用户名: 密码: 验证码:
北京城市湖泊富营养化及其原位修复初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市湖泊是城市生态系统及其景观多样性的重要组成部分。受过量纳污、水流滞缓和结构改造等因素的影响,我国的城市湖泊多数已达到富营养化或极富营养化的程度。相对于太湖、巢湖等大型富营养化湖泊,城市湖泊的研究基础相对薄弱。因此,本论文选取了北京市区几个城市湖泊为研究对象,主要开展了:1)典型城市湖泊(什刹海)一年内水质的季节变化及六个城市湖泊水体和表层沉积物污染特征比较研究;2)城市湖泊重污染沉积物原位生物氧化的小试研究;3)曝气对城市湖泊水-沉积物界面磷迁移转化行为的室内模拟研究;4)太阳能循环流装置修复城市水环境的现场试验研究。以上研究工作的成果拟为北京城市湖泊水环境污染的防治提供基础数据和技术参考,对于我国富营养化湖泊水环境治理与生态修复理论和实践的丰富也具一定的意义和价值。
     对什刹海三海(西海、后海、前海)2009年度不同月份的10个水环境和水生态指标进行了监测和分析,结果表明西海的水质相对最差而前海的水质相对最好,综合营养状态(TLI)指数评价表明西海处于中度富营养化水平,而前海处于轻度富营养化水平。西海的各项指标变化规律在三海中相对最明显,其中水温、叶绿素a(Chla)、总磷(TP)、氨氮(NH3-N)4个指标的数据变化规律类似,而硝氮(N03-N)的变化规律与其它指标相反。西海中藻类对水体中氮营养的吸收利用主要以N03-N为主;且该水体中夏季较高的水温(30℃左右)是导致藻类大量增殖的主要原因。
     利用TLI指数对前海湖(QH)、昆明湖(KM)、青年湖(QN)、紫竹院湖(ZZ)、陶然亭湖(TR)和红领巾湖(HLJ)的水生态指标进行评价,结果表明以上6个城市湖泊的水质富营养化程度有明显的差别。其中KM的水质最好,没有达到富营养化的程度;QN和QH的水质为轻度富营养化程度,ZZ、TR、HLJ的水质为中度富营养化程度。所研究的北京6个城市湖泊中有5个湖泊水质处于富营养化程度,说明北京城市湖泊的水质状况不容乐观,宜尽早开展其水体污染治理和生态恢复的相关措施。
     所调查的北京六湖表层(0-10cm)沉积物中的营养盐污染负荷总体上较严重。六湖表层沉积物有机指数均严重超过了污染级别的标准值,其中最低的KM表层沉积物有机指数值为污染级别临界值的2倍。六湖中有2个湖表层沉积物中总氮(TN)含量超过了严重生物毒性标准,3个湖的TN含量接近严重生物毒性标准。六湖的表层沉积物TP平均含量约为1100mg/kg,高于长江中下游大型湖泊表层沉积物的TP平均含量。
     六湖表层沉积物中氮、磷形态的转化与其中的微生物活性关系密切,而微生物活性主要与底栖藻类的生物量有关;六湖表层沉积物中的NH3-N主要来源于底栖藻类生物活性对有机氮的矿化,且底栖藻类活性在沉积物NH3-N向N03-N的转化的过程中起到了主要作用。Ca-P(钙结合态磷)是北京六湖表层沉积物中磷最主要的赋存形态,这与长江中下游湖泊不同;六湖磷的赋存形态中Fe-P(铁铝结合态磷)和OP(有机磷)的变幅最大,且TR和QN两湖的Fe-P和OP的含量均相对较高。六湖表层沉积物中OP与碱性磷酸酶活性(APA)呈显著正相关p<0.01;n=36),且APA与叶绿素a含量间的相关性极显著(p<0.01;n=36);说明六湖表层沉积物中的无机磷主要被底栖藻类所利用,只有较少部分释放到湖泊上覆水中。
     6个北京城市湖泊水体和沉积物营养盐样品指标的相关性分析表明水体中磷和表层沉积物磷的交换作用不明显,这可能与表层沉积物中磷的赋存主要以Ca-P为主的特征有关。六湖表层沉积物的TN和TOC的相关性极显著(p<0.01;n=18),且水体TN与湖泊表层沉积物的TN的相关性也达到极显著水平(p<0.01;n=18)。因此,城市湖泊表层沉积物中总氮和有机质的控制与削减对于湖泊水体中氮营养物污染治理有重要意义。
     利用原位生物氧化技术处理重污染沉积物(底泥)的相关研究在国内具有较好的应用前景。选取了以上6个城市湖泊中污染相对较严重的青年湖(QN)沉积物作为实验材料,开展了利用投药剂(硝酸钙及微生物营养制剂)促进本土微生物氧化降解重污染沉积物的小试研究。该项研究旨在改善城市湖泊底栖生境,为后期的大型沉水植物和底栖动物的生态修复奠定基础,试验结果表明:(1)硝酸钙和微生物营养制剂被投加到沉积物中后均能促进沉积物中微生物活性的升高,但相同经济成本的硝酸钙效果相对更明显。(2)投加硝酸钙可以明显减少沉积物中磷营养盐向上覆水的释放,与投加单一药剂(硝酸钙或微生物营养制剂)相比,投加复合药剂(硝酸钙和微生物营养制剂)时可以明显减少沉积物中N03-N和NH3-N的释放量。(3)沉积物微生物氧化促生药剂的适宜投放方式及剂量为:在沉积物中15-18 cm处注射298gN/m2的硝酸钙、0.42L/m2微生物解毒剂(MT)以及0.35L/m2微生物促生剂(BE)。(4)试验结束取沉积物样品时,没有投药的对照柱沉积物臭气浓烈,而投药的试验柱中沉积物臭味不明显,泥样的颜色也明显变浅。(5)投加硝酸钙和微生物营养制剂均能促进沉积物碱性磷酸酶活性(APA)的升高,且在投加硝酸钙的处理中表层沉积物APA有明显的大幅度升高。
     曝气是水体水质净化及其生态修复的常用工程技术,而磷是湖泊富营养化的关键影响因子。本论文关于上覆水曝气对城市湖泊水-沉积物系统中磷形态赋存及其迁移转化的影响研究表明:(1)上覆水长期的间歇曝气引起了表层沉积物微生物活性的升高,其生物代谢是上覆水溶解氧、总磷的降低以及pH值升高的主要原因。(2)上覆水的连续间歇曝气导致表层沉积物微生物的碱性磷酸酶活性显著升高,同时Fe-P被微生物吸收利用并转化合成自身的OP。上覆水的曝气通过其对表层沉积物中微生物的作用影响了表层沉积物磷的赋存形态及其迁移转化。
     利用太阳能循环流装置(1号、2号)分别开展了城市湖泊富营养化控制的试验研究,结果表明:(1)该类装置(1号、2号)可利用太阳能长期间歇曝气,运行基本无噪音,具有节能和环境友好的优点。(2)该类装置在试验运行期间可以促进水体中TN和N03-N含量的降低,对NH3-N的净化效果不太明显;2号装置在30~40 r/min的转速下,对水体混合作用范围的半径为11米左右。(3) 2号装置试验结束后,表层沉积物的含水率有显著升高、间隙水中氨氮向上覆水扩散能力增强。1号和2号装置对上覆水的磷含量和浊度的改善效果均不明显,因此该装置在城市湖泊水质净化及其生态修复应用时应增加降浊和除磷的辅助工程措施。
Urban lakes are important part of urban ecological system and the landscape diversity. Under the influences of excessive pollutant carrying, subcritical flow and structural transformation, most of our urban lakes were listed in eutrophication or heavy eutrophication grades.
     Compare to the large eutrophication lakes such as the Taihu and Caohu lakes, the research foundation of urban lakes are relatively weak. Therefore, several urban lakes in Beijing city were selected for research object in our study, and we mainly carried out the investigation as follows:1) seasonal water quality variation of Shi Chahai lake in a year, polluted characters of water and surface sediment in six urban lakes; 2) In-situ biological oxidation experimental investigation of the heavy polluted urban lakes sediments.3) Lab simulation and field experiments about the effection of long-term intermittent aeration on phosphorus migration and transformation in water-sediment interface. Results of our research work were aim to provide basic datas and technical references for the prevention and control of pollution in Beijing urban lakes, as well as provide references for ecological management and restoration of urban lake eutrophication in our country.
     Monitoring and analysis work of 10 water environment and ecology indicators from the Shi Chahai lakes (including Xihai, Houhai and Qianhai lake) were carried out in year of 2009. The results showed that water quality of Xihai was worst and which of Qianhai was best. Analysised by the TLI index, water quality of Xihai was ranked as medium eutrophication level while Qihai was in mild eutrophication level. Varations of index in Xihai were more obvious than the other two lakes. The changes of water temperature, chlorophyll-a (Chla), total phosphorus (TP), ammonia nitrogen (NH3-N) were in similar regulations, while the change regulation of NO3-N was in opposite. In Xihai lake water, NO3-N was the primarily nitrogen nutrient which absorped by algae, and high water temperature (about 30℃) is the main factor which caused proliferation of algae in summer.
     Analysis and evaluation by the TLI index, eutrophication grades of Qianhai lake(QH), Kunming lake (KM), Qingnian lake (QN), Zi Zhuyuan lake (ZZ), Tao Ranting lake (TR), and Hong Linjing lake (HLJ) were obviously different. Among them the eutrophication grades of KM was lower while which of ZZ, TR, and HLJ were higher. Five Beijing uban lakes out of the six were in eutrophication, which demonstrate that water quality of Beijing urban lakes were in grim situation. Therefore, relevant measures for water pollution control and ecological restoration were needed in urgency.
     The surface (0-10cm) sediment of the six lakes were also severely polluted. Organic index of the six lake surface sediment were all exceeded the pollution grade, the lowest of which was the twice as much as the value of the pollution marginal value. With the standard of Canada, the ecological toxic of sediments TN from two lakes were both above serious toxicity standards, which of other three lakes were all near to the serious toxicity standards. Average TP content of surface sediment from the six lakes were about 1100mg·kg-1, which was higher than that from the large lakes in middle and lower reaches of the Yangtze River.
     In surface sediment of the six lakes, transformation of nitrogen and phosphorus (P) fractions were closely related to microbial activity, and the microbial activity were mainly affected by biomass of benthic algae.The generation of NH3-N and the transformation of NH3-N to NO3-N were both mainly controlle by the bio-activity of benthic algae in the surface sediment. Ca-P (P bounded to Calcium) was the dominant P fractions in surface sediment of the six lakes, while it was not the case for lakes in middle and lower reaches of the Yangtze River. Variations of Fe-P (P bounded to iron) and OP (organic phosphorus) content among the six lakes were more obvious than the other P fraction, and Fe-P and OP content from TR,QN lakes were higher than the other four lakes. OP and alkaline phosphatase activity (APA) behaved extremely significant positive correlation (p<0.01; n=36), correlation between APA and Chla content was also extremely significant (p<0.01; n=36).These results showed that the most part of inorganic P in the six lakes surface sediment were absorbed by benthic algae, only less part of which were released to the overlying water.
     Correlation analysis between water and sediment index from the six Beijing urban lakes shows that the transfer and diffusion of P from surface to water was not obvious, which may decided by the high ratios of Ca-P in the surface sediment. Correlation between TN and TOC content in surface sediment was extremely significant (p<0.01; n=18), and the correlation between water TN and the surface sediment TN was also extremely significant (p<0.01; n=18). In conclusion, the control and reduce of TN and TOC content in surface sediment is of great importance to the work of nitrogen pollution control in the unban city lakes.
     Treatment the heavy pollution sediments with in-situ biological oxidation technology has good application prospect in China. The surface sediment of QN lake were selected as experimental materials, in which Ca (NO3)2 and nutrients were added to promote indigenous microbial oxidation of pollutants in sediment. The tests aim to improve the ecological environment of surface sediment, which could lay the foundation of ecological restoration with large submerged plant and benthonic animal in the urban lakes. The results shows that (1) The added of Ca(NO3)2 and microbial nutrients could both promoted the rise of microbial activity in sediment, however, the efficiency of Ca(NO3)2 was better than microbial nutrients in the same economic costs. (2) Ca(NO3)2 could significantly reduce the release of P from sediment to overlying water, the combination of Ca(NO3)2 and microbial nutrients could reduce the release of NO3-N and NH3-N from sediment. (3) 298gN/m2 Ca(NO3)2,0.42L/m2 MT and 0.35L/m2BE were mixed and injected to sediment at depth of 15-18 cm may be the suitable agentia launch way and dose. (4) Compared to the controls, odours of the sediment after treatment was not strong and its color becomes shallow obviously. (5) The dosing of Ca(NO3)2 and microbial nutrition could both promote the increase of sediment alkaline phosphatase activity (APA), however the more obvious increase of APA were observed when Ca(NO3)2 was added in sediment.
     Aeration is the engineering technology which usually applicated in water purification and ecological restoration measures. The effect of areation in the overlying water on P fraction transfermation at water-sediment interface, and the efficiency of the microorganism during the course were investigated in our study. The experiments were aimed to provides technical reference and datas for in-situ repairment of the water eutrophication. Results showed that (1) The long-term intermittent areation lead to the increase of microbial activity in surface sediment, which mainly caused the decline of dissolved oxygen (DO) and TP as well as the increase of pH in overlying water. (2) long-term intermittent areation lead to the increase of APA in surface sediment, during the cause the Fe-P were obsorbed and transformed to OP by the microorganism. In a word, overlying water aeration affected the microbial activity in the surface sediment, which eventually caused the transformation of P fractions in the surface sediment.
     The urban lake eutrophication control tests with solar cycle flow outfit apparatus (NO.1 and NO.2) showed that (1) The apparatus could long-term intermittent operate quietly by solar energy, with the advantages of energy-saving and environmental friendly. (2) During the experiment, TN and NO3-N content in water were obviously declined, while the NH3-N content was not changed. The apparatus (NO.2) could mixed the water with a radius of 11 meters under condition of 30-40 r/min operating speed. (3) With operating of the apparatus (NO.2), moisture content of surface sediment have significantly increased, and the NH3-N diffusion effect from sediment pore water to overlying water were enhanced in the tested field. However, the apparatus (NO.1 and NO.2) removal efficiency of phosphorus and turbidity were not obvious. Therefore, when the apparatus were applicated in urban lakes purification work, the auxiliary engineering measures should be considered to remove turbidity and phosphorus in water.
引文
[1]金相灿等.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    [2]国家环保总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001.
    [3]中华人民共和国环境保护部.2007年中国环境质量报告[M].中国环境科学出版社,2008.
    [4]黄文钰,吴延根,舒金华.中国主要湖泊水库的水环境问题与防治建议[J].湖泊科学.1998,10(3):83-90.
    [5]金相灿等.中国湖泊环境(第二册)[M]北京:海洋出版社,1995.
    [6]北京城市河湖水体水华成因及限制因子研究[D].北京:清华大学,2005.
    [7]荆红卫,华蕾,孙成华等北京城市湖泊富营养化评价与分析[J].湖泊科学.2008,20(3):357-363.
    [8]屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程[J]湖泊科学.2004,16(1):61-66.
    [9]张修峰,李传红.大气氮湿沉降及其对惠州西湖水体富营养化的影响[J].中国生态农业学报.2008,16(1):6-19.
    [10]秦伯强,杨柳燕等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报.2006,51(16):1857-1886
    [11]谢平.论蓝藻水华的发生机制——从生物进化、生物地球化学和生态学视点[M].北京:科学出版社,2007
    [12]秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报.2003,48(17):1822-1831.
    [13]张运林,秦伯强,陈伟民,等.悬浮物浓度对水下光照和初级生产力的影响[J].水科学进展.2004,15(5):615-620
    [14]Paerl H W. Nuisance phytoplankton blooms in coastal, estuarine,and inland waters. Limnol Oceanogr.1988,33(4):823-847.
    [15]孟凡德,姜霞,金相灿.长江中下游湖泊沉积物理化性质研究[J].环境科学研究.2004,17(1):1-5.
    [16]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002.
    [17]Kim L H., Euiso C., Michael K S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere.2003,50(1):53-61.
    [18]Kim L H., Euiso C., Gil I K., et al. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea. Science of the Total Environment.2004. 321(1-3):115-125.
    [19]Emil R. Potentially Mobile Phosphorus in Lake Erken Sediment.Water Research.2000.34 (7):2037-2042.
    [20]Martin S., Jorgen W., Erik J. Phosphorus Fractions and Profiles in the Sediment of Shallow Danish Lakes as Related to Phosphosrus Load,Sediment Composition and Lake Chemistry. Water Research.1996,30 (4):992-1002.
    [21]Zulay R., Medina H L., Janio G., et al. Nitrogen and Phosphorus Levels in Sediments from Tropical Catatumbo River (Venezuela).Water, Air and Soil Pollution,2000.117(1-4):27-37.
    [22]吴根福,吴雪昌,金承涛.杭州西湖底泥释磷的初步研究[J].中国环境科学.1998,18(2):107-110.
    [23]龚春生,姚琪,范成新.城市浅水型湖泊底泥释磷的通量估算以南京玄武湖为例[J].湖泊科学,2006.18(2):179-183.
    [24]谢丽强,谢平,唐汇娟.武汉东湖不同湖区底泥总磷含量及变化的研究[J].水生生物学报,2001.25(4):305-310.
    [25]毛献忠,桂安,陶益等.环境治理和修复技术在城市湖泊中的应用[J].中国环境与生态水力学.2008,(5):10-14.
    [26]Nixdorf B., Deneke R. Why'very shallow'lakes are more successful opposing reduce nutrient load[J].Hydrobiologia.1997,83(7):269-284.
    [27]Sφndergaard M., Kristensen P., Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia.1992,228(11):91-99.
    [28]Reddy K R., Fisher M M., Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environment Quality.1996.25(2):363-371.
    [29]Jeppesen E., Sφndergaard M., Jensen J P., et al. Restoration of Eutrophic Lakes:a Global Perspective. In:Kumagai M, Vincent M F, eds. Freshwater Management:lobal vs Local Perspectives, Tokyo:Springer-Verlag,2003.135-150.
    [3O]Sφndergaard M., Jensen J P., Jeppesen E. Internal phosphorus loading in a shallow eutrophic Danish lake. Hydrobiologia,1999,408/409:145-152.
    [31]Wetzel R G. Limnology, Lake and River Ecosystems [M]. London, Academy Press,2001. 245-260.
    [32]Mortimer C H. Chemical exchanges between Sediments and Water in the Great Lakes-Speculations on probable regulatory mechanisms. Limnology and Oceanography. 1971,16(2):387-404.
    [33]Moore P A., Reddy K R. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. Journal of Environment Quality.1994,23(5):955-964.
    [34]王晓蓉,华兆哲,徐菱等环境条件变化对太湖沉积物磷释放的影响[J].环境化学.1996,15(1):15-19.
    [35]范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物—水界面氮磷交换的影响[J].湖泊科学.1997,9(4):337-342.
    [36]贾晓珊,徐昕荣,李适宇等.珠江流域河网底泥的氮磷污染特征及释放机理[J].中山大学学报.2005,44(2):107-110.
    [37]陈永红,陈军,王娟,等.淮河(淮南段)底泥内源氮磷释放的模拟实验研究[J].土壤学报.2005,42(2):344-347.
    [38]胡雪峰,高效江,陈振楼.上海市郊河流底泥氮磷释放规律的初步研究[J].上海环境科学.2001,20(2):66-70.
    [39]胡小贞,金相灿,卢少勇等.湖泊底泥污染控制技术及其适用性探讨[J].中国工程科学.2009,11(9):28-33.
    [40]朱联东,李兆华,李中强等.富营养化湖泊生态恢复关键技术[J].水科学与工程技术.2009(5):1-3.
    [41]钟继承,刘国锋,范成新等.湖泊底泥疏浚环境效应Ⅱ内源氮释放控制作用[J].湖泊科学.2009,21(3):335-344.
    [42]US EPA. Selecting remediation techniques for contaminated sediment, EPA823-B93-001[R]. Office of Water,Washington, DC.,1993.
    [43]US EPA. Contaminated sediments:relevant Statutes and EPA Pro-gram Activities, EPA 506/6-90/003 [R].Office of Water, Washing-ton,D C.,1990.
    [44]US. Environmental Protection Agency. Contaminated sediment re-mediation guidance for hazardous waste sites[R].EPA 540/R-05/012.U S.EPA Office of Solid Waste and Emergency Response, Washington, D C.,2005.
    [45]孙远军,李小平,黄廷林等.受污染沉积物原位修复技术研究进展[J].水处理技术.2008(1):14-18.
    [46]Todd M Thornburg., Steve Garbaciak Hart Crowser Inc. Natural recovery of contaminated sediments-examples from Puget Sound[R].National Conference on Management and Treatment of Con-taminated Sediments,1997:13-14.
    [47]Proctor L M., Toy E., Lapham L., et al. Enhancement of orimulsion bidegradation through the addition of natural marine carbon substrates. Environment Science & Technology. 2001.35(7):1420-1424.
    [48]National Research Council.Contaminated sediments in ports and waterways:Cleanup strategies and technologies[M]. Washington D C:National Academy Press,1997.
    [49]孙傅,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估[J].环境污染治理技术与设备.20034(8):61-64.
    [50]Danny D Reible. Field demonstration of active caps:innovative capping and in-situ treatment technologies [J/OL]. Project Status Report, (2004-04-30) [2005-03-31] http: //www.hsrc.org/hsrc/html/ssw/anareports/20040430/200404300030.html.
    [51]洪祖喜,等受污染底泥易地处理处置技术[J]上海环境科学.2002,21(4):233-235.
    [52]成小英,李世杰,濮培民.城市富营养化湖泊生态恢复—南京莫愁湖物理生态工程试验[J].湖泊科学2006,18(3):218-224
    [53]M Z Martin., O R West. In situ chemical oxidation through lance permeation at the portsmouth gaseous diffusion plant(Ports)[R],Environmental Sciences Division Oak Ridge National Laboratory, ORNL/TM-2002-272.
    [54]宗栋良,张光明.硝酸钙在底泥修复中的作用机理及应用现状[J].中国农村水利水电2006(04):52-54.
    [55]袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响[J].湖泊科学.2004,16(1):28-34.
    [56]Golder Associates. Limnofix in-situ sediment treatment technology.White Paper,2003,(4):1-7.
    [57]Gerlinde W, Thomas G., Peter C., et al. P-immobilisation and phosphatase activities in lake sediment following treatment with nitrate and iron. Limnologica.2005,35 (1-2):102-108.
    [58]Schulz R S. Mercury fixation in contaminated sediments as a man-agement option at Albany. West Australia Water Science Technology.1989,21(2):45-51.
    [59]Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology. 2006,14(12):512-518.
    [60]Eggen T., Majcherczyk A. Effects of zero-valent iron (FeO) and temperature on the transformation of DDT and its metabolites in lake sediment.Chemosphere.2006,62(7): 1116-1125.
    [61]杨竹攸,李正魁,石鲁娜等.固定化氮循环细菌修复城市湖泊水体脱氮效果及N2O排放[J]湖泊科学.2009,21(6):789-794.
    [62]高波,贾凌云.POPs污染沉积物原位处理技术的研究与应用进展[J].中国给水排水.,2010,2(26):4-14.
    [63]郑政伟,李开明,朱芳.底泥中多环芳烃的微生物降解与原位修复技术[J].环境科学与技术.2010,6(33):49-53.
    [64]唐玉斌,郝永胜,陆柱等.景观水体的生物激活剂修复[J].城市环境与城市生态.2003,16(4):37-39.
    [65]黄民生,徐亚同,戚仁海.苏州河污染支流-绥宁河生物修复试验研究[J].上海环境科学.2003,22(6):384-388.
    [66]王美敬,罗麟,陈进等.生物促生剂修复受污水体净化效能研究[J].四川环境.2006,25(1):14-16.
    [67]卢丽君.利用生物促生剂和曝气修复受污染底泥的试验研究[M].东华大学,2008.
    [68]Murphy T., Moller A., Brouwer H. In situ treatment of Hamilton Harbour sediment. Journal of Aquatic Ecosystem Health.1996,4(3):195-203.
    [69]Bach Q D., Kim S J., Choi S C, et al. Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents.The Journal of Microbiology.2005,43(4):319-324.
    [70]Schulz R S.Mercuryfixation in contaminated sediments as a man-agement option at Albany[J], West Australia Water Science Technology.1989,21(2):45-51.
    [71]桑伟莲,孔繁翔植物修复研究进展[J].环境科学进展.1999,7(3):41-44.
    [72]包先明,等种植沉水植物对富营养化水体沉积物中磷形态的影响[J].土壤通报.2006,37(4):710-715.
    [73]童昌华等.水生植物控制湖泊底泥营养盐释放的效果与机理[J].农业环境科学学报.2003,22(6):673-676.
    [74]杨春霞.有机质及沉水植物对湖泊沉积物界面氮磷矿化与赋存的影响[M].中国环境科学研究院,2009
    [75]马伟芳,赵新华,孙井梅等EDTA在植物修复复合污染河道疏浚底泥中的调控作用[J].环境科学.2006,7(1):85-90
    [76]国家环境保护总局水和废水监测分析方法编委会水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002
    [77]李兵,袁旭音,邓旭.不同pH条件下太湖入湖河道沉积物磷的释放[J].生态与农村环境学报.2008,24(4):57-62.
    [78]卢少勇,金相灿,余刚.人工湿地的磷去除机理[J].生态环境.2006,15(2):391-396.
    [79]于雯泉.胶州湾李村河口区沉积物有机碳、酸可挥发硫化物及重金属的环境响应[D].青岛:中国科学院海洋研究所,2006.
    [80]鲍士旦.土壤农化分析[M].北京:中国农业科技出版社,2000.
    [81]Ruban V.,et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works. Fresenius' Journal of Analytical Chemistry.2001,370(2-3):224-228.
    [82]Ruban V., Brigault S., Demare D., et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France.Journal of Environmental Monitoring.1999,1(4):403-407.
    [83]Hadas O., Pinkas R. Arylsulfatase and alkaline phosphatase (Apase) activity in sediments of Lake Kinneret, Israel. Water, Air, and Soil Pollution.1997,99(1-4):671-679.
    [84]APHA, AWWA, WPCE (Eds.),1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington,DC, pp.456.
    [85]Neto M., Ohannessian A., Delolme C., et al. Towards an optimized protocol for measuring global dehydrogenase activity in storm-water sediments. Journal of Soils Sediments.2007, 7(2):101-110.
    [86]黄代中,肖文娟,刘云兵等.浅水湖泊沉积物脱氢酶活性的测定及其生态学意义[J].湖泊科学.2009,21(3):345-350.
    [87]尹军,谭学军,任南琪等.污泥电子传递体系(ETS)活性测定中萃取剂的选择[J].环境科学学报.2004,24(3):413-417.
    [88]宁修仁,刘子琳,蔡昱明.象山港潮滩底栖微型藻类现存量和初级生产力[J].海洋学报.1999,21(3):98-105.
    [89]李万会.潮滩湿地沉积物中叶绿素a浓度的变化特征及其与沉积物特性间的关系初探[D].上海:华东师范大学,2006.41-42.
    [90]Koppel J., Herman P., Thoolen P. Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology.2001,82(12),3449-3461.
    [91]朱广伟,秦伯强,高光等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J].环境科学学报.2004,(3):381-388.
    [92]黄清辉,王东红,王春霞等.太湖梅梁湾和五里湖沉积物磷形态的垂向变化[J].中国环境科学.2004,24(2):147-150.
    [93]川李军,刘丛强,王仕禄等太湖五里湖表层沉积物中不同形态磷的分布特征[J].矿物学报.2004,(4):405-410.
    [94]苏玉萍,郑达贤,庄一廷等.南方内陆富营养化湖泊沉积物磷形态特征研究[J].农业环境科学学报.2005,24(2):362-365.
    [95]王春雨,马梅,万国江,等.贵州红枫湖沉积物磷赋存形态及沉积历史[J].湖泊科学.2004,16(1):21-28.
    [96]王超,邹丽敏,王沛芳等典型城市浅水湖泊沉积物磷形态的分布及与富营养化的关系[J].环境科学.2008,29(5):1303-1307
    [97]俞林伟,谭镇,钟萍等.广州流花湖底泥磷的垂直变化特征[J]生态环境2007,16(5):1358-1363
    [98]Zhang T X., Wang X R., Jin X C. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu). Environmental Pollution. 2007,150(2):288-294.
    [99]孙顺才,黄漪平.太湖[M].北京:海洋出版社,1993.
    [100]隋桂荣.太湖表层沉积物中OM、TN、TP的现状与评价[J].湖泊科学.1996,8(4):319-324.
    [101]Mudroch A, Azcue D J M. Manual of Aquatic Sediment Sampling[M].Boca Raton:Lewis Publications,1995.
    [102]Huan X W., Ya C Q., Xiang W S., et al. Iron and phosphorus effects on the growth of Cryptomonas sp.(Cryptophyceae) and their availability in sediments from the Pearl River Estuary, China. Estuarine, Coastal and Shelf Science.2007,73(3-4):501-509.
    [103]Lazarova V., Manem J. Biofilm characterization and activity analysis in water and wastewater treatment. Water Research.1995,29 (10):2227-2245.
    [104]Sayler G S., Puziss M., Silver M. Alkaline phosphatase assay for freshwater sediments: application to perturbed sediment systems.Applied and Environmental Microbiology.1979,38(5):922-927.
    [105]Degobbis D., Maslaowska E H., Orio A A., et al. The role of alkaline phosphatase in the sediments of Venice Lagoon on Nutrient regeneration.Estuar Coast Shelf Sci,1986,22(4): 425-437.
    [106]Zhou Y Y., Li J Q., Zhang Mi. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu).Water Research.2002,36(8):2084-2090.
    [107]薛雄志,洪华生.香港维多利亚港沉积物中ALPase活力与各形态磷及微生物特性的关系[J].海洋学报1997,19(5):133-137.
    [108]Chrost R J., Siuda W., Halemejko G Z. Long-term studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle. Archiv for Hydrobiologie Supplement.1984,70(1):1-32.
    [109]Taga N, Kobori H. Phosphatase activity in eutrophic Tokyo Bay. Marine Biology.1978, 49(3):223-229.
    [110]戴荣继,黄春等.藻类叶绿素及其降解产物的测定方法[J].中央民族大学学报(自然科学版).2004,13(1):75-80.
    [111]Xie L Q., Xie P., Tang H J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms:An enclosure experiment in a hyper-eutrophic, subtropical Chinese lake. Environmental Pollution.2003,122(3):391-399.
    [112]郭晓彬.广东省城市湖泊氮、磷污染特征研究[D].广东:暨南大学,2006.
    [113]谭镇,钟萍.惠州西湖底泥中氮磷特征的初步研究[J].生态科学.2005,24(4):318-321.
    [114]李卫平,李畅游,贾克力等.内蒙古呼伦湖沉积物营养元素分布及环境污染评价[J].农业环境科学学报.2010,29(2):339-343.
    [115]Elser J J., Marzolf E R., Goldman C R. Phosphorus and Nitrogen Limitation of Phytoplankton Growth in the Freshwaters of North America:A Review and Critique of Experimental Enrichments [J].Can.J.Fish.Aquat.Sci.1990,47(7):1468-1477.
    [116]Berman T., Chava S. Algal growth on organic compounds as nitrogen sources. Journal of Plankton Research.1999,21(8):1423-1437.
    [117]金相灿,庞燕,王圣瑞等长江中下游浅水湖沉积物磷形态及其分布特征研究[J]农业环境科学学报.2008,27(1):0279-0285
    [118]薛雄志,洪华生.厦门西海域沉积物中碱性磷酸酶活力分布、动态及其与各形态磷的关系[J].海洋学报1995,75(1):81-87
    [119]朱敏,王国祥,王建等.南京玄武湖清淤前后底泥主要污染指标的变化[J].南京师范大学学报(工程技术版).2004,4(2):66-69
    [120]范成新,张路,王建军等.湖泊底泥疏浚对内源释放影响的过程与机理[J].科学通报.2004,49(15):1523-1528.
    [121]Zhong J C., Fan C., Zhang L., et al. Significance of dredging on sediment denitrification in Meiliang Bay, China:A year long simulation study. Journal of Environmental Sciences. 2010,22(1):68-75.
    [122]Liu G R., Ye C S., He J H., et al. Lake sediment treatment with aluminum, iron, calcium and nitrate additives to reduce phosphorus release. Journal of Zhejiang University Science A. 2009,10(9):1367-1373.
    [123]Zhou Y Y., Fu Y Q. Phosphatases in nature water:origin, characteristics and ecological significance. Journal of Lake Science.1999,11(3):274-282.
    [124]Lau S S S., Lane S N. Biological and chemical factors influencing shallow lake eutrophication:A long-term study. Science of the Total Environment.2002,288(3):167-181.
    [125]Raul H P. Simulation of short-term management actions to prevent oxygen depletion in ponds. Journal of the World Aquaculture Society.2007,22(3):157-166.
    [126]German T. Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnology andOceanography.1970,15(5):663-674.
    [127]史小丽,王凤平,蒋丽娟等.光照时间对外源性磷在模拟水生态系统中迁移的影响[J].环境科学.2003,24(1):40-45.
    [128]周易勇,付永清.水体磷酸酶的来源、特征及其生态学意义[J].湖泊科学.1999,11(3):274-282.
    [129]Jamet D., Aleya L., Devaux J. Diel changes in the alkaline phosphatase activity of bacteria and phytoplankton in the hypereutrophic Villerest Reservoir (Roanne,France). Hydrobiologia.1995,300-301(1):49-56.
    [130]Gambin F., Boge G., Jamet D. Alkaline phosphatase in a littoral Mediterranean marine ecosystem:role of the main plankton size classes. Marine environmental research. 1999,47(5):441-456.
    [131]Alperin M J., Martens C S., Albert D B., et al. Benthic fluxes and porewater concentration profiles of dissolved organic carbon in sediments from the North Carolina continental slope. Geochimica et Cosmochimica Acta.1999,63(3-4):427-448.
    [132]Choe K Y., Gill G A., Lehman R D., et al. Sediment-water exchange of total mercury and monomethyl in the San Francisco Bay-Delta. Limnology and Oceanography. 2004,49(5):1512-1527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700