.0数值分析软件,对3期模拟时段的比增长率进行拟合分析,得出3期设计阶段密云富营养化发生的总磷阈值为0.053mg/L、0.062 mg/L、0.064 mg/L,再根据总磷与叶绿素a、总氮、透明度之间的回归关系,划分了密云水库富营养化的评价标准级别。
     采用WASP生态动力学模型对密云水库叶绿素a进行了数值模拟,结果显示,该模型能较好反映密云水库富营养化过程。最后,采用SPSS13.0统计软件对预测值进行了概率分析,并应用GIS软件对密云水库富营养化发生的风险进行了区划,对防治水体富营养化提出了综合性和前瞻性的对策建议。
Eutrophication is a prominent problem encountered in the field of water environment. Even though a great many studies on the concept of eutrophication, evaluation methods, the mechanism and prediction models have been developed both at home and abroad, the research on the threshold for eutrophication is still insufficient, affectting the evaluation and control of eutrophication. In this paper, from the response relationship of eutrophication and nutrients, the risk assessment method system of eutrophication based on the nutriment threshold is found, the flow water AGP test simulatting eutrophication of target water is designed, Miyun Reservoir, the important surface water source in Beijing,is selected as the study case.
     First, this paper defines the concept of eutrophication threshold: in the process of water eutrophication, some restrictive nutritional factors reach a certain value,and resulted in the transition behavior of the supply rate of organic matter(plankton). Eutrophication threshold denote the value of the critical effect threshold. From the view of threshold value, the definition of eutrophication in this paper is: when the restrictive trophic factor of the water body reaches a certain threshold conditions, primary productivity of the water body increase heavenly, resulting in the process of deterioration of water quality.
     Through the analysis strongpoint and shortcoming of some evaluatation methods, such as the water quality parameters method, the composite index method, the fuzzy mathematical method,and algal species diversity method, the evaluation method system is proposed in this paper based on eutrophication threshold, the main contents include: (1)identification eutrophication limit factors of target waterbody;(2) identifying the target water eutrophication threshold; (3) division water body evaluation criteria based on threshold; (4) division the risk level, and estimate risk.
     A significant correlation among the transparency, nitrate nitrogen, conductivity, total phosphorus, total nitrogen and chlorophyll-a is found after Multiple regression analysis, and total phosphorus is considered as eutrophication limiting factor in Miyun Reservoir. Monitoring sites in Miyun Reservoir are divided into four groups in accordance with the similarity of index in each monitoring sites, using hierarchical clustering analysis. The first group includes the kuxi, Baihe main dam;the second group includes Shuijiu, the main chaohe dam, Henghe, Taoli;the third group includs Jingou; the fourth group includes the Kudong. The main factors that affect the spatial and seasonal distribution of the growing algae in Miyun Reservoir can be summed up as two categories: nutritional factors represented by nitrate nitrogen and total nitrogen. The second category are environmental factors represented by water temperature, conductivity, pH value. Water quality from good to poor condition of the order as follows:Group1>Group2>Group4>Group3. After selecting kudong as the site for analysis of the time Distribution factor, the main factors affecting the temporal distribution of algal growth can be summarized into three categories: the first category is nutrient factors mainly comprised of nitrate-nitrogen, total nitrogen, total phosphorus, The second is under a integrate function of the total phosphorus, water depth , dissolved oxygen, dissolved oxygen, pH and other environmental factors and the nutritional factors. The third is determined by the ammonia. It is concluded that phytoplankton structure changes significantly during the year in Miyun Reservoir.
     Through the design of AGP-test equipments and methods which could simulate the impact of input of exogenous nutrients on eutrophication, the evolution of algae and aquatic species extinction process in Miyun Reservoir under different environmental and nutritional conditions are simulated. Then the ratio growth rate in the three simulation stages are simulated and analyzed combining the numerical analysis software MATLAB 7.0. At last, the conclusion that in the three designed stage, the total phosphorus threshold which leads to a water bloom in Miyun is respctively 0.053mg/L, 0.062mg/L, 0.064 mg/L is educed. Based on the regression relationship of total phosphorus,chlorophyll-a, total nitrogen, and the transparency,we compartmentalized the evaluation standard level of eutrophication in Miyun Reservoir.
     WASP ecological dynamic model is used for the Miyun Reservoir chlorophyll-a numerical simulation. And the results revealed that the model is preferable to reflect the eutrophication process of Miyun Reservoir. Finally, the probability analysis of prediction value as well as the zoning of the risk of eutrophication in Miyun Reservoir is carried out using the statistical software SPSS13.0; the paper provides a comprehensive and forward-looking way preventing against eutrophication of waterbody.
引文
[1]黎颖治,夏北成.湖泊沉积物内部因素对沉积物-水界面磷交换的影响[J].土壤通报,2006,37(5): 1017-1021.
    [2]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [3]孟红明,张振克.我国主要水库富营养化现状评价[J].河南师范大学学报(自然科学版),2007,35(2):133-137.
    [4]吴国平,郑丰,涂建峰.湖泊富营养化危害机理研究[J].水利水电快报,2007,28(12):4-5.
    [5]姜文来.中国湖泊资源危机[J].科技潮,2008,(9):26-28.
    [6]Bianchi.T.S.,Engelhaupt,E.,Westman,P.,Andren,T.,Rolff,C.and Elmgren,R. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced?[J].Limnol.Ocenogr.,2000,45:716-726.
    [7] Smith,V.,Tilman,GD.and Nekola,J.C.Eutrophication:impacts of exxess nutrient inputs on freshwater,marine,and terrestrial ecosystems[J].Envionmental Pollution,1999,100:179-196
    [8]Rohe,W.Crystallization of eutrophication concepts in North Europe.In:Eutrophication,Causes, Consequences,Correctives[M].National Academy of Sciences,Washington D.C.,1969.pp.50-64.
    [9]王保栋.长江口及邻近海域富营养化状况及其生态效应[D].中国海洋大学,2006.
    [10]Nixon,S.W.Coastal marine eutrophication:a definition,social causes,and future concerns[J].Ophelia,1995,41:199-219.
    [11]周云龙,于明.水华的发生、危害和防治[J].生物学通报,2004,39(6): 11~14.
    [12]常会庆,车青梅.富营养化水体的评价方法研究[J].安徽农业科学,2007,35(32):10407-10409.
    [13]陈红军.官厅水库富营养化污染的磷源研究与分析[D].北京化工大学,2005.
    [14]李小平.美国湖泊富营养化的研究和治理[J].自然杂志,2002,24(2):63-68.
    [15]Schindler,D.W.Evolution of phosphorus limitation in lakes[J].Science,1977,195:260-262.
    [16]Cloem,J.E.Our evoving conceptual model of the coastal eutrophication problem.Mar[J].Ecol.Prog.Ser.,2001,210:223-253.
    [17]Carpenter,S.R.,Caraco,N.F.,Correll,D.L.,Howarth,R.W.,Sharpley,A.N.and Smith, V.H.Nonpoint pollution of surface waters with phosphorus and nitrogen[J.]Ecological Appications,1998,8:559-568.
    [18]刘春广,乔光建.朱庄水库水体富营养化机理分析及治理对策[J].南水北调与水利科技,2003,1(5):44-48.
    [19]Tiessen,H.(ed.).Phosphorus in the Global Environment:Transfers,Cycles and Management[J]. SCOPGE 54.John Wiley & Sons Ltd.,U.K.,1995.480pp.
    [20]Downing,J.A.and McCauley E. The nitrogen:phosphorus relationship Iin lakes.Limnol[J].Oceanogr., 1992,37,936 -945.
    [21]Simith,V.H.The niteogen and phosphorus dependence of biomass in lakes:an empirical and theoretical analysis.Limnol[J].Oceangre.,1982,271101-1112.
    [22]Smith,V.H.Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton[J].Science,1983,221,669-671.
    [23]Trimbee,A.M.and Prepas,E.E. Evaluation of total phosphorus as a predicator of the relative biomass of blue-green algae with emphasis on Alberta lakes[J].Can.J.Fish.Auat.Sci.,1987,44,1337-1342.
    [24]黄清辉.浅水湖泊内源磷释放及其生物有效性——以太湖、巢湖和龙感湖为例[D].中国科学院生态环境研究中心,2005.
    [25] Webb B W,Phillips J M,Walling D E,et al.Load estimation methodologies for British rivers and their relevance to the Loisracs(r) Programme[J]. The Science of the Total Environment,1997,194/195:379-389.
    [26]富国.河流污染物通量估算方法分析(Ⅰ)——时段通量估算方法比较分析[J].环境科学研究,2003,16(1):1-4.
    [27]罗缙,逄勇,林颖,等.太湖流域主要入湖河道污染物通量研究[J].河海大学学报(自然科学版),2005,33(2):131-135.
    [28]李一平,逢勇,吕俊,等.外源污染对太湖梅粱湾水质影响的定量化[J].城市环境与城市生态.2004,17(1):5-8.
    [29]TakahashiM.,Mamura,M.KomatsuandS.Ichimura Malti-regression analysis of microcystis bloom with various environmental parameters in eutrophic lake kasumigaura[J].Hydrobiologia,1981,112:53-60.
    [30]Eppley,R.W.Tempetature and phytoplankton growth in the sea.Fish[J].Bull.,1972,70:1063-1085.
    [31]Goldman,J.C.,E.J.Carpenter.Akinetic approach to the effect of temperature on algal growth[J].Limnol.O-ceanogr.,1974,19:756-766.
    [32]Reynolds C S.The ecology of planktonic blue-green algae in the north Shropshire meres[J].Fld Stud,1971,3:409-431.
    [33]Robert Arfi.The effects of climate and hydrology on the trophic status of SélinguéReservoir Mali,West Afriva[J].Lakes&Reservoirs:Research and Management,2003,8:247-257.
    [34]Tamiji Yamamoto,et al.Effects of winds,tides and river water runoff on the formation and disappearance of the Alexandrium tamarense loom in Hiroshima Bay,Japan[J].Harmful Algae,2002:301-312.
    [35] Bergman E.Changes in nutrient load and lake water chemistry in Lake Ringsjǒn,southern Sweden,from 1966 to 1996.Hydrobiologia,1999,404(10):9-18.
    [36] Dokulil MT,Teubner K.Eutrophication and restoration of shallow lakes:the concept of sTab. equilibria revisited. Hydrobiologia,2003,506(7):29-35.
    [37] Inna N Andronikova.Zooplankton characteristics in monitoring of Lake Ladoga. Hydrobiologia,1996,322(4):173-179.
    [38] Jarl Eivind Lovik,Gosta Kjellberg.Long-term changes of the crustacean zooplankton community in Lake Mjosa,the largest lake Norway.J Limnol,2003,62(2):143·150.
    [39] Degobbis D,Precali R,Ivancic I et a1.Long-term changes in the northern Adriatic ecosystem related to anthropogenic eutrophication.International Journal of Environment and Pollution,2000,13(1-6):495-533.
    [40] Anderson NJ,Erik Jeppesen,Martin S.Ecological efects of reduced nutrient loading (oligotrophication) on lakes:an introduction.Freshwater Biology,2005,50(10):1589·1593.
    [41] Monica Tolotti,Hansjorg Thies.Phytoplankton community and limnochemistry of Piburger See(Tyrol,Austria) 28 years after lake restoration.J Limnol,2002,61(1):77-88.
    [42]程曦,李小平.淀山湖氮磷营养物20年变化及其藻类增长响应.湖泊科学,2008,20(4):409-419.
    [43]东夜脉兴.湖泊中磷的循环和沉积作用[J].化工矿产地质,1996,18(4):258-262.
    [44]淇华生.厦门港浮游植物对磷酸盐吸收速率的研究[J].海洋与湖沼,1994,25(1):54-59.
    [45]朱小明.厦门港浮游生物对可溶解性活性磷吸收和再生通量的季节变化[J].厦门大学学报,1997,36(1):145-152
    [46]毛劲乔,陈永灿,等.基于地理分区的湖泊水库富营养化判别标准[J].人民黄河,2006,28(10):43-45.
    [47] Dixit SS,Smol JP,Kingston JC et a1.Diatoms:Powerful indicators of environmental change.Environmental Science and Technology,1992,26:22-33.
    [48]Jongman RHG ter Braak CJF,van Tongeren OFR.Data analysis in community an d lan dscape ecology.Wageningen:Pudoc,1987:299.
    [49]郑丙辉,许秋瑾,周保华,等.水体营养物及其响应指标基准制定过程中建立参照状态的方法——以典型浅水湖泊太湖为例.湖泊科学,2009,21(1):21-26.
    [50]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998,104~105.
    [51]况琪军.韩国南汉河的浮游植物及营养水平[J].长江流域资源与环境,1999,8(2):221-226.
    [52]杜宝汉.用灰色关联度模型评价湖泊富营养化[J].四川环境,1999,18(4):48-52.
    [53]GGEORGIEV V B,ILIEV I P,BOGDANOVA S M.水库的热分层动态特性及其对富营养化过程的影响[M].保加利亚科学院水问题研究所,1990:1-4.
    [54]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测,2002,18(5):47-49.
    [55]方正,孙迎霞,程晓如.多级模糊模式识别方法用于湖泊水质评价[J].重庆环境科学,2003,25(10):39-41.
    [56]蔡庆华.武汉东湖富营养化的综合评价[J].海洋与湖泽,1993,24(4):335-339.
    [57]熊德琪.一种新的海水富营养化模糊评价方法[J].海洋通报,1993,12(6):30-35
    [58]谢宏斌.南湖富营养化的人工神经网络评价[J].广西科学院学报,1999,15(1):29-32.
    [59]任黎,董增川,李少华.人工神经网络模型在太湖富营养化评价中的应用[J].河海大学学报,2004,32(2):147-150.
    [60]卢文喜,祝廷成.应用人工神经网络评价湖泊的富营养化[J].应用生态学报,1998,9(6):645-650.
    [61]徐祖信,廖振良.水质数学模型研究的发展阶段与空间层次[J].上海环境科学,2003,22(2):79-85.
    [62]Ambrose R B, Wool T A, Martin J L, et al.WASP5.x,A Hydrodynamic and Water Quality Model—Model Theory, User’s Manual, and Programmer’s Guide[C].Draft: Environmental Research Laboratory, US Environmental Protection Agency,1993.
    [63]徐清,杨天行,刘晓端,等.密云水库总磷的富营养化分析与预测[J].吉林大学学报(地球科学版),2003,33(3):315-318.
    [64]史晓军,朱党生,张建永编著.现代水资源保护规划[M].北京:化学工业出版社,2005.
    [65]万金保,李媛媛.湖泊水质模型研究进展[J].长江流域资源与环境,2007,16(6):806-810.
    [66] Bencala, K.E., Walters, R.A. Simulation of solute transport in a mountain pool-and riffle stream—A transient storage model[J].Water Resources Research,1983,19(3):718-724.
    [67]Broshears, R.E., Bencala, K.E., Kimall, B.A., et al. Tracer-dilution experiments and solute-transport simulation for a mountain stream, Saint Kevin Gulch, Colorado [R].U.S. Geological Survey Water-Resources Investigations Report 92-4081(18),1993.
    [68]Valert, H.M., Morrice, J.A., Dahm, C.N., et al. Parent lithology, surface groundwater exchange, and nitrate retention in headwater streams [J].limnology and Oceanography, 1996, 41(2):333-345.
    [69] USEPA. Hydrodynamic and water quality model of Christina River Basin, Final report[R].United states Environmental Protection Agency, Region III,Philadelphia,PA,2000
    [70]John M. Hamrick, William B. Mills. Analysis of water temperatures in Conowingo Pond as influenced by the Peach Bottom atomic power plant thermal discharge [J].Environmental science &.police, 2000, 3: S197-S209.
    [71]刘永,郭怀成,范英英,等.湖泊生态系统动力学模型研究进展[J].应用生态学报,2005,16(6):1169-1175.
    [72]邢可霞,郭怀成.环境模型不确定性分析方法综述[J].环境科学与技术,2006,29(5):112-116.
    [73]余红,沈珍瑶.三峡水库大宁河流域非点源污染参数的不确定性分析[J].中国环境科学,2007,27(4):554~558
    [74] Zhang H X. The critical flow-storm approach and uncertainty analysis for the TMDL develop process [D].Charlottesville: University of Virginia, 2001.
    [75]Francos A, Elorza F J,Bouraoui F, et al. Sensitivity analysis of distributed environmental simulation models: understanding the model behavior in hydrological studies at the catchment scale[J].Reliability Engineering and System Safety,2003,79:205-218.
    [76] Catherine Freissinet, Michel Vauclin, Marc Erlich. Comparison of first-order analysis and fuzzy set approach for the evaluation of imprecision in a pesticide groundwater pollution screening model[J].Contaminant Hydrology,1999,37:21-43.
    [77]Omlin M, Reichert P.A comparison of techniques for the estimation of model prediction uncertainty [J].Ecol. Model, 1999, 115:45-59.
    [78]王霞,吕宪国,闫伯茹,等.基于富营养化阈值的松花湖水环境容量分析[J].湖泊科学,2006,18(5):503-508.
    [79]金相灿,刘鸿亮,屠清瑛等.中国湖泊富营养化[M].北京:中国环境科学出版社,1990.
    [80]斯文·奥洛弗·赖丁,沃特·拉斯特著,朱萱译.湖泊与水库富营养化控制[M].北京:中国环境科学出版社,1992.
    [81] Reckhow K H. Empirical lake models for phosphorus: development , application,limitations and uncertainty ,in Scavia D, Robertson, A. (eds.),Perspectives on lake ecosystem modeling. Michigan:Ann Arbor Science Publisher,1979.
    [82]S. E.乔根森,R.A.沃伦韦德著,刘鸿亮,曹凤中等译.湖泊管理指南:湖泊管理原则(第一卷) [M].北京:中国环境科学出版社,1990.
    [83]李炜.环境水力学进展[M].武汉:武汉水利电力大学出版社,1999.
    [84] Hakanson,L. Water Pollution - Methods and Criteria to Rank, Model and Remediate Chemical Threats to Aquatic Ecosystems[M]. Backhuys, Leiden,The Netherlands,1999.
    [85] Droop , M. Some thoughts on nutrient limitation in algae.J. Phycol[J].1973,(9):264~272.
    [86] DiToro,D.Applicability of cellular equilibrium and Monod theory to phytoplankton growth kinetics[J].Ecol.Modeling,1980,(8):201~218.
    [87] Carl F. Cerco2 , Mark R. Noel , Dorothy H. Tillman. A practical application of Droop nutrient kinetics (WR 1883)[J] . Water Research ,2004 , (38):4446~4454.
    [88] Lehman,J.T,Botkin ,D.B.and Likens ,G. E. The assumptions and rationales of a computer model of phytoplankton population dynamics[J]. Limnol.Oceanogr.1975,(20):343~363.
    [89]Baule , B. Zu. Mitscherlichs Ciesetz der physiologische Beziehungen.Landwirtsch[J].Jahrb, 1971,(51):363~385.
    [90] De Groot,W.T.Modelling the multiple nutrient limitation of algalGrowth[J].Ecol.Model,1983, (18):99~119.
    [91] T.Legovic,A.Cruzado.A model of phytoplankton growth on multiple nutrients based on the Michaelis-Menten-Monod uptake, Droop’s growth and Liebig’s law[J]. Ecological Modelling,1997,(99):19~31.
    [92] Vincenzo Botte ,Anthony Kay. A numerical study of plankton population dynamics in a deep lake during the passage of the Spring thermal bar[J].Journal of Marine Systems,2000,(26): 367~386.
    [93] Jingjie Zhang,Sven Erik J¢rgensen, Can Ozan Tan,Meryem Beklio2 glu.A structurally dynamic modelling-Lake Mogan,Turkey as a case study[J].Ecological Modelling,2003, (164):103~120.
    [94] Olli Malve, Marko Laine, Heikki Haario,Teija Kirkkala,Jouko Sarvala.Bayesian modelling ofalgal mass occurrences during adaptive MCMC methods with a lake water quality model[J]. Environmental Modelling &Software ,2006.
    [95] Chen C W,Orlob GT. Ecologic simulation for aquatic environments, in:Patten BC,ed[M]. System analysis and simulation in ecology.Vol.Ш. New York: Academic Press,1975.
    [96] Arnold GW, Wit C T. Critical Evaluation of Systems Analysis in Ecosystems Research and Management[M]. Wageningen:Pudoc.1976.
    [97] Jeffers John NR. An introduction to systems analysis[M]. London : Edward Arnold,1978.
    [98]韩菲,陈永灿,刘昭伟.湖泊及水库富营养化模型研究综述[J].水科学进展,2003,14(6):785-791.
    [1]杜桂森,王建厅,武殿伟,等.密云水库的浮游植物群落结构与密度[J].植物生态学报,2001,25(4):501~504.
    [2]王晓燕,王一峋,蔡新广,等.北京密云水库流域非点源污染现状研究[J].环境科学与技术,2002,25(4):1-3
    [3]王晓燕,郭芳,蔡新广.密云水库潮白河流域非点源污染负荷[J].城市环境与城市生态,2003,16(1):31-33
    [4]王晓燕,王晓峰,汪清平,等.北京密云水库小流域非点源污染负荷估算[J].地理科学,2004,24(2):227—231
    [5]王晓燕,汪清平.北京市密云县耕地畜禽粪便负荷估算及风险评价[J].农村生态环境,2005,21(1):30-34
    [6]刘霞.密云水库水体富营养化研究[D].首都师范大学硕士学位论文,2001:1-2.
    [7]王建平,苏保林,贾海峰,等.密云水库及其流域营养物集成模拟的模型体系研究[J].环境科学,2006,27(7):1286-1291.
    [8]徐清,刘晓端,王辉锋,等.密云水库沉积物内源磷负荷的研究[J].中国科学D辑(地球科学),2005,35(增刊Ⅰ):281-287
    [9]陈毓龄,宋富,赵蔚苓.北京密云水库富营养化预测模型[J].环境科学研究,1991,4(2):7-13.
    [10]黄生斌,叶芝菡,刘宝元.密云水库流域非点源污染研究概述[J].中国生态农业学报,2008,16(5):1311-1316
    [1]黄祥飞,陈伟民,蔡启铭,等.湖泊生态调查观测与分析.北京:中国标准出版社,1999.27~62.
    [2]Vollenweider R A,Elemental and biochemical composition of plankton biomass:some comments and explorations.Arch Hydrobiol,1985,105:11-29.
    [3]Horme A J,Coldman C R.Limnology(Second Edition).New York:McGraw-Hill,Inc,1994.
    [4]汤国安,杨昕.GIS地理信息系统空间分析实验教程[M].北京,科学出版社,2006.388-392.
    [5]舒金华.我国湖泊富营养化程度评价方染与防治,1990,12(5):2-7.
    [6]Lung W S,Canale R P.Freodman P L.Phosphorus models for eutrophic lakes[J].Water Research,1976,10(8):1101-1114.
    [7]冯玉国,湖泊富营养化灰色评价模型用志,1996,15(2):68-71.
    [8]李强.灰色动态模型在湖泊TN,TP贮蓄量预测中的应用[J].水资源保护,1998,98(2):23-26.
    [9]李振亮.湖泊富营养化评价的Euclid贴评环境监测,1998,10(1):16-19,22.
    [10]李柞泳,洪继华用养化评价[J].环境科学研究,1991,4(2):32-36.
    [11]刘首文,冯尚友.人工神经网络在湖泊富营养化评价中的应用研究[J].上海环境科学,1996,15(1):11-14.
    [12]胡著邦,徐建民,全为民.模糊评价法在湖泊富营养化评价的应用[J].农业环境保护,2002(6):535-536,539.
    [13]郑丙辉,许秋瑾,周保华,等.水体营养物及其响应指标基准制定过程中建立参照状态的方法——以典型浅水湖泊太湖为例.湖泊科学,2009,21(1):21-26.
    [1] Hao L R,Fan Y, HaoZh O,et al. Application analysis in SPASS statisics.Beijing:China Water Power & Water Resource Press,2003.255~265.
    [2]刘静,2004. .密云水库浮游生物与富营养化控制因子研究[D].首都师范大学硕士学位论文
    [1] Smith V H,Tilman G D,Nekola J C.Eutrophication:impacts of excess nutrient inputs on freshwater marine and terrestrial ecosystems.Environmental Poluution,1999,100:179-196.
    [2] Koelmans A A,Van der Heijde A,Knijff L M,et al. Integrated modelling of eutrophication and organic contaminant fate & effects in aquatic ecosystems.Water Res,2001,35(15):3517-3536.
    [3] Srinivasu P D N.Regime shifts in eutrophied lakes: a mathematical study.Ecological Modelling,2004,179:115-130.
    [4] Bayraktaroglu E,Legovic T,Velasquez Z R,et al.Diatom thalassiosira weissflogii inoligotrophic versus eutrophic culture:models and ultratructure.Ecological Modelling,2003,170:237-243.
    [5] Hullebusch E V,Deluchat V , Chazal P M , et al. Environmental impact of two successive chemical treatments in a small shalloe eutrophied lake:Part II Case of copper sulfate.Environmental Pollution,2002,120:627-634.
    [6] Xu F L,Tao S,Dawson R W,et al.Lake ecosystem health assessment: Indicators and methods.Wat Res,2001,35(13):3157-3167.
    [7] Joshua D,Woodruff Mille A.Trophic state evaluation for seleted lakes in grand teton national park.Journal of the American Water Resource Association.2001,37(4):45-50.
    [8]王霞,吕宪国,白淑英,等.松花湖富营养化发生的阈值判定和概率分析[J].生态学报,2006,26(12):3989-3997.
    [9]周佩雯.水华暴发的SOC实验与藻体叶绿素a量子化学计算[D].重庆大学,2006.
    [10] Huang B Q,Hong H S,Xue X Z.Distribution and controlling factors of alkaline phosphatase activity in western Xiamen waters.Acta Oceanologica Sinica,2000,22(1):62-68.
    [11]Gao G,Qin B Q,Zhu G W,et al.Seasonal variation of alkaline phosphatase activity in meiliang bay, Lake Taihu, Journal of Lake Sciences,2004,16(3):245-251.
    [12] Eckert W,Nishri A,Parparova R.Factors regulating the flux of phosphate at the sediment water inerface of a subtropical calcareous lake:A simulation study with intact sediment cores.Water Air,Soil Pollut,1997,99(1-4):401-409.
    [13] Hantke B,Fleischer P,Domany I,et al.Prelease from DOP by phosphatase activity in comparison to Pexcretion by zooplankton.Studies in hardwater lakes of different trophic level.Hyrdobiologia,1996,317:151~162.
    [14]高光,高锡芸,秦伯强.太湖水体中碱性磷酸酶的作用阈值.湖泊科学,2000,12(4):353~358.
    [15]李小平.美国湖泊富营养化的研究和治理.自然杂志,2002,24(2):63-68.
    [16]郑丙辉,张远,富国,等.三峡水库营养状态评价标准研究[ J ].环境科学学报, 2006,26(6) : 1022– 1030.
    [17]秦伯强,胡维平,陈伟民等.太湖水环境演化过程与机理.北京:科学出版社,2004.
    [1]Water Quality Analysis Simulation Program (WASP) Graphical User Interface User’s Guidhttp://www.epa.gov/athens/wwqtsc/html/wasp.html
    [2]于勇勇.官厅水库水质富营养化模拟研究[D].北京师范大学硕士论文,2006.
    [3] Orlod G T.Mathematical modeling of water quality:Stream,Lakes andReserviors.ⅡASA,1983.
    [4]陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究[J].水利学报,1998,(9): 14-20.
    [5]于顺东,尤学一. WASP水质模型检验及参数敏感度分析[J].水资源与水工程学报.2007,18(6):41-45.
    [6]Thomann R V,Fitzpatrick J F.Calibration and verification of a mathematical model of the eutrophication of the Potomac Estuary[R],1982
    [7]Ambrose R B.Wool T A,and Martin J L.The Water Quality Analysis Simulation Program wASP5[M].U.S.EPA Center for Exposure Assessment Modeling,Athens,1993:8-14.
    
    
    [1] Rudek J.Paerl H.W.,Mallin M.A.et.al.Seasonal and hydrological control of phytoplankton nutrnent limitation in the Lower Neuse River Estuary.North Carolina,Mar.Ecol.Prog.Ser,1991,73:133-142.
    [2]王勇,焦念忘.胶州湾浮游植物对营养盐添加的响应关系[J].海洋学.2002,26(4):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700