用户名: 密码: 验证码:
木塑复合材料热解动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料是利用木屑和废旧热塑性塑料为主要原料,经高温混炼、再经成型加工而制得的一种新型复合材料,是当代工业基础材料废物利用的最佳科研成果在工业生产上的应用,其应用领域非常广阔,主要产品是回廊板、楼梯、护栏以及少量民用消费品。木材与各种基质的高聚体复合后得到的复杂体系与普通材料一样容易燃烧,且放热量大、发烟量大,从而大大限制了木塑复合材料的应用。故研究木塑复合材料的降解机理及影响因素不仅有利于该材料的长期稳定使用,而且也利于今后对材料的循环再利用以及对可降解材料的设计与运用,这不仅具有理论意义,更具实际价值。利用热分析技术研究复合材料的热分解特性与材料的燃耗密切相关,在阻燃研究中常用来判断材料的热稳定性,推测阻燃机理,使复合材料得到更广泛的应用。
     本文首先以PVC为基质合成木塑复合材料,利用TG,DTA,DTG等方法分析PVC及其复合材料、阻燃复合材料在不同气氛、不同升温速率下的热分解特性,并通过单一升温速率法、分布活化能模型等热分析动力学研究方法,计算材料的活化能,通过活化能变化规律研究其降解机理及加入的阻燃体系对降解机理的影响,对材料的热解动力学进行了探讨,研究其阻燃机理。结果发现复合材料中由于PVC热解产生的氯自由基使木粉中的纤维素和半纤维素氯化,Ea比木粉与PVC的总活化能要少。阻燃剂ZnSnO3的加入使得复合材料两个阶段的活化能降低很大。
     第二部分,以LDPE为基质合成木塑复合材料,并选择绿色环保的无机阻燃体系添加到复合材料中制备阻燃复合材料,在研究其TG曲线的基础上,对比质子流强度随温度变化曲线,根据其热解产物推导热解过程,通过不同的动力学模型计算活化能随失重率变化规律,研究复合材料的热解机理及阻燃剂对复合材料热解过程的影响。结果发现,木粉在热解过程中木纤维的炭化在LDPE的热解过程中有成炭剂的作用。加入金属氢氧化合物类阻燃剂后,由于阻燃剂的热解反应及成炭作用使复合材料热解活化能降低。
     第三部分,以EVA为基质合成木塑复合材料,并添加对高聚体阻燃效果明显的膨胀阻燃体系制备阻燃复合材料,通过热重质谱曲线分析热解产物,推导热解过程,通过动力学方法分析活化能的变化规律,研究复合材料的热解机理及阻燃体系对复合材料热解过程的影响。结果发现,在复合材料热解过程中,EVA中的醋酸乙烯酯可与木粉表面羟基形成分子间氢键,且木粉的成炭作用使其活化能较EVA过程减少。而阻燃复合材料中由于膨胀型阻燃剂中气源的稀释和碳源的成炭使复合材料总体活化能减少。
Wood-plastic composite material is a new composite material ,which is composited from polymer matrix and Pretreatment of plant fiber or powder as filler, It is mainly use waste wood and thermoplastics as the main raw material, high-temperature mixing, and then obtained by the molding process and is the basis of modern industrial materials recycling the best scientific research applications in the industrial production,As a new wood-plastic composite materials and extensive use of green materials, its applications are broad, the main product is the gallery board, stairs, fence and a small amount of civilian consumer goods.Timber with a variety of high-polymer matrix composite of the complex system are as easy and common materials, combustion, and heat capacity, heavy smoke, which greatly limits the application of wood-plastic composite materials.Therefore, the degradation of wood-plastic composite materials, mechanisms and affecting factors not only conducive to long-term stability of the materials used, but also conducive to the future use of recycled materials and biodegradable materials on the design and use. This is not only of theoretical significance, more practical value.Thermal analysis technique application of composite materials and has an important role in recovery。Studying the thermal decomposition characteristics of composite materials is closely related to research in the fuel consumption of materials , Flame retardant commonly used in the study to determine the thermal stability, suggesting that fire-retardant mechanism of the composite materials more widely used.
     First, wood and plastic composites were prepared with PVC as matrix, and the thermal decomposition properties of PVC and its flame-retardant composites at different atmosphere and heating rate were analyzed by TG DTA and DTG. The activation energy of the composites were calculated by Freeman method and Distributed activation energy model (DAEM) and other kinetic study method. The mechanism of degradation about flame retardant system and composites were studied by the variation law of activation energy. Also, the kinetics of pyrolysis and the mechanism of degradation of composites were discussed.
     Second,wood and plastic composites were prepared with LDPE as matrix,and inorganic green flame retardant system were choosed to add into the composite meterials. In the study based on the TG curve, derived pyrolysis process according to its thermal decomposition products through the comparison of proton flow strength varies with temperature.Calculate activation energy variation with loss weight through diferent dynamic model,study the thermal decomposition mechanism of composite materials and the affects of flame retardants on pyrolysis process of composite materials.The result shows ,the wood fiber’s carbonization has the role of carbon dose during the thermal decomposition of LDPE.Because of the flame retardants’thermal decomposition and carbonization,the activation energy of composite materials reduced after the metal hydroxide flame retardants were added.
     Third, wood and plastic composites were prepared with EVA as matrix, and intumescent flame retardant system were choosed to add into the composite meterials In the study based on the TG curve, derived pyrolysis process according to its thermal decomposition products through the comparison of proton flow strength varies with temperature.Calculate activation energy variation with loss weight through diferent dynamic model,study the thermal decomposition mechanism of composite materials and the affects of flame retardants on pyrolysis process of composite materials.The result shows ,intermolecular hydrogen bonds can be formed by vinylacetate in EVA and wood surface hydroxyl groups,and the overall activation energy of the composite materials reduced, because of the dilution gas source and carbon source as carbon composite of the intumescent flame retardant in the flame retardant composite materials
引文
[1]朱德钦,刘希荣,生瑜,陈招梅,曾炜祥.聚合物基木塑复合材料的研究进展[J].塑料工业,2005,33(12):1~18
    [2]杨庆贤.木塑复合材料的生产配方与工艺研究[J].复合材料学报,1994,11(4):9~13
    [3]肖泽芳,赵林波,谢延军.木材-热塑性塑料复合材料的进展[J].东北林业大学学报,2003,31(1):39~41 [4l John Z Lu, Wu Qinglin, Harold S. Chemical Coupling in Wood Fiberand Polymer Composites: A Review of Coupling Agents and Treat-ments[J]. Wood Science and Teachnology, 2000, 32(1): 88~104 [5l Haihong Jiang, D.Pascal Kamdem. Effects of Copper Amine Treatment on Mechanical Properties of PVC/Wood-Flour Composites[J]. Journal of vinyl and assitive technology, 2004, 10(2): 70~78
    [6]杨庆贤.木/塑复合材料及其增强机理的研究[J] .复合材料学报,1992,9(4):77~81
    [7] Laurent M Matuana, John J Balatinecz, Chul B Park.Effect of surface properties on the adhension between PVC and wood veneer laminates[J]. Polymer Engineer-ing and Science, 1998, 38(5): 765~773
    [8] Oksman K, Lindberg H, Holmgren A. The nature and location of SEBS-MA compatilizer in polyethylene-woodflour composites[J]. J Appl Polym Sci, 1998, 69(2): 201~209
    [9] Oladipo A B, Wichman I S, Beck J V. Experimental in-vestigation of the thermal properties of wood fiber/ther-moplastic composites[J]. Journal of Composite Materials, 1999, 133(5): 480~495
    [10] Maldas D, Kokta B V. Effect of recycling on the me-chanical properties of wood fiber-polystyrence composites. PartⅠ: chemithermomechanical pulp as a reinforcing filler[J]. Polymer Composites, 1990, 11(2): 277~279
    [11] Razi P S, Raman A, Portier R. Studies on mechanical properties of wood-polymer composites[J]. Journal of Composite Materials, 1997, 31(23): 2391~2401
    [12]贺金梅.木纤维增强线性低密度聚乙烯复合材料界面改性与阻燃的研究[D].东北林业大学硕士论文,2003
    [13]范维澄,刘乃安.中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006,36(1):1~8
    [14] Douglas Gardner, Nicole M. Stark.Understanding the durability of wood plastic composites-Anupdate: proceedings of durability in wood plastic & natural fiber composites 2006[J]. San Antonio, 2006, 12(1): 4~5
    [15] Principia partners. Formulating and processing advances in the global WPC industry 2005[C]. Exton: Principia partners, 2005, 16(1): 7~13
    [16]贺金梅,李斌.热塑性聚合物/木纤维复合材料的研究进展[J].高分子材料科学与工程,2004,20(1):27~30
    [17]黄丽,白绘宇,姜志国,等.表面改性剂对植物纤维/聚丙烯复合材料力学性能的影响[J].北京化工大学学报,2001,28(3):85~87
    [18] Sebe G, Brook M A. Hydrophobization of Wood Surfaces: Covalent Grafting of Silicone Polymers[J]. Wood Science and Technology, 2001(35): 269~282
    [19] John AYoungquist. The Marriage of Wood and Non-wood Materi-als[J]. Forest Products Journal, 1995, 45(10): 25~28
    [20] John Simonsen, Rodeny Jacobsen, Roger Rowell. Wood-Fiber Reinforcement of Styrene-Maleic Anhydride Copolymers[J]. Journal of Polymer Science, 1998, 6(8): 1567~1573
    [21]敖欢,刘延华.木塑复合材料发泡成型技术研究进展[J].塑料工业,2005,33(9):1~3
    [22]吴其业,曹绍文.植物纤维发泡制品及成型技术[J].设计研究制造,2000,20(3):22~25
    [23] Ismet Kaya, Fatih Dogan, Ali Bilici. Schiff Base Substitute Polyphenol: Synthesis, haracterization and Non-Isothermal Degradation Kinetics[J]. Polymer International, 2008, 8(6): 355~372
    [24] M. Momoh, A. N. Eboatu, E. G. Kolawole, A. R. Hor-rocks. Thermogravimetric studies of the pyrolytic behavior in air of selected tropical timbers [J], Fire and Materials, 1996, 20(8): 173~184
    [25] C. D. Doyle. Kinetic analysis of thermogravimetric data [J]. J. Appl. Polymer Sci. 1961, 5: 285~302
    [26] A. W. Coats, J. P. Redfern. Kinetic parameters from ther-mogravimetric data [J]. Nature, 1961, 201: 68~72
    [27] Chrissafis K, Paraskevopoulos K M.Thermal Degradation Kinetics of the Biodegradable Aliphatic Polyester, Poly[J]. Polymer Degradation and Stability, 2006, 91: 60~64
    [28] A. F. Roberts. A review of kinetics data for the pyrolysis ofwood and related substances [J]. CombusFlame, 1970, 14: 261~267
    [29] R. F. Schwenker, L. R. Beck. Study of the pyrolytic de-composition of cellulose by gas chromatography [J]. J. Poly-mer Sci. 1963, C2: 331~339
    [30] J. A. Conesa, J. A. Caballero, A. Marcilla, R. Font. Analysis of different kineticsmodels in the dynamics pyrolysisof cellulose [J]. Thermochimica Acta, 1995, 254: 175~183
    [31] J. A. Caballero, R. Font, A. Marcilla. Comparative study of the pyrolysis of almond shells and their fractions, holocel-lulose and lignin. Product yields and kinetics [J]. Ther-mochimica Acta, 1996, 276: 57~62
    [32] M. Lanzetta, C. D. Blasi, F. Buonanno. An experiment alinvestigation of heat-transfer limitation in the flash pyrolysisof cellulose [J]. Ind. Eng. Chem. Res. 1997, 36: 542~547
    [33] M. R. Huang, X. G. Li. Thermal degradation of cellulose and cellulose esters [J]. J. Appl. Polymer Sci. 1998, 68: 293~304
    [34] S. W. Bigger, J. Scheirs, G. Camino. An investigation of the kinetics of cellulose degradation under non-isothermal conditions [J]. Polymer Degrad. Stabil. 1998, 62: 33~38
    [35] MCEVOYRL , KRAUSE S. Interfacial interactions between polyethylene and polypropylene and some ethylene containing copolymers [J] . Macromolecules , 1996, 29: 4258~4266
    [36]范维澄,刘乃安.中国火灾科学基础研究进展与展望[J].中国科学技术大学学报,2006,36(1):1~8
    [37] Felix J M , Gatenholm P.[J]. J Appl Polym Sci, 1991, 42: 609~610
    [38]杨庆贤.木塑复合材料机械性能的评定[J].高分子材料科学与工程,1993,9(3):14~143
    [39] Yang Qingxian. The study on wood and Plastic Composite Material and its Reinforced[J]. Mechanism Physics of Materials(IWPM-V), 1992, E(14): 1~6
    [40] Bilhao R, Mastral J F, Aldea M E, et a1. Kinetic study for the thermal decomposition of cellulose and pine sawdust in all air atmosphere[J]. Journal of Analytical and Applied Pyrolysis, 1997, 39: 53~64
    [41] Bacaloglu R, Fisch M, Degradation and stabilization of poly(vinyl chloride): V. Reaction mechanism of poly(vinyl chloride)degradation. Polym Degrad Stab[J], 1995, 47(1): 33~57
    [42]李社锋,方梦祥,舒立福,宋长忠,余春江.利用分布活化能模型研究木材的热解和燃烧机理[J].燃烧科学与技术,2006,12(6):536~538
    [43] Sun Qinglei, Li Wen, Li Baoqing. Combustion reactivity of char from pyrolysis of Shenmu maccrals[J]. Journal of Chemical Industry and Engineering, 2002, 53(1): 92~95
    [44]李燕芸,刘霞等.木材阻燃剂的现状及发展趋势[J].北京石油化工学院学报,2000,8(1):29~34
    [45] Budrugeac P. The effect of oxygen p ressure on thekinetics of thermo - oxidative degradation of the copolymer EVA and nitrile - butadiene rubber[ J ]. Journal of App lied Polymer Science, 2000, 75 (12) : 1453~1457
    [46] Sultan B A, Sorvik E. Thermal degradation of EVA [ ethylene - vinyl acetate copolymer ] and EBA [ ethylene - butylacrylate copolymer ] - acomparison. II. Changes in unsaturation and side group structure [ J ]. Journal of App lied Polymer, 1994, 36(23): 38~43
    [47] El - Din NM. IR spectroscopic study on the ther2mal degradation of p lastic security cover sheets of some documents[ J ]. Journal of App lied Polymer Science, 1993, 47(5): 911~916
    [48]刘振海,热分析导论[M].北京化学工业出版社,1991,33:24~29
    [49] X. G. Li. High-resolution thermogravimetry of cellulose esters [J]. J. Appl. Polymer Sci. 1999, 71: 573~581
    [50] I. Milosavljevic, E. M. Suuberg. Cellulose thermal decom-position kinetics: global mass loss kinetics [J]. Ind. Eng.Chem. Res. 1995, 34: 1081~1088
    [51] Liu Xugang, Li Baoqing. Study on gasification kinetics of Datong coal and its chars[J]. Journal of Fuel Chemistry and Technology, 2000, 28(4): 289~293
    [52] Liu Xuguang, Li Baoqing. Analysis of pyrolysis and gasification reactions of hydrothermally and supercritically upgraded low-rank coal by using a new distributed activation energy model[J]. Fuel Processing Technology, 2001, 69(1): 1~12
    [53] Chanda M, Roy S K. Plastics Technology Handbook[J]. New York: Marcel Dekker, 1987, 66: 32~41
    [54] M. J. Antal, G. Varhegyi. Cellulose pyrolysis kinetics: the currrent state of knowledge [J]. Ind. Eng. Chem. Res. 1995, 34: 703~711
    [55] Petsoma A, Roengsumrana S, Ariyaphattanakulb A, et al. J. Polymer Degradation and Stability 2003, 24(80): 17~22
    [56]Gao shishuang,Liu minjiang.无卤阻燃聚乙烯体系的研究[J].上海塑料,2000,2,14~16
    [57] Sun Qinglei, Li Wen, Li Baoqing. Combustion reactivity of char from pyrolysis of Shenmu maccrals [J]. Journal of Chemical Industry and Engineering, 2002, 53(1): 92~95
    [58] M. J. Antal, G. Varhegyi, E. Jakab. Cellulose pyrolysis kinetics: revisited [J]. Ind. Eng. Chem. Res. 1998, 37: 1267~1274
    [59] Ramiah M V. Thermogravimetric and differential thermal analysis of cellulose, hemicelluloses, and lignin[J]. Journal of Applied Polymer Science, 1970, 14: l323~1337
    [60] MCEVOYRL, KRAUSE S. Interfacial interactions between polyethylene and polypropylene and some ethylene containing copolymers [J]. Macromolecules, 1996, 29: 4258~4266
    [61]尹骏,张军.乙烯-醋酸乙烯酯共聚物的化学接枝改性[J].中国塑料,2001,15(5):23~29
    [62] BLOMHP, TEH J W, RUDIN A. IPP/ HDPE blends II .modification with EPDM and EVA [ J ]. J Appl Polym SCI, 1996, 60: 1405~1407
    [63]王素玉,苏一凡,王艳芳.乙烯-乙酸乙烯共聚物现状及发展建议[J].化工技术经济,2003,21 (7):23~27
    [65]夏英,李姿潼,张桂霞,等.无卤阻燃EVA复合材料研究进展[J].塑料科技,2008,36(9):78~82
    [66]夏英,蹇锡高,刘俊龙,等.聚磷酸铵/季戊四醇复合膨胀型阻燃剂阻燃ABS的研究[J].中国塑料,2005,16(5):15~17
    [67]李小云,王正洲,梁好均.三聚氰胺磷酸盐和季戊四醇在EVA中的阻燃研究[J].高分子材料科学与工程,2007,23(1):145~148
    [68] Pieter G, Rieky S, Christian F, Joyce K.Differences in the flame retardant mechanism of melamine cyanurate in polyamide 6 and polyamide 66[J]. Polymer Degradation and Stability, 2002, 78(2): 219~224
    [69] Budrugeac P. The effect of oxygen pressure on the kinetics of thermo-oxidative degradation of the copolymer EVA and nitrile-butadiene rubber [J]. Journal of Applied Polymer Science, 2000, 75(12): 1453~1457
    [70] Rimez B , Rahier H , Van Assche G,etal.The thermal degradation of poly(vinyl acetate)and poly(ethylene-co-vinyl acetate), Part I:Experimental study of the degradation mechanism[J]. Polymer Degradation and Stability, 2008, 93(4): 800~810
    [71] Sultan B A, Sorvik E. Thermal degradation of EVA [ethylene - vinyl acetate copolymer ] and EBA [ethylene - butylacrylate copolymer ]– acomparison. II. Changes in unsaturation and side group structure [J]. Journal of Applied Polymer Science, 1991, 43: 1747~1759
    [72] Nabil Mohamed safy El-Din. IR spectroscopic study on the thermal degradation of plastic security cover sheets of some documents [J]. Journal of Applied Polymer Science, 1993, 47(5): 911~916

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700