用户名: 密码: 验证码:
基于MR阻尼器的船舶减振基座试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减振性能是体现船舶整体性能的重要指标。近年来,围绕该问题的研究已经成为舰船研究领域内的热点。目前我国使用的舰船减振元件多为被动式减振元件,如:橡胶减振器、金属减振器等。这些减振器的力学特性是固定不变的,对具体设备而言只在某些特定的频带具有较好的减振效果。而船舶设备的工作频率是不断变化的,为达到最佳减振效果要求减振基座的特性有能力随着设备工作特性的改变作出一些调整,这是传统减振基座无法做到的。本文提出了将可控阻尼元件与传统减振基座相并联进行减振基座系统设计的思想,应用现有较成熟的减振元件钢丝绳弹簧和可控阻尼元件MR阻尼器设计了减振基座,并进行了数值仿真分析和模型实验研究。研究结果表明,减振基座在各个频段都有较好的减振性能,尤其是在低频段,减振效果明显优于传统减振元件。
     本论文主要进行了如下几方面的工作:
     (1)基于将MR阻尼器与钢丝绳弹簧相并联的思想,以船舶主机为保护对象,进行了减振基座模型系统的设计,根据国内现有的MR阻尼器的形状特性对传统的舰船基座结构进行了合理改造;
     (2)对钢丝绳减振器和MR阻尼器的力学特性进行了数值仿真分析,研究了MR阻尼器活塞与缸体间隙变化对阻尼器性能的影响。讨论了几何参数变化对钢丝绳减振器等效刚度的影响。并针对试验要求确定了MR阻尼器和钢丝绳减振器的关键参数;
     (3)采用有限元方法对基座系统的振动响应进行了仿真分析。结果表明该基座系统对在低频减振方面具有明显的减振效果;
     (4)基于MTS多点加载系统和LMS数据采集分析系统进行了振动模型试验设计。通过对模型激振频率、激振力幅、控制质量和MR阻尼器电流的调整进行了大量的试验。并采用PID控制方法对振动响应进行了控制。试验结果表明减振基座系统在控制结构振动方面效果明显,尤其体现在低频减振方面;
     (5)基于试验中MR阻尼器的出力特点,在现有MR阻尼器力学模型研究基础之上提出了改进的Sigmoid模型。该模型表达式简练,参数较少,物理意义清晰,具有较高精度。
Perfomance of vibration reduction is an important index that evaluates holistic performance of ship. Recently, the study on this area has become the hotspot. At the present time, most of the vibration absorber components in our country are passive model,for example, rubber damper, steel wire damper,etc. However the mechanical properties of passive absorbers are mostly changeless.But for ship equipments, their working frequencies are changing, it is necessary to apply controllable vibration absorber in the equipments vibration reduction for get the best effect. In order to solve this problem, this paper presents a new controllable mounting system, which is composed of intelligent power component and traditional ship absorber component in parallel. Based on this idea, the design of this mounting system is carried through using MR dampers and steel rope springs, and the characteristics of this mounting system were investigated by model tests. The results show that the damping capacity of MR damper is good in various frequency bands, especially in low-frequency. The damping effect is obviously better than traditional damping component.
     In this paper, the main work contents have been done as follows:
     (1)Based on the idea of putting the MR dampers and steel rope springs in parallel and taking the ship engine as protected object, an mounting system model is designed. The basement of traditional ship is altered reasonably according to the present shape characteristics of MR damper in our country.
     (2)The simulation analysis on steel rope spring and MR damper's characteristics were carried out. Calculated how the gap between piston and inner surface of cylinder effects the damping force of MR and how the aspect of steel rope spring effects its stiffeness. And determined the parameters of steel rope springs used in model test.
     (3)The simulation analysis on vibration responsies of mounting system were carried out. Software ANSYS was used to solve the vibration responses.
     (4)Vibration model test were designed based on the MTS multiplepoint loading system and LMS data-acqusition system. A lot of load cases were used in the test by changing exciting frequency, exciting force, mass of vibration system, corrent in MR damper. And at last, PID method was adopted to control the vibration response. The experiment results indicate that the mounting system has good effect on controlling structure vibration, especially for low frequency.
     (5)The model of MR damper was developed using Sigmoid model based on the charecteristicses of MR damper in model test. The physical significiance of parameters in this model are more clear and the equation is simple.
引文
[1]Yao JPT. Concept of structural control. J Structure Engineering,1972, 98(7):1567-1574P
    [2]徐伟,李桐桥,推进电机新型隔振装置设计研究,船舶科学技术,2006,增刊2:88-91页
    [3]K. E Schultz, Te propulsion machinery installmion ofthe type F-122 frigate, Maritime Defence, September 1979,14:66-69P
    [4]Ungar E. E., Dietrich C. W. High Frequency Vibration Isolation. J. S.V,1966,4(2)
    [5]Gorman R. M. Design and Advantage of a Two-stage Mounting System for Major Machine in Ships Engine Room. Shock & Vib. Bull.35, P5(1966)
    [6]Kwuihiro Mituhashi. Performance of Antivibration Mounts for Marine Machinary. Journal of the M. E. S. J., Vol.18, No.12,1983
    [7]三桥邦宏,森田一雄.船用机器防振支持装置的特性.日本舶用机关学会志,第18卷,第12号
    [8]曾文斌,谢迪波,言福明.电动机及减速齿轮箱的双层隔振装置设计.航海工程,2006,5:89-92页
    [9]贺华,冯奇等.带刚性限位的双层隔振系统的离散随机模型.应用数学和力学,2006,9:102-106页
    [10]汪玉,陈国钧,华宏星,沈荣瀛.船舶动力装置双层隔振系统的优化设计.中国造船,42(1),2001.3:45-49页
    [11]Kuirs R. Some Observation on the Achievable Properties of Diesel Isolation System. Bulletin Shipboard Acoustics, ISBV,90-247-3402, 1986
    [12]沈密群,严济宽.舰船浮筏装置工程实例.噪声与振动控制,1994, No.1, No.3, NO.5
    [13]方媛嫒,王国治.船舶辅机的隔振设计及船体耦合振动分析.江苏科技大 学学报,2006,3:17-20页
    [14]王国治,李良碧.船舶浮筏系统动力学特性的影响因素研究.中国造船,2002,1:43-51页
    [15]李良碧,王国治,温华兵.船舶浮筏隔振特性的有限元分析及试验研究.华东船舶工业学院学报(自然科学版),2001,2:72-76页
    [16]温华兵,王国治,董忠.船舱浮筏系统的隔振性能及水下声辐射试验.船舶,2008.8:12-16页
    [17]陈明,陈秀珍,孙新占.大型组合式浮筏减振装置试验研究.舰船科学技术,2002,6:57-60页
    [18]邵汉林,姚心国.浮筏隔振装置隔振效果评定.噪声与振动控制,2002,8:21-23页
    [19]黄其柏等.基于复刚度法的浮筏隔振系统有限元分析.华中科技大学学报(自然科学版),2007,1:54-56页
    [20]尚国清,林立.浮筏装置系统的动力学特性分析.舰船科学技术,2000,6:11-15页
    [21]尚国清,邱伯华.关于浮筏系统的动力学建模分析.舰船科学技术,1999,4:24-28页
    [22]陈先进,卢方勇,齐欢.基于状态方程的浮筏隔振系统的计算机仿真.噪声与振动控制,1999,1:15-18页
    [23]余林波,黄其柏,张永波,曹剑.双层浮筏隔振系统筏体结构与隔振特性的研究.噪声与振动控制,2007,8:7-9页
    [24]瞿祖清,华宏星,傅志方.浮筏隔振装置的超单元建模方法.中国造船,1998,4:81-86页
    [25]张华良,傅志方,瞿祖清.浮筏隔振系统各主要参数对系统隔振性能的影响.振动与冲击,2000,2:4-8页
    [26]李嘉全,邵长星,陈亚东,鲁力,张鲲,王永.浮筏的主动吸振控制实验研究.实验力学,23(1),2008,3:71-76页
    [27]Rabinow J. The magnetic fiuid clutch[J]. AIEE transition,1948, 67:1308-1315P
    [28]Winslow W M. Induced vibrations of suspensions[J]. Journal of applied physics,1949,20:1137-1140P
    [29]廖昌荣,余森,陈伟民等.磁流变材料与磁流变阻尼器的潜在工程应用田.机械工程材料,2001,25(1):31-34页
    [30]李金,张华良.磁流变液研究和应用[J].上海大学学报,2004,10(1):21-25页
    [31]陶宝棋.智能材料与结构[M].北京:国防工业出版社,1997
    [32]董平,唐家样.MR智能材料在结构振动控制中的应用[J].工程抗震,2000,2:15-23页
    [33]瞿伟廉,李卓球,姜德生等.智能材料-结构系统在土木工程中的应用明.地震工程与工程振动,1999,19(3):87-95页
    [34]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动工程学报,2001,20(1):5-8页
    [35]杨广强(Yang G), Spencer B F, Carlson M K, et al.足尺磁流变阻尼器的建模及动态特性[J].地震工程与工程振动,2001,21(4):8-23页
    [36]杨浩.基于智能算法的结构系统辨识及MR阻尼器半主动控制[D].沈阳:沈阳建筑工程学院,2003
    [37]杨飏.结构振动控制的智能阻尼器性能与智能隔震系统[J].哈尔滨:哈尔滨工业大学,2003
    [38]潘胜,吴建耀,胡林等.磁流变液的屈服应力与温度效应[J].功能材料,1997,28(2):264-267页
    [39]黄尚廉.磁流变技术及其在机械装备系统中的应用研究进展[R].重庆,2005
    [40]汪建晓,孟光.磁流变液装置及其在机械工程中的应用[J].机械强度,2001,23(1):50-56页
    [41]Spencer B F, Dyke S J, Sain M K, et al. Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997,123(3):230-238P
    [42]Dyke S J. Acceleration feedback control strategies for active and semi-active control systems:Modeling, algorithm development and experiment verification[J]. Indiana:University of Notre Dame,1996
    [43]Aldemir U. Optimal control of structure with semi-active-tuned mass damper[J]. Journal of sound and vibration,2003,266:847-884P
    [44]Ribakov Y, Gluck J. Selective combined control stiffness and magnetorheological damping system in nonlinear multistory stluctures[J]. The structure design of Tall Buildings,2002, 11:171-195P
    [45]Hiemenz G J, Choi Y T, Wereley N M.Seismic control of civil structures utilizing semi-active MR braces[J]. ComPuter-Aided Civil and instruction Engineering,2003,18:31-44P
    [46]Renzi E, Serino G. Testing and modeling a semi-actively controlled sleel frame structure equipped with MR damper [J]. Structure Control and Health Monitoring.2004,11:189-221P
    [47]Yi F, Dyke S J, Caicedo J M,et al. Exeerimental Verification of multi-input seismic control strategies for smart dampers[J]. Journal of Englneering Mechanics,2001,127(11):1152-1164P
    [48]Yang G Q. Large scale'magnetorheological fluids damper for vibration mitigation:modeling, testing and control[D]. Indiana: University of Notre Dame,2001
    [49]Yang G Q, Spencer B F, Jung H J, et al. Dynamic Modeling of Large-Scale Magnetorheological Damper Systems for Civil Engineenng Applications[J]. Journal of Engineering Mechanics,2004,130(9): 1107-1114P
    [50]Zhang J, Roschke P N. Active control of a tall structure excited by wind[J]. Journal of Engineering and Industrial Aerodynamics, 1999,83:209-223P
    [51]Jasen L M, Dyke S J. Semi-active control strategies for MR dampers:a compative study[J]. Journal of Engineering Mechanics, 2000,126(8):795-803P
    [52]Yoshioda O, Dyke S K.Seismic Control of a Nonlinear Benchmark Building Using smart Dampers[J].Journal of Enginering Mechanics, 2004,130(4):386-392P
    [53]Choi K M, Cho S W, Jung H J,et al. Semi-active fuzzy control for seismic response reduction using magnetorheological dampers[J]. Earthquake Engineering and Structoral Dynamics,2004, 33:723-736P
    [54]Ribakov Y, Gluck J. Seleclive controlled base isolation system with magnetotheological dampers[J]. Earthquake Engineering and Structural Mechanics,2002,31:1304-1324P
    [55]Gluck J, Ribakov Y, Dancygier A. Predictive active control of MDOF structures[J]. Earthquake Engineering and Structural Dynamics,2000,29:109-125P
    [56]Gluck J, Ribakov Y, Dancygler A. Selective control of base isolaled Structures with CS dampers[J]. Earthquake Engineering and structural Dynamics,2000,16:593-606P
    [57]Yoshioka H, Ramallo J C, Spencer B F. "Smart "'base isolation strategies employing magnetorheological damper[J]. Journal of Englnering Mechanics,2002,128(5):540-551P
    [58]Cho S W, Kim B W, Jung H J. Implementation of Modal control for seismically Excited Structures using Magnetorheological Dampers[J]. Journal of Engineering Mechanics,2005,131(2): 177-184P
    [59]Jung H J, Choi K M, Spencer B F, et al. Application of some semi-active control algorithms to a smart base-isolated building employing MR dampers[J]. Structural Control and Health Monitoring, 2006,13:693-704P
    [60]Koo J H, Ahmadian M, Setareh M. Experimental Robustness Analysis of Magneto-Rheological Tuned Vibration Absorbers Subject to Mass off-Tuning[J], Journal of Vibration and Acoustics,2006,128: 126-131P
    [61]Ruangrassamee A, Sresamai W, Lukkunaprasit P. Response mitigation of the base isolated benchmark building by semi-active control with the viscous-plus-Variable-Friction damping force algorithm[J]. Structural Control and Health Monitoring,2006,1 3:809-822P
    [62]Nagarajaiah S,Narasimhan S. Smart base-isolated benchmark building. Part II:Phase I sample controllers for linear isolation systems[J]. Structoral Control and Heath Monitoring,2006,13: 589-604P
    [63]Tse T, Chang C C. Shear-Mode Rotary Magnetorheological Damper for Small-Scale Structural Control Experiments[J]. Journal of structural Engineering.2004,130(6):904-911P
    [64]Sahasrabudhe S, Nagalajiah S.Experimental Study of sliding Base-Isolated Buildings with Magnetorheological Dampers in Near-Fault Earthquakes [J]. Journal of structural Engineering,2005, 131(7):1025-1034P
    [65]Lee H J, Yang G Q, Jung H J, et al. Semi-active neuro control of a base-isolated benchmark structure[J]. Structural Control and Health Monitoring,2006,13:682-692P
    [66]Jung H J, Spencer B F, Lee I W. Control of Seismically Excited Cable-Stayed Bridge Employing Magnetorheological Fluid Dampers[J]. Journal of structural Engineering,2003,129(7): 873-883P
    [67]Liu Y M, Gordaninejad F, Evrensel C A. Comparative study on Vibration Control of a scaled Bridge Using Fail-Safe Magneto-Rheological Fluid Dampers [J]. Journal of structural Engineering,2005,131(5):743-751P
    [68]Christenson R E, Spencer B F, Johnson E A. Experimental Verification of smart Cable Damping[J]. Journal of Engineering Mechanics,2006,132(3):268-278P
    [69]Park K S, Jung H J, Spencer B F, et al. Hybrid control systems for seismic Protection of a Phase II benchmark cable-stayed bridge[J]. Journal of structural Control,2003,10:231-247P
    [70]Hiroshi S,Kohei S,Katsuaki S. Development of Lalge Capacity semi-ative seismic Damper Using Magneto-Rheologlcal Fluid[J]. Journal of Pressure Vessel Technology,2004,126:105-109P
    [71]Spencer B F, Nagarajaiah S.State of art of structural control[J]. Journal of structural Englneering,2003:845-856P
    [72]Fujitani H, Sodeyama H, Tomura T, et al. Development of 400kN magnetorheological damper for a real base-isolated building[C], Proceedings of SPIE Conference:Smart structures and Materials, Wash,2003,5052:265-276P
    [73]Baif B,et al.Design rules for MR fluid actuators in different working mode[J]. SPIE,1998,3045:148-159P
    [74]Lindler J E, Dimock G A,Wereley N M. Design of a magnetorheological automotive shock absorber[J]. SPIE,2000,3985:426-437P
    [75]Choi S B,Lee H S, Hong S R, et al.Control and response characteristics of a magnetorheological fluid damper for Passenger vehicle[J]. SPIE,2000,3985:438-443P
    [76]Yao G Z, Yap F F, Chen G, et al.MR damper and its application for semi-active control of vehicle suspension system[J]. Mechatronics, 2002,12:963-973P
    [77]McManus S J, Clair K A, et al. Evaluation of vibration attenuation performance suspension seat with MR[J]. Joumal of sound and vibration,2002,253(1):313-327P
    [78]Yang G, Spencer B F, Leban F, Yang. Shock isolation using smart damping[J]. Journal of structural Control,2002,9:135-152P
    [79]Atray V S, Roschke P N. Design, fabrication, testing, and fuzzy modeling of large magnetorheological damper for vibration control in a railcar[C]. Proceedings of the 2003 IEEE/ASME Joint Rail Conference, Chicago,2003:223-229P
    [80]Song X B, Ahmadian M, Southward S, et al. An AdaPtive Semiactive Control Algorithm for Magnetorheological Suspension Systems[J]. Journal of Vibration and Acoustics,2005,127:493-502P
    [81]Kordonsky W I,Demchuk S A.Additional Magnetic dispersed phase improves the properties[C].Proceedings of 5th Intemational Conference on ER Fluid, MR Fluids and Associated Technology, Sheflield, UK,1995:613-619P
    [82]Rong Y, Tao R, Tang X. Flexible fixturing with phase-change materials, partⅠ, experimental study on magnetorheological fluid[J]. Intenational journal of Advanced Manufactorying Technology 2000,16:822-829P
    [83]Marathe S, et al. Helicopter blade response and aeromechanical stability with a magnetorheological fiuid based lag damper[A]. SPIE,1998,3329:390-401P
    [84]Pranoto T, Nagaya K. Hosoda A. Vibration suppression of plateu sing linear MR fluid passive damper[J]. Journal of Sound and Vibration,2004,276:919-932P
    [85]Jolly M. Pneumatic motion control using magnetorheological fluid technology[A].Intenational Symposium on smart Actuators and Transducers[C]. State College, PA,1999:22-23P
    [86]Kim J H, Oh J H. Development of an above knee prosthesis using MR damper and leg simulator [A]. Proceedings of the 2001 IEEE Inteational Conferennce on Robotics & Automation[C], Seoul, 2001:3686-3691P
    [87]隋莉莉.结构磁流变阻尼控制系统的控制算法、反应分析与试验研究[D].哈尔滨:哈尔滨工业大学,2003
    [88]张春巍.结构振动的磁流变阻尼控制算法与控制方案效果分析[D].哈尔滨:哈尔滨工业大学,2001
    [89]杨飏,欧进萍.基于瞬时最优算法的磁流变阻尼隔震结构半主动控制[J].世界地震工程,2003,19(2):145-150页
    [90]付伟庆,张永山,张焕定.基于第一振型的结构控制MR阻尼器优化设计[J].世界地震工程,2005,21(3):105-109页
    [91]付伟庆,张焕定,祁峰.磁流变智能基础隔震系统研究[J].地震工程与工程振动,2005,25(3):167-171页
    [92]张进秋,陆念力,王光远等.剪切阀式磁流变阻尼器动态特性实验研究[J].工程力学,2005,22(3):11-15页
    [93]张进秋,欧进萍,李猛等.半主动悬挂系统磁流变减振器的阻尼力实验与分析[J],地震工程与工程振动,2003,23(1):122-127页
    [94]欧进萍,杨飏.导管架式海洋平台结构的磁流变阻尼隔震控制[J].高技术通讯,2003,6:66-73页
    [95]杨飏,欧进萍.导管架式海洋平台结构磁流变阻尼隔震的振动台试验[J].地震工程与工程振动,2005,25(4):141-148页
    [96]张纪刚,欧进萍.渤海某平台磁流变智能阻尼隔振控制[J].沈阳建筑大学学报,2006,22(1):68-72页
    [97]张纪刚.海洋平台结构振动的被动与半主动混合阻尼控制[D].哈尔滨:哈尔滨工业大学,2005
    [98]王刚.海洋平台结构的冰致振动机理与智能控制[D].哈尔滨:哈尔滨工业大学,2002
    [99]李惠,刘敏,欧进萍等.斜拉索磁流变智能阻尼控制系统分析与设计[J].中国公路学报,2005,18(4):37-41页
    [100]李秀领,李宏男.MR阻尼结构振动控制的仿真试验研究[J].系统仿真学报,2006,18(5):1343-1346页
    [101]周强,瞿伟廉,磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144-150页
    [102]周强,瞿伟廉.安装MR阻尼器工程结构的非参数模型自适应控制[J].地震工程与工程振动,2004,24(4):127-132页
    [103]瞿伟廉,陈波.智能基础隔震结构的剪扭祸联地震反应分析[J].武汉理工大学学报,2003,25(8):39-42页
    [104]Qu W L, Xu Y L. Semi-active control of seismic response of tall building with podium structure using ER/MR dampers[J]. The structural Design of Tall Buildings,2001,10:179-192P
    [105]瞿伟廉,吕明云,李学安.屋盖MR智能隔震系统对升船结构顶部厂房地震鞭梢效应的模糊控制[J].地震工程与工程振动,2002,22(3):129-137页
    [106]瞿伟廉,周耀,MR阻尼器对地震反应的模糊半主动控制[J].武汉理工大学学报,2003,25(11):44-46页
    [107]瞿伟廉,李波,MR阻尼器对桅杆结构风振响应的智能半主动控制[J].地震工程与工程振动,2003,23(3):177-183页
    [108]瞿伟廉,朱晓辉.两种半主动MR阻尼器对电视塔的风振控制[J].武汉理工大学学报,2005,27(1):44-46页
    [109]杨世浩,郑明燕,瞿伟廉.水工弧形闸门半主动减振控制[J].长江科学院院报,2006,23(2):50-52页
    [110]杨万庆.屋盖MR智能隔震系统对升船机地震反应的智能控制[J].工程抗震与加固改造,2005,27(5):81-84页
    [111]吕明云,武哲,瞿伟廉.屋盖MRD隔震升船机结构模型振动台试验[J].北京航抗航天大学学报,2005,31(3):288-292页
    [112]陈静.带裙房高层建筑的半主动逻辑控制[D].武汉:武汉理工大学,2003
    [113]陈静,卢日万,涂建维.三峡升船机结构振动智能控制试验研究[J].武汉大学学报,2004,37(3):102-105页
    [114]沈少波,吴文剑.建筑结构地震反应智能基础隔震的半主动控制[J].武汉科技大学学报,2004,27(4):384-386页
    [115]黄斌,刘晖.智能TMD对高层建筑风振响应的抑制[J].振动与冲击,2003,22(4):58-61页
    [116]汪伟,卢平,刘佐民.磁流变阻尼控制系统中DSP与PC机的串行通信[J].武汉理工大学学报,2004,26(1):26-29页
    [117]李忠献,姜南,徐龙河等.不同控制策略下安装MRD的模型结构振动台试验与分析[J].建筑结构学报,2004,25(6):15-21页
    [118]Li Z X, Xu L H. Performance Tests and Hysteresis Model of MRF-04K Damper[J]. Journalof Structural Engineering,2005,131(8): 1303-1306P
    [119]李忠献,张磊,王泽明.三类结构抗震控制措施控制效果的比较与分析[J]. 工程抗震与加固改造,2005,27(1):37-41页
    [120]李忠献,张媛,王泽明.土-结构动力相互作用对结构控制的影响[J].地震工程与工程振动,2005,25(3):138-144页
    [121]徐龙河,周云,李忠献.半主动磁流变阻尼控制方法的比较与分析[J].世界地震工程,2000,16(9):95-100页
    [122]徐龙河,周云,李忠献.MRFD半主动控制系统的时滞与补偿[J].地震工程与工程振动,2001,21(3):127-131页
    [123]史志利.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D]天津:天津大学,2003
    [124]李忠献,樊素英,史志利.应用MRF_04K阻尼器的大跨连续刚构桥地震反应的半主动控制[J].土木工程学报,2005,38(8):75-79页
    [125]王成博,史志利,李忠献.大跨度斜拉桥地震反应MR阻尼器半主动控制[J].天津大学学报,2005,38(2):95-101页
    [126]张巍.MR_TMD半主动控制研究及其应用[D].天津:天津大学,2003
    [127]孙炳楠,吕朝坤,毛国栋.STMD对高层建筑地震响应的控制[J].工业建筑,2005,35(7):39-42页
    [128]NI Y Q, Chen Y, Ko J M. Neuro-control of cable vibraion using semi-active magnetorheological dampers[J]. Englneering structures,2002,24:295-307P
    [129]邬喆华,陈勇,楼文娟等.MRD对斜拉索减振效果的试验研究[J].振动工程学报,2004,17(1):102-107页
    [130]邬喆华,楼文娟,陈勇等.MR阻尼器对斜拉索被动控制的研究[J].土木工程学报,2005,38(4):78-83页
    [131]邬喆华,楼文娟,朱瑶宏等.斜拉索采用MR阻尼器半主动控制的研究[J].福州大学学报,2005,33(5):6-10页
    [132]颜桂云,孙炳楠,杨俪先等.高层建筑非线性地震反应的半主动模型预测控制[J].浙江大学学报,2004,38(11):1460-1465页
    [133]陈昭辉,应祖光.斜拉索不稳定振动的主动及半主动控制[J].噪声与振动控制,2005,6:5-8页
    [134]Sun Q, Zhang L, Zhou J X, et al. Experimental study of the semi-active control of bullding using the shaking table[J]. Earthquake Engineering and Structureal Dynamics,2003,32:2353-2376P
    [135]孙清.磁流变阻尼器及其在结构振动控制中的理论与实验研究[D].西安:西安交通大学,2003
    [136]孙清,史庆轩,周进雄等.磁流变阻尼器在相邻建筑结构体系弹塑性地震反应控制中的应用[J].世界地震工程,2005,21(1):101-107页
    [137]孙清,伍晓红,戴红等.结构振动半主动控制系统的时滞补偿研究[J].机械科学与技术,2005,24(5):505-509页
    [138]范健,孙清,王学明等.磁流变阻尼器抗震应用的试验研究[J].长安大学学报,2003,20(3):9-11页
    [139]倪建华,张智谦,张可等.种新型的磁流变阻尼器及其在半主动控制车辆悬架中的应用研究[J].机械科学与技术,2004,23(1):4-10页
    [140]刘超群,陈花玲,李海龙.磁流变阻尼器阻尼性能研究[J].振动、测试与诊断,2004,24(2):135-161页
    [141]徐一兵,刘超群.磁流变阻尼器的建模及其设计原则[J].西安通信学院学报,2004,3(6):5-8页
    [142]李大海,刘超群,李天石.磁流变阻尼器试验系统开发及应用[J].机床与液压,2004,12:114-115页
    [143]周玉丰,陈花玲.磁流变阻尼器结构改进设计与性能研究[J],宁夏工程技术,2005,4(4):325-327页
    [144]吴龙,陈花玲,徐一兵.基于Bingham模型的磁流变阻尼器的优化设计[J].机械科学与设计,2005,24(8):953-955页
    [145]郭惠勇,蒋健,张凌.改进遗传算法在MRFD半主动控制系统优化配置中的应用[J].工程力学,2004,21(2):145-151页
    [146]代泽兵,黄金枝,郭子兴.加速度反馈磁流变阻尼器半主动控制[J].上海交通大学学报,2002,36(11):1649-1651页
    [147]代泽兵,黄金枝,王红霞.基于智能阻尼器的大跨度斜拉桥多支承激励地震振动控制[J].振动与冲击,2005,24(2):66-70页
    [148]唐欣,凌虹,胡克鳌.磁流变液沉降稳定性研究现状与趋势[J].磁性材料与器件,2004,35(3):5-8页
    [149]何亚东.基于智能理论建筑结构系统辨识、半主动控制及控制优化研究[D].天津:天津大学,2001
    [150]汪建晓,孟光,陈运西.挤压式磁流变液阻尼器-转子系统的动力学特性与控制[J].机械工程学报,2004,40(3):76-83页
    [151]陈吉安,赵晓昱.应用于汽车减振的磁流变阻尼器的设计原理[J].设计计算研究,2002,8:9-13页
    [152]徐赵东,郭迎庆.利用模糊控制器确定磁流变半主动控制结构的参数[J].东南大学学报,2004,34(2):244-248页
    [153]邸龙.磁流变阻尼器对建筑结构的减震研究[D].西安:西安建筑科技大学,2003
    [154]郭迎庆.磁流变阻尼结构的智能减震控制研究[D].西安:西安建筑科技大学,2003
    [155]阎石,宁欣.不同频率影响下结构减振效果分析[J].世界地震工程,2004,20(4):71-75页
    [156]杨浩.基于智能算法的结构系统辨识及MR阻尼器半主动控制[D],沈阳:沈阳建筑工程学院,2003
    [157]常治国.智能算法在MR阻尼器半主动控制中的应用研究[D].沈阳:沈阳建筑工程学院,2003
    [158]张海.高架桥(立交桥)利用MR阻尼器振动控制研究[D].沈阳:沈阳建筑工程学院,2003
    [159]宁欣.磁流变阻尼器减振控制技术的研究[D].沈阳:沈阳建筑工程学院,2004
    [160]李宏宇.基于模糊神经网络的阻尼器的空间优化布置[D].沈阳:沈阳建筑大学,2005
    [161]郑伟.应用MR阻尼器高层建筑风振智能控制[D].沈阳:沈阳建筑大学,2005
    [162]翁建生.基于磁流变阻尼器的车辆悬架系统半主动控制[D].南京:南京航空航天大学,2002
    [163]郭大蕾.车辆悬架振动的神经网络半主动控制[D].南京:南京航空航天大学,2001
    [164]夏品奇.基于系统识别理论的磁流变阻尼器模型[J].工程力学,2003,20(3):115-119页
    [165]夏品奇,岳海龙.磁流变阻尼器性能及振动控制[J].航空动力程学报,2004,19(3):305-309页
    [166]周丽,张志成.基于MRD的结构振动优化控制[J].振动工程学报,2003,16(1)109-113页
    [167]王唯,夏品奇.磁流变阻尼器用于直升机“地面共振”半主动抑制[J].工程力学,2005,22(1):102-106页
    [168]周智勇.基于磁流变阻尼器的旋翼机体耦合动稳定性半主动控制研究[D].南京:南京航空航天大学,2005
    [169]孙伟.基于多级磁流变阻尼器的颤振半主动抑制[D].南京:南京航空航天大学,2005
    [170]周云,徐龙河,李忠献.磁流体阻尼器半主动控制结构的地震反应分析[J].土木工程学报,2001,34(5):10-14页
    [171]周云,邓雪松,吴志远.磁流变阻尼器对高层建筑风振舒适度的半主动控制分析[J].地震工程与工程振动,2002,22(6):135-141页
    [172]周云,吴志远,邓雪松:高层建筑磁流变阻尼器风振半主动控制系统的优化[J].振动与冲击,2003,22(1):1-5页
    [173]周云,徐龙河,李忠献.两结构联系体系MRFD半主动控制系统优化设计[J].振动与冲击,2001,20(4):29-32页
    [174]张永山,付伟庆,王焕定.MR阻尼器智能基础隔震系统数值模拟研究Ⅰ[J].广州大学学报,2005,4(6):521-525页
    [175]张永山,付伟庆,王焕定.MR阻尼器智能基础隔震系统数值模拟研究Ⅱ[J].广州大学学报,2006,5(1):61,64
    [176]何旭辉,陈政清,黄万林等,MR阻尼器在抑制斜拉桥拉索风雨振中的应用研究[J].湖南大学学报,2002,29(3):91-95页
    [177]何旭辉,陈政清,黄万林等.洞庭湖大桥斜拉索减振试验研究[J].振动工程学报,2002,15(4):447-450页
    [178]陈政清,曹宏,禹见达等.磁流变阻尼器在洪山大桥拉索减振中的应用[J].中南公路工程,2005,30(4):27-30页
    [179]王修勇,陈政清,何旭辉等.洞庭湖大桥风雨振减振试验研究[J].桥梁建设,2002,2:11-14页
    [180]王修勇,陈政清,倪一清.斜拉索多流变阻尼器系统半主动控制的神经网络法[J]振动与冲击,2003,22(4):49-53页
    [181]王修勇,陈政清,倪一清等.斜拉桥拉索风雨振观测及其控制[J].土木工程学报,2003,36(6):53-59页
    [182]闰维明,纪金豹.应用于结构控制的磁流变材料与装置[J].工程抗震,2004,3:1-9页
    [183]卞晓芳,薛素铎.SMA-MR复合型阻尼器[J].世界地震工程,2004,20(2):23-29页
    [184]薛素铎,卞晓芳.SMA-MR阻尼器在大跨度挑篷结构中的减振控制研究[J].空间结构,2005,11(2):19-26页
    [185]张延年,刘斌,李艺等.MRD与LRB相混合的结构振动控制[J].东北大学学报,2006,27(1):95-98页
    [186]张延年,刘剑平,刘斌.多向地震耦合作用下MRD结构的地震反应分析[J].东北大学学报,2005,26(9):897-900页
    [187]张询安,谢霄,连业达.巨-子型控制结构体系风振的半主动控制研究[J].郑州大学学报,2005,26(4):39-43页
    [188]Xu Y L, Qu W L, Ko J M. Seismic response control of frame sttr ctures using MR/ER dampers[J]. Earthquake Engineering and Sttructural Dynamics,2000,29:557-575P
    [189]Xu Y L, Chen. J, Ng C L. Semiactive Seismic Response Control of Buildings with podium Structure[J]. Journal of structural Engineering,2005,131 (6):890-899P
    [190]杜永峰.被动与智能隔震结构地震响应分析及控制算法[D].大连:大连理工大学,2003
    [191]党育.基础隔震结构耗能及MR智能隔震结构时程分析[D].兰州:兰州理工大学,2003
    [192]张丽娟,龚福华,赵世伟.MR智能隔震结构在随机激励下的动力响应[J].湖南工程学院学报,2004,14(3):89-91页
    [193]孙树民,梁启智.隔震独桩平台地震反应的半主动磁流变阻尼器控制研究[J].振动与冲击,2001,20(3):61-64页
    [194]管友海,李华军,黄维平.海洋平台磁流变阻尼器半主动控制研究[J].青岛海洋大学学报,2002,32(4):650-656页
    [195]王树青.海洋平台结构的系统辨识与振动控制技术研究[D],青岛:中国海洋大学,2003
    [196]任晓裕,周彬.MR阻尼器的半主动风振响应控制研究[J].力学季刊,2005,26(1):150-156页
    [197]周春燕,岳继光,彭瑞等.磁流变液气动伺服系统的控制算法研究[J].液压与气动,2006,1:14-16页
    [198]王刚,姚谦峰.考虑阻尼器被动特性的半主动控制算法研究[J].工程抗震与加固改造,2004,6:20-24页
    [199]李波,瞿伟廉.MR阻尼器对桅杆结构风振响应的模糊控制[J].北京交通大学学报,2005,29(1):32-35页
    [200]刘林.高墩大跨铁路桥梁抗震设计与减震控制研究[D].北京:北京交通大学,2004
    [201]高国生,杨绍普,陈恩利等.高速机车悬架系统磁流变阻尼器试验建模与半主动控制[J].机械工程学报,2004,40(10):87-91页
    [202]高国生,杨绍普,陈恩利等.汽车悬架磁流变阻尼器的试验建模[J].汽车工程,2004,26(6):683-685页
    [203]冷谦.关于利用磁流变液体阻尼器作结构减振控制的研究[D].成都:四川大学,2002
    [204]麦庆元,韦树英.MR智能基础隔震结构的抗震分析[J].广西科学,2005,12(4):292-294页
    [205]董平,李黎,叶昆.智能磁流变(MR)阻尼器的实验研究[J].噪声与振动控制,2002,1:42-44页
    [206]陈水生.高架桥梁地震响应磁流变阻尼器(MR)半主动控制[J].长安大学学报,2003,23(6):40-43页
    [207]陈水生.斜拉桥拉索的MR半主动控制研究[J].中国公路学报,2004,17(2):50-54页
    [208]陈水生,任东红.斜拉桥拉索MR模糊半主动控制研究[J].华东交通大学学报,2005,22(5):1-4页
    [209]吴亮宇.使用磁流变阻尼器之半主动控制之研究-针对隔震系统[D].台北:国立台湾大学,2002
    [210]Loh C H, Wu L Y, Lin PY. Displacement control of isolated structures with semi-active control devices[J]. Journal of structural Control,2003,10:77-100P
    [211]廖昌荣,陈爱军,张红辉等.磁流变液的流变学特性检测方法与仪器[J].仪器仪表学报,2004,25(45):84-87页
    [212]廖昌荣,余淼,李建春等.汽车磁流变减振器神经网络模型研究[J].中国公路学报,2003,16(4):94-97页
    [213]李锐,余淼,廖昌荣等.汽车磁流变半主动悬架模糊控制技术[J].重庆大学学报,2004,27(3):1-4页
    [214]方子帆,邓兆祥,陈益.陆地车辆的磁流变半主动悬架模糊集成控制[J].系统仿真学报,2004,16(6):1139-1142页
    [215]黄尚廉.磁流变技术及其在机械装备系统中的应用研究进展[R].重庆,2005
    [216]熊超,郑坚,吕建刚等.磁流变阻尼器力学特性及其在车辆悬挂系统中的应用[J].液压与气动,2006,1:47-50页
    [217]熊超,郑坚,吕建刚等.履带车辆磁流变半主动悬挂系统控制算法研究[J],液压与气动,2006,3:8-1页
    [218]叶和明,张进秋,唐伟.基于磁流变阻尼器的车辆悬挂二自由度模型控制算法[J].军械工程学院学报,2003,15(2):55-62页
    [219]余强,方秦,柳锦春.磁流变阻尼器在防护工程隔震减震中的应用前景[C].中国土木工程学会防护工程分会第九次学术会论文集,长春,2004:1114-1118页
    [220]王灵,黄文良.磁流变减振器在半主动振动控制中的应用[J].南京理工大学学报,2004,28(3):26-70页
    [221]Wang E R, Ma X Q, Rakheja S. Semi-active control of vehicle vibration with MR dampers[C]. Proceedings of the 42nd IEEE conference on Decision and control. USA,2003
    [222]林忠华,胡国清,刘文艳等.磁流变新型微加速度传感器的分析[J],厦门大学学报,2004,43(5):369-372页
    [223]廖昌荣,余淼,陈伟民.基于Eyring本构模型的磁流变液阻尼器设计原理与试验研究[J].机械工程学报,41(10),2005.10
    [224]StanwayI H,Sposton J L, Stevens N G. Non-linear modeling of an electro-rheological vibration damper [J].J Electrostatics,1987, 20:167-184P
    [225]Shames I H, Cozzarelli F A. Elastic and inelastic stress analysis [M].Englewood Cliffs:Prentice Hall,1992
    [226]Pan G Y,Matsuhisa H, Honda Y. Analytical model of a magnetorheological damper and its application to the vibration control [J].26th Annual coference of the IEEE,2000(3):1550-1855P
    [227]Occhiuzzi A, Spizzuoco M, Serino G. Expenmental analysis of magnetorheological dampers for structural conntrol[J]. Smart Materials and structures,2003,12:703-711P
    [228]Pang L,r Kamath G M, Were ley N M Dynamic characterization and analysis of magnetorheological damper behavior[A]. DAVIS L P. Proceedings of SPIE-International Society Optical Engineering: Vol3327. [C]. Washington:SPIE,1998.284-302P
    [229]Yang Guangqiang. Large-scale Magetorheological Fluid Damper for Vibration Mitigation:Modeling, Testing and Control. University of Notre Dame, Indiana, USA,2001
    [230]Werely N M, Pang L, Kamath G M. Idealized hysteresis modeling of electrorheological and magnetorheological dampers[J].J Intelligent Mat. Systems and Struct.1998,9:642-649P
    [231]翁建生,胡海岩,张庙康.磁流变阻尼器的试验建模[J].振动工程学报,2000,13(4):616-621页
    [232]Gamota D R, Filsko F E.Dynamic mechanical studies of electrorheological materials:moderate Frequencies[J]. Journal of Rheoloy,1991,35:399-425P
    [233]Wen Y K. Method of random vibration of hysteretic systems [J]. Journal of Engineenng Mechanics Division, ASCE, 1976,102, NO. EM2:249-263P
    [234]Dyke S J, Fu Y, Frech S, et al. Application of magnetorheological dampers to seismically excited structures[J]. Proceedings of the 17th International Modal Analysis Coference[C]. Kissimee,1999
    [235]Fu Y, Dyke S J, Frech S, et al. Investigation of magnetorheologlcal dampers for earthquake hazard mitigation [A]. Proceedings of the 2nd world conference on structural control, Kyoto, Japan.1995:349-358P
    [236]Jansen L M, Dyke S J. Semi-active Control Stragegies for MR dampers Comparative Study. Journal of Engineering Mechanics,2000(8)
    [237]Dyke S J, Spencer B F, Sain M K, et al.An experimental study of MR dampers for seismic protection [J]. Smar tMaterials and structures, 1998,7(5):693-703P
    [238]Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheologicaldamper for seismic response reduction [J]. Smart Materials and structures,1996,5:565-575P
    [239]Dyke S J, Spencer B F, Sain M K, et al. On the efficacy of magnetorheological dampers for seismic response reduction[A]. Proceedings of the ASME Biennial Conference on Vibration and Noise[C], Sacramento, September,1997
    [240]王修勇,戚跃然,陈政清等.磁流变阻尼器控制拉索振动的优化参数研究[J].湘潭矿业学院学报,2003,18(1):31-35页
    [241]Yang G, Spencer B F, Carlson J D, et al. Large-scale MR fluid dampers:modeling and dynamic performance considerations[J]. Enginering structure,2002,24:309-323P
    [242]徐赵东,李爱群,程文瀼等.磁流变阻尼器带质量元素的温度唯象模型[J].工程力学,2005,22(2):144-148页
    [243]Jimenez R, Alvarez-Icaza L. LuGre friction model for a magnetorheological damper[J]. Structural Control and Health Monitoring,2005,12:91-116P
    [244]徐赵东,沈亚鹏.磁流变阻尼器的计算模型及仿真分析[J].建筑结构,2003,33(1):68-70页
    [245]Wang E R, Ma X Q, Rakbeja S, e tal.A general model of a magneto-rheological controllable damper[J]. The 9th Int. Congress on Sound and Vibration, No.412,202, Orlando, Florida.USA
    [246]侯保林,王灵,Goncalves F D.一种磁流变阻尼器非参数模型[J].南京理工大学学报,2005,29(5):560-564页
    [247]Choi S B, Lee S K, Park Y P. A Hysteresis Model for the Field-dependent Damping Force of a Magnetorheological Damper[J]. Journal of Sound and Vibration,2001,245(2):375-383P
    [248]Ehrgott R C, Masri S F. Modeling of oscillatory dynamic behavior of electrorheological materials in shear[J]. Smart Materials and structures,1992,4:275-285P
    [249]Gavin H P, Hanson R D, Filisko F E. Electrorheologlcal dampers, Part2:testing and model ing[J]. Journal of Applied Mechanics, ASME,1996b,63(9):676-682P
    [250]Chang C C, Roschke P N. Neural network modeling of a magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures,1998,9(9):755-764P
    [251]Kim B, Roschke P N. Linearization of magnetorheologlcal behavior using aneural network[A]. Proceeding of the American Control Conference, San Diego,1999:4501-4505P
    [252]涂建维,瞿伟廉,邹承明等.MR智能阻尼器试验研究及径向基网络模型明.武汉理工大学学报,2003,25(1):43-45页
    [253]Zhou L, Chang C C. Neural network realization of structural vibration control using MR damper[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2001,18(2):144-150P
    [254]Chang C C, Zhou L. Neural network emulation of inverse dynamics for a magnetorheological damper[J]. Journal of sttuctural Enginering,2002,128(2):231-239P
    [255]Xia P Q. An inverse model of MR damper using optimal neural network and system identification[J]. Journal of Sound and Vibration, 2003,26:1009-1023P
    [256]Gang J, Sain M K, Pham K D,et al. Modeling MR dampers:a nonlinear blackbox approach[A]. Proceedings of the American Control Conference, Arlington,2001:429-434P
    [257]Savaresi S M, Bittanti S, Montiglio M. Identification of semi-physical and black-box nonllnear models:the case of MR dampers for vehicles control[J]. Autoomatica,2005,41:113-127P
    [258]李秀领,李宏男.磁流变阻尼器的双sigmoid模型及试验验证.振动工程学报,19(2),2006.6:168-172页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700