用户名: 密码: 验证码:
大菱鲆主要消化酶—蛋白酶、脂肪酶、淀粉酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从消化酶的角度,研究了大菱鲆体内主要消化酶如蛋白酶、脂肪酶、淀粉酶的分布和活性,鱼龄、温度、盐度等因素对大菱鲆消化酶活性的影响,并对其主要蛋白酶进行了纯化和理化性质的研究,分析了大菱鲆粗酶液对饲料中常用蛋白质饲料原料的体外消化率,对各种蛋白质饲料原料进行营养评价,最后探讨了植物蛋白替代鱼粉的可行性及外源酶制剂应用的情况。主要研究结论如下:
     (1)大菱鲆对蛋白质的消化主要在胃和前肠中进行,对淀粉的消化则主要依靠前肠和幽门盲囊,而脂肪消化主要集中在肠中。
     不同消化部位如胃、幽门盲囊、前肠、中肠、后肠的蛋白酶最适作用温度和pH依次为:40℃、pH2.0,40℃、pH8.0,60℃、pH8.0,40℃、pH8.5,60℃、pH8.0;脂肪酶最适温度和pH依次为:40℃、pH6.5,40℃、pH8.0,40℃、pH7.5,50℃、pH7.0,40℃、pH8.0;淀粉酶最适温度和pH依次为:40℃、pH7.5,40℃、pH6.5,40℃、pH7.0,40℃、pH7.5,40℃、pH7.5。另外,各酶均有低温下最适pH升高,及作用时间延长时最适温度降低的特性,适应生理条件下的消化。
     (2)大菱鲆生长发育过程中,消化生理和各消化酶分泌机能逐步完善。蛋白酶和脂肪酶活力在整个发育阶段持续增高,淀粉酶活力在幼鱼期呈增大趋势,180天鱼龄后开始下降。整个生长过程中蛋白酶活力处于绝对优势。180天鱼龄是大菱鲆生长发育的一个转折点,可作为大菱鲆配合饲料分阶段研制的一个参考分界点。
     (3)环境水温对大菱鲆消化生理有明显的影响作用:随水体温度的提高,大菱鲆消化器官比重呈明显的下降趋势;大菱鲆各消化器官中分泌的酶蛋白量随水体温度的提高持续下降,肠中酶蛋白分泌量降幅最大;各消化器官中总酶活力随水温的升高呈先上升后下降的趋势,其中蛋白酶受影响最大。
     (4)水体盐度对大菱鲆消化酶活性影响显著。在0M-0.5M的盐度变化范围内,幽门盲囊蛋白酶、肠蛋白酶随盐度增高被激活,胃蛋白酶、脂肪酶和淀粉酶均先被激活后被抑制。脂肪酶受盐度影响最大,蛋白酶最小;消化器官中幽门盲囊受盐度影响最显著,胃和肠次之。在0.2M-0.3M的盐度范围内,各消化部位的
    
    重要消化酶均处于比较活跃的状态。
     (5)对大菱坪主要蛋白酶进行了分离纯化,并研究了其理化性质:
     采用硫酸钱分级沉淀、DEAE一S即har0Se F.F.阴离子交换层析、Sephadex
    G一100凝胶过滤层析、Sephacry1S一200凝胶过滤层析等纯化技术得到三种蛋白
    酶电泳纯样品,分别为胃蛋白酶、幽门盲囊蛋白酶、肠蛋白酶I。经电泳检测分
    子量依次为39900Dal、66009Dal、86776Dal。纯酶最适反应pH依次为2.0、9.0、
    8.5,最适反应温度依次为40℃、30一40℃、50℃;PH稳定范围依次为pHI.0一9.0、
    pH6.0一10.0、pH7.0一10.5,40oC以下酶活性较稳定;Mn,‘和Cu,‘激活大菱虾胃
    蛋白酶,Fe3+、丝氨酸蛋白酶抑制剂、糜蛋白酶抑制剂、胃酶抑制剂、琉基蛋白
    酶抑制剂显著抑制大菱鲜胃蛋白酶活性;Mn2+、M扩激活幽门盲囊蛋白酶,Cuz+、
    Zn2+、琉基蛋白酶抑制剂和胰蛋白酶抑制剂抑制其活性;Mnz+激活肠蛋白酶I,Cuz+、
    Zn2+、Ag‘、Fe3+、琉基蛋白酶抑制剂、胰蛋白酶抑制剂抑制大菱娜肠蛋白酶I活
    性。双倒数作图法得大菱坪胃蛋白酶Iha为2.559/L、肠蛋白酶I的Km为2.929/L。
     (6)大菱坪不同消化器官粗酶液对饲料原料干物质和蛋白质的体外消化能
    力均表明胃、前肠、幽门盲囊为营养物质主要消化部位。十种饲料原料的干物质
    体外消化率依次为进口秘鲁鱼粉>国产鱼粉>虾粉>肉粉>饲料酵母>豆粕>
    花生粕>棉粕>麦鼓>次粉,蛋白质体外消化率依次为进口秘鲁鱼粉>虾粉>国
    产鱼粉>肉粉>饲料酵母>豆粕>花生粕>次粉>棉粕>麦数,动物性饲料原料
    的干物质、蛋白质体外消化率明显高于植物性饲料的相应体外消化率。氨基酸指
    数EAAI表明,除饲料酵母为良好蛋白源外,其余均为优质蛋白源。
     综合分析表明十种饲料原料中动物性饲料以虾粉、肉粉较好,植物性饲料中
    则以豆粕最佳。
     (7)通过不同豆粕含量及外源酶制剂的六个实验组在18℃下50天的饲喂
    实验,结果表明:无外源消化酶饲料配方下的大菱虾对蛋白质和碳水化合物的表
    观消化率随饲料中豆粕含量的增加呈下降的趋势。20%豆粕替代组和全鱼粉组实
    验鱼的生长状态明显好于40%豆粕替代组及全豆粕组。各实验组大菱虾消化器官
    比重随豆粕添加量的增多而增大,以比肝重变化最为显著。不同饲料配方组大菱
    醉蛋白酶、淀粉酶活力随豆粕含量的增多而升高,脂肪酶无明显变化。添加外源
    酶制剂组相比于未添加组生长状态及消化生理有明显改善。
    
     实验结果表明,饲料中以豆粕替代鱼粉量功%对大菱虾生长无负面影响,在
    添加外源酶制剂的情况下豆粕替代量可增加到100k仍能保证大菱坪的正常生长。
Turbot Scophthalmus maximus L. is a culture species naturally living in Europe. It is newly imported to China by Yellow Sea Fisheries Research Institute in 1992. Turbot is adapted to living in low temperature, enduring low oxygen and can breed in high density. Now the turbot culture becomes a new industry in our sea economy. In order to promote its culture in our country, it is very necessary to do some work on its basic research. In this study, the main digestive enzymes in turbot were fully discussed. Main proteases were purified and their characters were studied. The vitro coefficient of feed material by turbot alimentaiy tract homogenates was studied. Finally, partial or total replacement offish meal by soybean meal in diet for turbot and the dietary enzyme were researched.
    (1) The protein is digested mainly by stomach and foregut, and starch mainly by foregut and pylorus cecum, and fat mainly by gui. The optimum temperature and pH of protease in each digestive organ such as stomach, pylorus cecum, foregut, midgut, hindgut are 40癈 pH2.0, 40癈 pHS.O, 60癈 pH8.0,40癈 pH8.5, 60癈 pH8.0, And for the amylase are 40 pH6.5, 40 pHS.O 40 pH7.5, 50 pH7.0, 40 pH8.0, for the lipase are 40 pH7.5, 40 pH6.5,40 pH7.0,40 pH 7.5, 40 pH 7.5. Otherwise, the optimum pH of all digestive enzymes increases in low temperature. And the optimum of temperature decrease when the reaction time is longer.
    (2)The protease activity of turbot is increased continually in all growth phases, and the maximum activity increase occurs between 30-day old and 90-day old. The lipase activity is also increased along with the gro \vth and the difference between each phase is not very great. The amylase activity s increased in the parr phase and decreased after 180-day. The dominant enzyme i> protease in all growth phases, and 180-day phase is the turning point during the growth of turbot.
    (3)Within a water temperature range of 10 ~ 25 , the weight of digestive organs in percentage of body weight tends to decrease with the increase of temperature. And
    
    
    the quantity of enzyme protein secreted by each digestive organ also tends to decrease, and the enzyme protein in intestine decreased farthest. The total enzyme activity is increased firstly and then decrease with the increase of the water temperature. Among the digestive enzymes, the activity of protease is affected most significantly.
    (4)At salt concentration range of OM-0.5M, the activity of proteases in pylorus cecum and gut of turbot are activated when the salt concentration is increased. And the activity of stomach protease is activated in low salt concentration but inhibited in high salt concentration. The activity of lipase and amylase is also activated firstly and inhibited in high salt concentration. The activity of lipase is affected strongly and protease is least affected by salt. Most digestive enzymes of each digestive organ are activated in the salt concentration between 0.2M-0.3M.
    (5)The stomach protease^ pylorus cecum protease and gut protease I are purified by using ammonium sulfate precipitation, DEAE-Sepharose F.F. , Sephadex G-100 column and Sephacryl S -200 column chromatography. The purified enzymes exhibit a single band on SDS-polyacrolymide gel electrophoresis (SDS-PAGE). Their molecular weights are determined to be about 39900Dal, 66009Dal and 86776Dal respectively. The stomach protease is stable at pH ranging from 1.0-9.0 and below 40 癈. The optimum temperature and pH of enzyme are 40 癈 and pH2.0 for stomach protease, 30-40癈 and pH9.0 for pylorus cecum protease , 50 癈 and pH8.5 for gut protease I . The stomach protease is activated by Mn2+, Cu2+, and inactivated by Fe3+, PMSF, TPCK, Pepstatin, PCMB. The pylorus cecum protease is activated by Mn2+, Mg2+ and inhibited by Cu2+, Zn2+, PCMB, TLCK. The gut protease I is activated by Mn2+ and inhibited by Cu2+, Zn2+, Ag+, Fe3+, PCMB and TLCK. The Km value of stomach protease and gut protease I are determined to be 2.55g/L and 2.92g/L respectively.
    (6) The vitro dry matter digestive ability of each digestive organ is in the seq
引文
[1]、伦宁格 A L.生物化学.北京:科学出版社,1990
    [2]、周景祥,陈勇,黄权,孙云农等,鱼类消化酶的活性及环境条件的影响[J],北华大学学报(自然科学版),2001,vol.2,No,1,70-74。
    [3]、尾崎久雄,鱼类消化生理[M],上海:上海科学技术出版社,1985。
    [4]、潭北平,太湖几种肉食性鱼类消化酶活性的初步研究[J],湖北农学院学报,1995,(4):26-30。
    [5]、黄峰,鲢、鳙胰蛋白酶的研究[J],水产学报,1996,20(1):68-70。
    [6]、倪寿文等,草鱼、鲤、鲢、鳙和尼罗非鲫肝胰脏和肠道蛋白酶活性的初步探讨[J],动物学报,1993,39(2):160-168。
    [7]、Daskm, Studies on the Digestive Enzyme o(?) Grass Carp[J], Aquacultrue, 1991,92:21-32.
    [8]、Fish. G.P. The Comparative Activity of Some )igestive Enzyme in the Alimentary Canal of Tivapia and Tilapia mossambica[J], Aquaculture, 1960,15(1-2):161-177.
    [9]、北御门,消化酵素研究[J],日水志,1960,26(7):691-695。
    [10]、叶元土,鲤鱼肝胰脏和肠道蛋白酶活性的研究[J],西南农业大学学报,1990,12(4):425-426。
    [11]、黄耀桐,草鱼肠道、肝胰脏蛋白酶活性初步研究[J],水生生物学报,1988,12(4):328-333。
    [12]、Agrawal VP. Digestive Enzymes of Three Telcose fishes[J],Acta Physiol hung, 1975,46:93-98.
    [13]、叶元土,温度、pH值对南方大口鲶、长吻鮠蛋白酶和淀粉酶活力的影响[J],大连水产学院学报,1998,13(2):17-23。(2)、黄耀桐,刘永坚.草鱼肠道肝胰脏蛋白酶活性的初步研究.水生生物学报,1998,12(4):328~333
    [14]、倪寿文等,草鱼、鲤、鲢、鳙的淀粉酶比较研究[J],大连水产学院学报,1992,7(1):24-31。
    [15]、Chesley, L. C.,The concentration of proteases, amylase and lipase in certain marine fishes. Biol. Bull.,1934,60:133-144.
    [16]、Kitamikado, M. and Tachino, S.,Digestive enzymes of rainbow trout Ⅲ:esterases. Chem. Abstr.,1961,55:5789C.
    [17]、Borlongan, I. G.,Studies on the digestive lipases of milkfish, Chanos chanos Aquaculture, 1990,89:315-325.
    [18]、伍莉、陈鹏飞等,史氏鲟消化酶活性的初步研究,西南农业大学学报,2002,24(2):179-182。
    
    
    [19]、李瑾等,中华鲟消化酶活性分布的研究,水产科技情报,2001,28(3):99-103。
    [20]、Buddington, R.K. and Doroshov, S.I.,Digestive enzyme complement of white sturgeon. Comp. Biochem. Physiol.,1986,83A:561-567.
    [21]、Das, K.M.,Ghosh, A.,Studies on the comparative activity of some digestive enzymes in fry and adult of a mullet, J. Aquac. Trop.,1987,2:9-15.
    [22]、Fange, R. and Grove, D.,Digestion. In: W.S. Hoar, D.J. Randall and J. R. Brett, Fish Physiology. Vol Ⅲ, Academic Press, New York, 1979, pp:161-260.
    [23]、Smith, B.W. and Lovell, R. T.,Determinatin of apparent digestibility in feeds for channel catfish. Trans. Am. Fish. Soc.,1973,4:831-835.
    [24]、 Smith, L.S.,Digestive functions in teleost fishes. In: J. E. Halver, Fish Nutrition. 2nd edition. Academic Press, San Diego, 1989, pp. 331-421.
    [25]、Hofer, R.,Protein digestion and proteolytic activity in the digestive tract of an omnivorous cyprinid. Comp. Biochem. Physiol.,1982,72A:55-63.
    [26]、Ferraris, R. P. and Ahearn, G.A.,Sugar and amino acid transport in fish intestine. Comp. Biochem. Physiol.,1984,77A:397-413.
    [27]、伍莉、陈鹏飞等,黄鳝肠道和肝胰脏主要消化酶活力的研究,湖北农学院学报,2002,22(1):36-40。
    [28]、Cowey, C.B. and Sargent, J. R.,Lipid nutrition in fish. Comp. Biochem. Physiol., 1977,54B:269-273.
    [29]、Chen, Q.,Sternby, B. eta.,Effects of human pancreatic lipase-colipase and carboxyl ester lipase on eicosapentaenoic and arachidonic acid ester bonds of triacylglycerols rich in fish oil fatty acids. Biochim. Biophys. Acta.,1990,1044:111-117.
    [30]、Lie, φ.,Lied, E. and Lambertsen, G.,Lipid digestion in cod. Comp. Biochem. Physiol., 1987, 888:697-700.
    [31]、Gjellesvik, D.R.,Lombardo, D. and Walther, B.T.,Pancreatic bile salt dependent lipase from cod:purification and properties. Biochim. Biophys. Acta, 1992,1124:123-134.
    [32]、Hofer, R, Schiemer F. Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia, 1981, 48:342~345
    [33]、Agrawal V P. Digestive enzymes of three teleost fishes. Acta physiol Hung.1975, 46:93~98
    [34]、Prejs A. Blaszezyk N. Relationship between food and cellulase activity in freshwater fishes. J Fish Biol. 1977. 11:447~452
    
    
    [35]、Kawai s, Ikeda S. Effects of dietary changes on the activities of digestive enzymews in carp intestine. Bull Japan Soc. Science Fish. 1972, 38(3): 265~269
    [36]、Kenji Takil. Sadao Shimeno. The effect of feeding stimulant in diet on digestive enzymes in carp intestine. Bull Japan Soc Science Fish, 1986, 52(8): 1449~1454
    [37]、Nagase G., Contribution to the physiology of digestion in Tilapia mossambica-digestive enzymes and the effects of diets on their activity. Z. Vergl. Physiol.,1964,49:270-284.
    [38]、王重刚、陈品健等,不同饵料对真鲷稚鱼消化酶活性的影响,海洋学报,1998,20(1):103-106。
    [39]、Bofer R. The adaptation of digestive enzymes to temperature, seasons and diet in roach. Rutilus rutilus and Rudd Scardinius e?ythrophthalmus I: Amylase. J Fish Biol. 1978, 14: 564~572. Ⅱ: Protease. J Fish Biol. 1979, 15:373~379
    [40]、Vys W. Becht T. Assays on the digestive enzymes of sharp tooth catfish. Clarias gariepinus (Pisces: clariidae). Aquaculture. 987. 63:301~313
    [41]、Bitterlich G. Digestive enzyme pattern of two stomachless filter feeders silver carp. Hypophthalmichthys molitrix Val. And bighead carp. Aristichthys nobilis. J. Fish Bio, 1987, 27:103~112
    [42]、吴永沛,郭彩华.真鲷肝脏蛋白酶的性质.厦门水产学院学报,1992,14(2):13~17
    [43]、桂远明,吴垠.温度对草鱼、鲤、鲢、鳙主要消化酶活性的影响.大连水产学院学报,1993,8(4):1~8
    [44]、Lauff M. Hofer R. Proteologic Enzymes in Fish Development and the Important of Dietary Enzyme[J].Aquaculture, 1984,37:335-346
    [45]、Das K. M. Studies on the Digestive Enzyme of Grass Carp[J]. Aquaculture, 1991,92:21-32.
    [46]、Dabrowski K, Glogowski J. Studies on the proteolytic enzymes of invertebrates constituting fish food. Hydrobiologia, 1977, 52:177~174
    [47]、Dabrowski K, Glogowski J. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia, 1979, 54:129~134
    [48]、Kawai S, Ikada S. Studies on digestive enzymes of fishes Ⅲ: Development of digestive enzymes of rainbow trout after hatchng and effects of dietary change on the activities of digestive enzymes in the juveaile stage. Bull Japan Soc Sci Fish, 1973, 39: 819~823: Ⅳ: Development of the digestive enzymes of carp and black sea bream after hatching. Bull Japan, Soc Sci Fish, 1973, 39:877~881
    [49]、Hofer R, Nasir Uddin A, Digestive processes during development of the roach.
    
    J Fish Biol, 1985, 26:683~693
    [50]、井健二.中村元二.化后稚仔鱼各种酵素活性变化.水产养殖.1992.40(3):291~296
    [51]、川合真一朗,稚仔摄食发育[M].日本水产学会变,恒星社厚生阁刊,1975,30-40。
    [52]、Shinichi Yamane. a: Location of amylase activity in digestive organs of carp determined by a substrate film method. Bull Japan Soc Sci Fish, 1973, 39(5): 497~504 b: Localization of amylase activity in digestive organs of mozambique mouth brooder and bluegill determined by a starch substrate film method. BulI Japan Soc Sci Fish, 1973, 39(6): 595~603
    [53]、Hofer R. The adaptation of digestive enzymes to temperature, season and diet in roach, Rutilus tutilus and Rudd Scardinius erythrophthalmus I:Amylase. J Fish Biol, 1978,14:565-572.
    [54]、Jany, K.O. Studies on the Digestive Enzyme of the Stomachlesss Bony Fish, Carassius auratus[J],Comp. Biochem. Physiol, 1976,536:31-38.
    [55]、时元土,黄颡鱼消化能力与营养价值的研究[J]。大连水产学院学报,1997,12(2):23-29。
    [56]、李广丽,草鱼、鲤肠道、肝胰脏消化酶活性的研究[J],湛江水产学院学报,1994,14(1):34-40。
    [57]、R.Munilla-Moran and F. Saborido-Rey, Digestive Enzymes in Marine Species. I. Prateinase Activities in Gut from Redfish, Seabream and Turbot. Comp. Biochem. Physioi., 1996,113B(2):395-402.
    [58]、R. Munilla-Moran and F. Saborido-Rey, Digestive Enzyme in Marine Species.Ⅱ.Amylase Activity in Gut from Seabream, Turbot and Redfish. Comp. Biochem. Physiol., 1996,1135(4):827-834.
    [59]、W. M.Koven, R.J. Henderson. Lipid digestion in turbot(Scophthalmus maximus):in-vivo and in-vitro studies of the lipolytic activity in various segments of the digestive tract. Aquaculture 151(1997)155-171.
    [60]、Jones L., Studies on eggs development and larval rearing of turbot, Scophthalus maximus L., and Brill, Scophthalmus rhombus L., in the laboratory. J Mar Biol Ass U K, 1972,52:965-986.
    [61]、Hall J.,Turbot farming in Europe: an overview. Coldwater aquaculture to the yeas 2000. St. Andrews:Aquaculture Association of Canada, 1997, Special Publication No, 2,31-36.
    [62]、Adron J. K,Blair A., Cowey C. B. et al, Effects of dietary energy level and dietary
    
    energy source on growth, feed conversion and body composition of turbot(Scophthafmus maximus L.).Aquaculture, 1976,7:125-132.
    [63]、Adron J. W.,Knox D.,Cowey C. B. Studies on the nutrition of marine flatfish. The pyridoxine requirement of turbot(Scophthalmus maximus). British Journal of Nutrition, 1978,40:261-268.
    [64]、Devesa S., Nutrition and feeding of cullured turbot(Scophthalmus maximus L.).Oostende(Belgium),1994:81-92.
    [65]、Sargent J,, Bell J.G.,McEvoy Let al, Recent levelopments in the essential fatty acid nutrition of fish. Aquaculture, 1999,177(1/4):191-199.
    [66]、Bell J. G.,Castell J. D.,Tocher D. R. et al, Effects of different dietary arachidonic acid: docosahexaenoic acid rati?s on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot(Scophthalmus maximus).Fish Physiol Biochem, 1995, 14 (2): 139-151.
    [67]、R. Munilla-Moran and J. R. Stark, Protein digestion in Early Turbot Larbae,Scophthalmus maximus(L.),Aquaculture, 1989(81):315-327.
    [68]、马爱军、陈四清等,大菱鲆幼鱼几种饲料的分析与对比实验,饲料工业,2000,21(7):17-19。
    [69]、马爱军、陈四清等,饲料中主要能量物质对大菱鲆幼鱼生长的影响,海洋与湖沼,2001,32(5):527-533。
    [70]、Calcedo I. E., Growth and feed intake of turbot(Scophthalmus maximus L.)on a silage-based feed.World Aquaculture, 1989,20:5(-53.
    [71]、Caceres-Martinez C, Cadena-Roa M, Metailler R, Nutritional requirements of turbot((Scophthalmus maximus):1.A preliminary study of protein and lipid untization. J. of the world mariculture Society, 1984,14:191-202.
    [72]、Bromley P.J., The effect of dietary water content and feeding rate on the growth and food converdion efficiency of turbot(Scochthalmus maximus L.).Aquacultrue, 1980,20(2):91-99.
    [73]、Oliva-Teles A.,Cerqueira A. L.,Goncal?es P.,The utilization of dietscontaining high levels of fish protein hydrolysate by turbot(Scophthalmus maximus L.) juveniles. Aquaculture, 1999,179(1/4):195-201.
    [74]、Roennestad I.,Thorsen A.,Finn R.N.,Fish arval nutrition:a review of recent advances in the roles of amino acids. Aquculture, 1999,177(1/4):201-216.
    [75]、Andersen N.G.,Alsted N.S.,Growth and body composition of turbot(Scophthalmusmaximus L.) in relation to different lipid/protein ratios in the diet. Fish nutrition
    
    in practice:4th international symposium on fish nutrition and feeding. Biarritz, France, June 24-27,1991;France:INRA Editions;1993,61:479-491.
    [76]、Cowey C.B.,Owen J. M.,Adron J.W.,et al,Studies on the nutrition of marine flatfish. The effect of different dietary fatty acids on the growth and fatty acid composition of turbot(Scophthalmus maximus L.).Comp. Biochem. Physiol.,1976,53: 399-403.
    [77]、Martinez-Tapia C.,Fernandez-Pato C.,Use of fat, carnitine and vitamin E in the ongrowing of turbot(Scophthalmus maximus L.).European Aquaculture Society, 1993,19: 412.
    [78]、Leger C., Gatesoupe F. J.,Metailler R. et al, Effect of dietary fatty acids differing by chain lengths and omega series on the growth and lipid composition of turbot Scophthalmus maximus L. Comp. Biochem. Physiol.,1979,64(4):345-350.
    [79]、Bell M. V.,Henderson R. J.,Pirie B. J. S.,et al, Effects of dietary polyunsaturated fatty aciddeficiencies on mortality, growth and gill structure in the turbot, Scophthalwus maximus. Comp. Biochem. Physiol., 1985, 818:193-198.
    [80]、Mourente G.,Tocher D. R.,Sargent J. R.,Specific accumulation of docosahexaenoic acid(22:6n-3) in brain lipids during development of juvenile turbot Scophthalmus maximus L.,Lipids, 1991,26(11):871-877.
    [81]、Bell J.G.,Tocher D.R.,Farndale B.M.,et al, Effects of essential fatty acid-deficient diets on growth, mortality, tissue histopathology and fatty acid compositions in juvenile turbot(Scophthalmus zaximus.). Fish Physiol. Biochem., 1999,20(3):263-277
    [82]、Estevez A.,Kanazawa A.,Effect of (n-3)PUFA and vitamin A Artemia enrichment on pigmentation success of turbot, Scophthalmus waximus (L.).Aquaculture Nutrition (United Kingdom),1995,1(3):159-168.
    [83]、Jollivet D.,Some effect of physical state and dietary level of starch, temperature and meal size on turbot Scophthalmus maximus (L.) digestive process. Copenhangen Denmark Ices, 1988:1-17.
    [84]、Devesa S.,Nutrition and feeding of cultured turbot (Scophthalmus maximus L.). Oostende(Belgium),1994:81-92.
    [85]、Regost C.,Arzel J.,Kaushik S. J.,Partial or total replacement of fish meal by corn gluten meal in diet for turbot. Aquaculture, 1999,180(1/2):99-117.
    [86]、Fernandez-Pato C.A.,Martinez-Tapia C.,Sola E.,Fatty acids, alpha-tocoferol and L-carnitine:Their relationships in turbot (Scophthalmus maximus L.)
    
    growth. Frist results. Copenhagen(Denmark): Ices, 1991: 1-11.
    [87]、Cowey C. B.,Adron J.W.,Knox D. et al, Studies on the nutrition of marine flatfish. The thiamin requirement of turbot (ScophthaJmus maximus L.). British Journal of Nutrition(UK), 1975, 34 (3) :383-390.
    [88]、Merchie G., Lavens P, Storch V., et al, Influence of dietary vitamin C dosage on turbot (Scophthalmus maximus L.) and European sea bass nursery stage. Comp. Biochem. Physiol. A, 1996, 114(2):123-133.
    [89]、Lavens P., Lebegue E., Jaunet H., et al, Effect of dietary essential fatty acids and vitamins on egg quality in turbot(Scophthalmus maximus L.) broodstock. Ⅷ. International Symposium on Nutrition and Feeding of Fish;Recent Advances in Finfish & Crustacean Nutrition. Las Palmas de Gran Canaria, Spain, 1998, June 1-4, 110:119.
    [90]、马爱军,大菱鲆营养需求及高效配合饲料的研究,2002,青岛海洋大学博士学位论文。
    [91]、Azam P.,Sveier H.,Weigel C.,et al, Growth and body composition of turbot (Scophthalmus maximus L.) in relation different lipid/protein ration in the diet. Descovery to Commercialization, 1993,19:310.
    [92]、Sanchez J., Peleteiro J. B., Fores R., et al, On growing of the turbot Scophthalmus maximus (L.) Biol Inst Esp Oceanogr, 1990, 6 (1): 127-132.
    [93]、Deniel C.,Growth of O-group turbot (Scophthalmus maximus L.) on a dry diet. Aquaeulture, 1976,8:115-128.
    [94]、Danielssen D.S.,Gulbrandsen K. E.,Hjertnes T.,Feeding experiments on turbot (Scophthalmus maximus L.) with dry pellets. Aquaeulture International Congress and Exposision. Vancouver, B.C.,Canada, 1988, Sep:67.
    [95]、Segner H.,Roesch R.,Larval nutritional physiology:studies with Clarias gariepinus, Coregonus lavaretus and Scophthalmus maximus. J. World Aquaculture Soc.,1993,24(2):121-134.
    [96]、Anon N.,Dry diet the key. Fish farming International, 1997,24(7):30-31.
    [97]、Anon N.,Turbot market "can double". Fish Farming International, 1999,26(6):16.
    [98]、Romero J.J.,Henriquez C.,Diaz A. M.,et al, Development of dry feeds for turbots. Aquaculture, 1994,124(1/4):285-286.
    [99]、Danielssen D.S.,Gulbrandsen K. E.,Hjertnes T., Fishmeal quality in dry feed for turbot(Scophthalmus maximus L.)to market size. Aquaculture Europe' 89, 10:83-84.
    [100]、Peleteiro J.B.,Lavens P.,Rodriguez-Ojea G.,et al, Relationship between egg
    
    quality and fatty acid content of various turbot broodstocks(Scophthalmus maximus L.) ICES Marine Science Symposia, Copenhagen, 1995,201:51-56.
    [101]、Munilla-Moran R., Metabolism in marine flatfish:effect of nutritional state on digestion in turbot Scophthalmus maximus (L.).Comp. Biochem. Physiol. B., 1990,95(3):625-634.
    [102]、Voss B.,Replacement of fishmeal in a diet for O-group tubot by a single cell protein probin and a mixture of poultry offal and hydrolysed feathermeal respectively. Bacterial Diseases of Fish, 1988,38(3):203-213.
    [103]、穆俊山、李国江等,大菱鲆养殖饲料配制技术,科学养鱼,2002(3):15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700