用户名: 密码: 验证码:
天津港港池水交换与生态堤岸设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着滨海城市的发展,围海造地的工程越来越多。工程项目改变了原始的岸线地貌,减少了海域面积,降低了水体交换能力。而且人工堤岸破坏了生态平衡,容易受到侵蚀。本文作为天津临港经济区人工堤岸生态修复与重建工程的一部分,建立了天津港海域和北港池的水动力、示踪剂扩散和拉格朗日粒子跟踪模型,就天津临港经济区北港池水体交换能力以及港池北堤岸的生态改造效果进行数值分析。本文的具体工作和结论如下:
     建立了EFDC水动力模型,综合考虑了风、潮流对北港池水交换能力的影响,并将港池按地形和功能区划分为10个子区域,比较了各个子区域之间的水交换能力的差别。计算结果表明,东南风加强了港池的平均水交换能力,而西北风减弱了港池的平均水交换能力。港池各个子区域间水交换能力差别明显,港池口端水体水交换能力最强,港池顶端最弱,港池中间段各区域也有差别,靠近北岸处,由于环流的存在,减弱了水体交换能力。采用不同的时间尺度作为港池水交换能力的评价指标,各个区域间的对比关系会发生改变。所以针对不同的区域特征,应该选择合适的时间尺度。
     设计三种不同坡度的堤岸,并计算堤岸毗邻水域的水体流动情况,综合考虑选取30o坡度为最终方案。计算堤岸上植被对水体流动的拖曳影响,及其所受的潮流力和波浪力。以水土交界处为原点,比较植被极端受力的力矩与植被须根能承受的最大力矩,可知文中选取的种植密度200株/m2,直径1.5cm,高度1.2m的大米草的存活需要在此区域添加三维网垫、混凝土框格等植被加固措施。
There are more and more land reclamation projects along with the development of coastal cities. These projects have changed the original landscape of the coastline, reduced the area of the sea and the water exchange capacity. The artificial embankment has damaged the ecological equilibrium and easy to be eroded. This paper, as a part of Tianjin Lingang Economic Area artificial embankment ecology repair and reconstruction project, has built hydrodynamic model, tracer diffusion model and Lagrange particle tracking model for Tianjin harbor area and North pond, and also analyzed the water exchange capacity of the Tianjin Lingang Economic Area and the result of the ecological reconstruction of the North Harbor area. The main work and conclusion are as follows:
     EFDC hydrodynamic model was established with the consideration of the affection of the wind and the tidal wave on the North Harbor water exchange capacity. And then divided the harbor basin into 10 subareas according to the terrain and functional area, also compared the difference in the water exchange capacity among different subareas. The computation result indicated that the northwest wind has strengthened the water exchange capacity and the southeast wind has weakened this ability. The difference of the water exchange capacity between different subareas is very obvious. The harbor end has the best water exchange capacity and the top is the minimum. Using different time scales as the evaluation index of the water exchange capacity, the contrast relationships of different areas will change. So for different regional characteristics, we should choose a suitable time scale.
     Embankments of 3 different gradients were designed and the water circulation conditions of the embankment adjacent waters were also calculated. The 30°slope was decided to be the final solution after consideration. The effect of aquatic plants on the drag force of the water body and the tidal force and wave force were also took into consideration. After comparing of the extreme tidal force, the wave force and the maximum tensile force, the Cyperusirial of 200 plants per m2, 1.5cm diameter and 1.2m height need to add vegetation measures like 3D mesh pad and the concrete frame in order to survive.
引文
[1] Parker D S, Norris D P, Nelson A W. Tidal exchange at Golden Gate[J]. Journal of Sanit. Engineering Division, ASCE, 1972, 98(2): 305~323.
    [2] Takeoka H. Fundamental concepts of exchange and transport time scales in a coastal sea[J]. Continental Shelf Research, 1984, 3(3): 311~326.
    [3] Bolin B, Rodhe H. A note on the concepts of age distribution and transit time in natural reservoirs[J]. Tellus, 1973, 25: 58~63.
    [4] Luff R, Pohlmann T. Calculation of water exchange times in the ICES-boxes with a eulerian dispersion model using a half-life time approach[J]. Journal of Hydraulic Engineering, 1996, 47(4): 287~299.
    [5]王寿景.厦门西港海水交换计算[J].台湾海峡, 1990, 9(2): 108~111.
    [6]潘伟然.湄江湾海水交换率和半更换期的计算[J].厦门大学学报(自然科学版), 1992, 31(1): 64~68.
    [7]叶海桃,王义刚,曹兵.三沙湾纳潮量及湾内外的水交换[J].河海大学学报(自然科学版), 2007, 35(1): 96~98.
    [8]孙英兰,陈时俊,俞光耀.海湾物理自净能力分析和水质预测-胶州湾[J].山东海洋学院学报, 1988, 18(2): 60~65.
    [9]李小宝.大型海湾水交换高效计算方法研究[D].天津:天津大学, 2010.
    [10] Nakatsuji K, Yamanaka R, Liang S, et al. Seasonal changes of baroclinic circulation and water exchanges in the Bohai Sea[C]// 8th International Conference on Estuarine and Coastal Modeling, ASCE, 2004, 852~870.
    [11] Liu Z, Wei H, Liu G S. Simulation of water exchange in Jiaozhou Bay by average residence time approach[J]. Estuarine, Coastal and Shelf Science, 2004, 61: 25~35.
    [12]孙英兰,张越美.丁字湾物质输运及水交换能力研究[J].青岛海洋大学学报, 2003, 33(1): 001~006.
    [13]王洪成,金文海.烟台式滨海路环境景观规划[J].中国园林, 2003, 6: 25~26.
    [14]孙逸增.滨水景观设计[M].大连:大连理工大学出版社, 2002.
    [15]李洪元,常青.海河综合开发改造与多功能生态堤岸建设[J].城市环境与城市生态, 2003, 16(6): 26~27.
    [16]刘敏,傅湘宁.土壤生物工程与生态系统[J].水利水电快报, 2002, 23(4): 32~33.
    [17]季永兴,何刚强.城市河道整治与生态城市建设[J].水土保持研究, 2004, 11(3): 245~247.
    [18]胡海泓.生态型护岸及其应用前景[J].广西水利水电, 1999, 4:100~103.
    [19]金德刚,孙绕,沈先秀.蜂巢挡墙在城市河道治理中的应用[J].浙江水利科技, 2001, 137(1): 39~40.
    [19]周得培,张俊云.植被护坡工程技术[M].北京:人民交通出版社, 2003.
    [20] Greenway D R. Vegetation and Slope Stability[R]. New York: Slope stability edited Wiley. 1987.
    [21] Hiseh T. Resistance of cylinder piers in open channel flow[J]. Journal of Sanit. Engineering Division, ASCE, 1964, 90: 161~173.
    [22]王忖,赵振兴.河岸植被对水流影响的研究现状[J].水资源保护, 2003, 6: 50~53.
    [23] Hamrick J M. Application of the EFDC hydrodynamic model to Lake Okeechobee, Florida[R]. Florida:Report to the South Water Management District, West Palm Beach, 1996.
    [24] Jin K R, Hamrick J M, Tisdale T S. Application of a three-dimensional hydrodynamic model for Lake Okeechobee[J]. Journal of Hydraulic Engineering, 2000, 106: 758~772.
    [25] Morton M R, Hamrick J M. Wetting and drying simulation of estuarine processes[J]. Estuarine, Coastal and Shelf Science, 2001, 53: 683~700.
    [26] Hu G D, Shin J. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary[J]. Estuarine, Coastal and Shelf Science, 2007, 73(2): 188~200.
    [27]陈异晖.基于EFDC模型的滇池水质模拟[J].云南环境科学, 2005, 24(4): 28~30.
    [28]齐珺,杨志峰,熊明.长江水系武汉段水动力过程三维数值模型[J].水动力学研究与进展(A辑), 2008, 23(2): 212~219.
    [29]陈景秋,赵万星,季振刚.重庆两江汇流水动力模型[J].水动力学研究与进展(A辑), 2005, 20(增刊): 829~835.
    [30]王建平,苏保林,贾海峰.密云水库及其流域营养物集成模拟的模型体系研究[J].环境科学, 2006, 27(7): 1286~1291.
    [31] Blumberg A F, Mellor G L. A description of a three dimensional coastal ocean circulation model[J]. Three-Dimensional Coastal Ocean Models, 1987, 4: 203~214.
    [32] Ezer T. On the seasonal mixed-layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme[J]. Journal of Geophysical Research, 2000, 105(C7): 16843~16855.
    [33] Ezer T. Entrainment dispycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor-Yamada turbulence scheme[J]. Ocean Modelling, 2005, (9): 151~168.
    [34]吴坚.太湖水动力学数值模拟[D].北京:中科院地理与湖泊研究所, 1986.
    [35]张姝如.太湖风生波流及泥沙运动三维数值模拟[D].天津:天津大学, 2008.
    [36]王聪,林军,陈丕茂.年平均风场作用下大亚湾水交换的数值模拟[J].上海海洋大学学报, 2009, 18(3): 351~358.
    [37] Gong W P, Hong B. The Influence of Wind on the Water Age in the Tidal Tappahannock River[J]. Marine Environmental Research, 2009, 68: 203~216.
    [38]陶亚.基于EFDC模型的深圳湾水环境模拟与预测研究[D].北京:中央民族大学, 2010.
    [39] Kyeong P,Albert Y K. A Three-dimensional Hydrodynamic Eutrophication Model (HEM-3D):Description of Water Quality and Sediment Process Submodels[R]. Special Report in Applied Marine Science and Ocean Engineering, 1995.
    [40]罗锋,廖光洪,杨成浩,等.乐清湾水交换特征研究[J].海洋学研究, 2011, 29(2): 79~88.
    [41] Zimmerman J T F. Estuarine residence time, Hydrodynamics of Estuaries[M], CRC Press, 1988.
    [42]徐惠芬.有植被河道的水利特性研究[D].南京:河海大学, 2006.
    [43]程莉.植物护岸条件下河道水流的数值模拟[D].南京:河海大学, 2002.
    [44] Li R M, Shen H W. Effect of tall vegetation on flow and sediment[J]. Journal of Sanit. Engineering Division, ASCE, 1973, 99(5): 793~814.
    [45] Stephen E D. Effect of Riparian Vegetation on Flow Resistance and Flood Potential[J]. Journal of Sanit. Engineering Division, ASCE, 1999, 125(5): 443~454.
    [46]陶建华.水波的数值模拟[M].天津:天津大学出版社, 2005.
    [47]肖厚蓬.破浪影响下海洋底泥的水动力学数值模拟[D].天津:天津大学, 2007.
    [48]李玉成. Morison方程水动力系数归一化的讨论[J].水动力学研究与进展, A辑, 13(13): 329~336.
    [49]张超波.林木根系固土护坡力学基础研究[D].北京:北京林业大学, 2011.
    [50]程洪,张新全.草本植物根系网固土原理的力学实验探究[J].水土保持通报, 2002, 22(5): 20~23.
    [51]陈海波.网格反滤生物技术在引滦入唐工程中的应用[J].中国农村水利水电, 2001, (8): 47~48.
    [52]鄢俊.植草护坡技术的研究与应用[J].水运工程, 2000, (5): 29~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700